
Overview
TMS Aurelius is an Object-Relational Mapping (ORM) framework. Its purpose is to be the

definitive ORM framewok for the Delphi environment, with full support for data manipulation,

complex and advanced queries, inheritance, polymorphism, among others. This manual covers all

topics needed for you to know about Aurelius and start using it.

TMS Aurelius product page: https://www.tmssoftware.com/site/aurelius.asp

TMS Software site: https://www.tmssoftware.com

Benefits
Aurelius brings all benefits an application can obtain from using an ORM framework. Main ones

are:

Productivity:

Avoid complex SQL statements that can only be verified at runtime. Code directly with objects.

Instead of this code:

Write this code:

Maintainability:

Clearer business logic by dealing with objects, hiding all the database-access layer.

Portability:

Easily change the underlying database - all your business code stays the same since they are just

pure objects.

Query1.Sql.Text :=

 'SELECT I.ID AS INVOICE_ID, I.INVOICE_TYPE, I.INVOICENO, I.ISSUE_DATE, ' +

 'I.PRINT_DATE, C.ID AS CUSTOMER_ID, C.CUSTOMER_NAME, C.SEX, C.BIRTHDAY, ' +

 'N.ID AS COUNTRY_ID, N.COUNTRY_NAME' +

 'FROM INVOICE AS I INNER JOIN CUSTOMER AS C ON (C.ID = I.CUSTOMER_ID) ' +

 'LEFT JOIN COUNTRY AS N ON (N.ID = C.COUNTRY_ID)' +

 'WHERE I.ID = :INVOICE_ID;'

Query1.ParamByName('INVOICE_ID').AsInteger := 1;

Query1.Open;

ShowMessage(Format('Invoice No: %d, Customer: %s, Country: %s',

 [Query1.FieldByName('INVOICE_ID').AsInteger,

 Query1.FieldByName('CUSTOMER_NAME').AsString,

 Query1.FieldByName('COUNTRY_NAME').AsString]));

Invoice := Manager1.Find<TInvoice>(1);

ShowMessage(Format('Invoice No: %d, Customer: %s, Country: %s',

 [Invoice.InvoiceNo, Invoice.Customer.Name, Invoice.Customer.Country.Name]));

TMS Aurelius 5.11 Page 1 of 269

https://www.tmssoftware.com/site/aurelius.asp
https://www.tmssoftware.com

Features
Here is a list of main features of TMS Aurelius framework:

Several database servers supported (MS SQL Server, Firebird, MySQL, PostgreSQL, Oracle,

etc.);

Several database-access components supported (FireDac, UniDac, dbExpress, ADO,

AnyDac, SQLDirect, etc.);

Native database drivers allow direct database access without needing a 3rd party

component;

Import existing database model and generate mapped Aurelius entity classes from it;

Multi-platform solution - Win32, Win64, Mac OS X, Linux, VCL, FireMonkey;

Saving, updating and loading of entity objects in an object-oriented way;

Queries - Powerful query API using criteria expressions, projections, grouping, conditions

and even logical operators in a LINQ-like approach;

Inheritance mapping and polymorphism - map a full class hierarchy into the database;

Visual data binding with data-aware controls using full-featured TAureliusDataset

component;

Cross-database development - use a single Delphi code to target multiple databases in a

transparent way;

Choose from classes-to-database approach (creating the database structure from classes)

or database-to-classes approach (creating classes source code from database, using TMS

Data Modeler);

Mapping directly in classes using custom attributes;

Association mapping;

Lifetime management of objects using object manager;

Cached and identity-mapped objects;

Automatic database structure generation;

Nullable types support;

Lazy loading for associations and blob fields;

Allows logging of SQL commands;

Allows mapping enumerated types to database values;

Open architecture - easy extendable to use different component sets or database servers;

Available for Delphi 2010 and up.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 2 of 269

In this section:

Getting Started

Basic info about how to get started using TMS Aurelius.

Database Connectivity

How you properly configure Aurelius to access the database where objects will be saved to.

Mapping

Everything about the class-to-database mapping mechanism from TMS Aurelius.

Multi-Model Design

Defining multiple mapping models in TMS Aurelius.

Manipulating Objects

Querying, saving, updating, deleting and other topics about dealing with objects.

Queries

Performing queries at object level with TMS Aurelius.

Dictionary

Dictionary allow building Aurelius queries in an even easier and more productive way.

Data Validation

Add declarative validations to your mapping to make sure your entity is persisted in a valid state.

Filters

Applying global filters to all entities at once, making it easy, for example, to build multitenant

applications.

Data Binding - TAureliusDataset

Using TAureliusDataset component to bind entity objects to data-aware controls.

Distributed Applications

Features for building distributed applications using Aurelius.

TMS Aurelius 5.11 Page 3 of 269

Events

How to use the event system to receive callback notifications.

Advanced Topics

Some advanced topics about TMS Aurelius.

TMS Aurelius 5.11 Page 4 of 269

Getting Started
In this chapter we will provide you basic info about how to get started using TMS Aurelius. They

are simple examples, but shows you how quickly you can start use it, and how simple is that. The

intention is to explain the macro structure of the framework and what are the major steps to

setup it. For a full usage of the framework and full flexibility, see other chapters in this manual.

Quick Start
Here we describe minimal steps to get started using TMS Aurelius framework.

1. Create the class model

Create a new class to be saved in the database (you can also use an existing class in your

application):

Your class can descend from any other Delphi class.

2. Define and map persistent entity class

Add Entity and Automapping attributes to the class, and an integer FId field. This will do

automatic mapping.

NOTE

All attributes you need are declared in unit Aurelius.Mapping.Attributes so you must add it

to your unit.

type

 TPerson = class

 private

 FLastName: string;

 FFirstName: string;

 FEmail: string;

 public

 property LastName: string read FLastName write FLastName;

 property FirstName: string read FFirstName write FFirstName;

 property Email: string read FEmail write FEmail;

 end;

TMS Aurelius 5.11 Page 5 of 269

You can also fully customize mapping - there is no need to use automatic one. Even including an

FId is not required if you don't use automatic mapping.

3. Obtain an IDBConnection interface

Get the component you use in your application to connect to the database (FireDAC, ADO) and

obtain an IDBConnection interface from it.

NOTE

The IDBConnection interface is declared in Aurelius.Drivers.Interfaces unit. Each adapter

is declared in a different unit, you must check which unit you must use for each available

adapter.

Or, use a native database driver to connect to the database directly.

uses

 {...}, Aurelius.Mapping.Attributes;

type

 [Entity]

 [Automapping]

 TPerson = class

 private

 FId: integer;

 FLastName: string;

 FFirstName: string;

 FEmail: string;

 public

 property Id: integer read FId;

 property LastName: string read FLastName write FLastName;

 property FirstName: string read FFirstName write FFirstName;

 property Email: string read FEmail write FEmail;

 end;

uses

 {...}, Aurelius.Drivers.Interfaces, Aurelius.Drivers.FireDac;

var

 MyConnection: IDBConnection;

begin

 // FDConnection1 is a FireDac TFDConnection component

 // You can use several different data-access component libraries

 // or use a native database driver to connect directly

 MyConnection := TFireDacConnectionAdapter.Create(FDConnection1, false);

TMS Aurelius 5.11 Page 6 of 269

4. Specify the SQL dialect

Let Aurelius know which SQL dialects wlll be available to the application. You do that by adding a

unit named Aurelius.SQL.XXX (where XXX is the name of SQL dialect) to any unit of your

application, or the project itself.

In the example above, we make Aurelius aware of MySQL and Microsoft SQL Server dialects. The

correct dialect will be chosen by Aurelius depending on the connection you specified in step 3. In

that step (3) you can even specify which dialect you are using. There are plenty of SQL dialects

you can use in Aurelius.

5. Create the database

Use the Database Manager to create the underlying database tables and fields where the objects

will be saved.

NOTE

TDatabaseManager is declared in unit Aurelius.Engine.DatabaseManager .

If you have an existing database with specific fields and tables you want to use, just skip this

step.

6. Instantiate and save objects

Now you can instantiate a new TPerson instance and save it in the database, using the object

manager:

uses

 {...}, Aurelius.SQL.MySQL, Aurelius.SQL.MSSQL;

uses

 {...}, Aurelius.Engine.DatabaseManager;

DBManager := TDatabaseManager.Create(MyConnection);

DBManager.UpdateDatabase;

TMS Aurelius 5.11 Page 7 of 269

A new record will be created in the database. Person.Id will be generated automatically.

7. Retrieve and update objects

This way you can retrieve object data, update values and save it back to the database.

8. Perform queries

What if you want to retrieve all persons which e-mail belongs to domain "beatles.org" or

"beatles.com"?

NOTE

There are several units you can use to build queries. Aurelius.Criteria.Base must be always

used, then for filter expressions you can use Aurelius.Criteria.Expression or

Aurelius.Criteria.Linq if you prefer using linq-like operators. To use projections, use

Aurelius.Criteria.Projections unit.

uses

 {...}, Aurelius.Engine.ObjectManager;

Person := TPerson.Create;

Person.LastName := 'Lennon';

Person.FirstName := 'John';

Person.Email := 'lennon@beatles.com';

Manager := TObjectManager.Create(MyConnection);

try

 Manager.Save(Person);

 PersonId := Person.Id;

finally

 Manager.Free;

end;

Manager := TObjectManager.Create(MyConnection);

Person := Manager.Find<TPerson>(PersonId);

Person.Email := 'john.lennon@beatles.org';

Manager.Flush;

Manager.Free;

TMS Aurelius 5.11 Page 8 of 269

9. What's Next?

With just the above steps you are able to create the database and SAVE your classes in there,

being able to save, delete, update and query objects. But what if you want:

a. Create a new class TCompany descending from TPerson and also save it?

Aurelius supports inheritance strategies using the Inheritance attribute.

b. Fine-tune the mapping to define names and types of the table columns where the class

properties will be saved to?

You can do manual mapping using several attributes like Table and Column to define the

database table and columns. You can even use Nullable<T> types to specify fields that can

receive null values.

c. Create properties that are also objects or list of objects (e.g., a property Country:

TCountry in my TPerson class), and also save them?

You can do it, using associations that can be fetched in a lazy or eager mode. You do that using

Association and ManyValuedAssociation attributes.

d. Define different identifier strategies, define sequences, unique indexes, etc., in my

database?

Just use the several mapping attributes available.

e. Perform complex queries using different conditional expressions, grouping, ordering,

aggregated functions, condition expression in associated objects, etc.?

Aurelius allow you to create complex queries using all the mentioned features and more, all at

object-level. ou don't need to use SQL statements for that.

f. Send/receive Aurelius objects in JSON format through REST servers or any other multi-

tier architecture?

uses

 {...}, Aurelius.Criteria.Base, Aurelius.Criteria.Linq;

Manager := TObjectManager.Create(MyConnection);

Results := Manager.Find<TPerson>

 .Where(

 Linq['Email'].Like('%beatles.org%')

 or Linq['Email'].Like('%beatles.com%')

)

 .List;

// Iterate through Results here, which is a TList<TPerson> list.

for person in Results do

 // use person variable here, it's a TPerson object

Manager.Free;

TMS Aurelius 5.11 Page 9 of 269

You can use TMS XData automatic CRUD endpoints to create REST server and distributed

applications that automatically send and receive Aurelius objects via JSON.

TMS Aurelius 5.11 Page 10 of 269

https://doc.tmssoftware.com/biz/xdata/guide/aurelius.html

Database Connectivity
This chapter explains how you properly configure Aurelius to access the database where objects

will be saved to.

To connect to a database using Aurelius, you can use:

Adapter Mode: In this mode you will use an existing 3rd party database-access

component, like FireDAC, dbExpress, ADO, etc.

Native Driver Mode: In this mode TMS Aurelius will connect to the database directly.

The database connection is represented by the IDBConnection Interface.

TAureliusConnection component is the easiest and most straightforward way to configure a

connection and retrieve the IDBConnection interface. It supports both adapter and driver mode

and has design-time wizards to help you out. With the TAureliusConnection component you can

also generate entities from existing database.

Alternatively, you can always create the IDBConnection interface directly from code using the

component adapters or native database drivers.

You can also have the option to use the Connection Wizard to automatically create the

TAureliusConnection component in a new TDataModule, including the adapted connection

component if you're going to use one (FireDac, for example).

See the following topics for detailed information about database connectivity in TMS Aurelius.

Using the Connection Wizard
To connect to a database, you need an IDBConnection interface representing the database

connection. The easiest way to get one is using the "TMS Aurelius Connection" wizard which is

available in Delphi IDE after you installed Aurelius.

To create a new connection:

Choose File > New > Other and then look for "TMS Business" category under "Delphi

Projects". Then double click "TMS Aurelius Connection".

Choose between Adapter Mode or Driver Mode.

For Adapter Mode, select the Adapter (component to access database) and the SQL

Dialect (type of database server).

For Driver Mode, select Driver to use.

A new data module will be created with a TAureliusConnection component already

preconfigured. If you used the adapter mode, the adapted component will also be

created. Either configure the connection settings in the adapted connection (adapter

mode) or directly in TAureliusConnection (for driver mode).

To retrieve a new IDBConnection interface from the data module, just use this code:

•

•

1.

2.

3.

4.

TMS Aurelius 5.11 Page 11 of 269

Remarks

The wizard shows the following options:

For Adapter mode

Adapter: Choose the database component you want to use to connect to the database.

You can choose any that is supported by Aurelius component adapters, like FireDac,

dbExpress, dbGo (ADO), among others.

SQL Dialect: Choose the SQL dialect to be used when executing SQL statements to the

database. Some drivers support several dialects (like FireDac for example), and some

support just one (for example, SQLite driver only supports SQLite dialect).

For Driver mode

Driver: Choose the native database driver you want to use to connect to database, for

example "SQLite" or "MSSQL".

You can freely configure and try the connection at design-time the usual way you do with your

component, that's the purpose of it - to be RAD and working at design-time. It's always a good

practice to close the connection once you have tested and configured it, though.

The name of the data module is automatically defined by the wizard and it's a combination of

the driver and sql dialect you selected. In the example above, it was FireDac driver and MSSQL

dialect, but could be different. You can always change this name later.

It's important to note that no instance of the data module will be auto-created. Also, the

CreateConnection method always create a new instance of the data module, so if you intend to

use a single global connection for the application (which is usual for client/server applications),

call CreateConnection just once and save the created IDBConnection interface for further use.

IDBConnection Interface
The IDBConnection interface is the lowest-level representation of a connection to a database in

Aurelius. Every object that needs to connect to a database just uses this interface to send and

receive data from/to the database. As an example, when you create a TObjectManager object,

you need to pass a IDBConnection interface to it so it can connect to the database.

IDBConnection wraps a component adapter or a native driver - the two ways available to

connect to a database - making it transparent for the framework. Thus, regardless if you connect

to the database using FireDac, dbExpress, ADO, IBX, etc., or directly using native drivers, in the

end all you need IDBConnection.

// The name of data module class might vary from TFireDacMSSQLConnection

// depending on selected driver and SQL Dialect

NewConnection := TFireDacMSSQLConnection.CreateConnection;

•

•

•

TMS Aurelius 5.11 Page 12 of 269

To obtain an IDBConnection interface you instantiate a class of an adapter or a driver. The

adapters just take an existing data access component (TFDConnection, TSQLConnection,

TADOConnection, etc.) and give you back the IDBConnection interface you need to use. The

native driver takes connection parameters to know how to connect to the database. To create

database connections it's important to know the available adapters and drivers:

Native Database Drivers

Component Adapters

SQL Dialects

In summary:

To obtain an IDBConnection interface using a native driver

Instantiate the connection class for the database you want to connect and pass the parameters

in the Create method. For example, to connect to SQL Server:

For more information about the available drivers, the class names and valid parameters, see

Native Database Drivers.

To obtain an IDBConnection interface using an adapter

1. Create and configure (or even use an existing one) component that makes a connection to

your database.

If you use FireDAC, for example, just drop a TFDConnection component on the form and

configure it. Or you can just use the existing one you have in your application. Suppose this

component is named FDConnection1.

2. Instantiate an adapter passing the connection component.

•

•

•

uses Aurelius.Drivers.MSSQL;

{...}

var

 MyConnection: IDBConnection;

begin

 MyConnection := TMSSQLConnection.Create(

 'Server=.\SQLEXPRESS;Database=Northwnd;TrustedConnection=True');

 // Use your connection now

 Manager := TObjectManager.Create(MyConnection);

 {...}

end;

FDConnection1: TFDConnection;

TMS Aurelius 5.11 Page 13 of 269

For more information about how to create adapters, see Component Adapters.

To obtain an IDBConnection interface from a TAureliusConnection component

Once you have configured your TAureliusConnection component (which also provide an adapter

mode or native driver mode), just create a new IDBConnection interface by using the

CreateConnection method:

TAureliusConnection Component
TAureliusConnection component is a RAD and easy way to configure the connection to your

database, at both design-time and runtime. In the end, the main purpose of this component is

also to provide the IDBConnection interface that is used by the whole framework, using the

CreateConnection method:

Configuring the connection using Connection Editor

Easiest way to configure TAureliusConnection component is double clicking the component at

design-time, to open the connection editor. You can then choose if it will connect to the

database with an existing database connection - through a component adapter - or directly

using native database driver.

To use an adapter, click "Use an existent data-access component (Adapter Mode)":

uses Aurelius.Drivers.FireDac;

{...}

var

 MyConnection: IDBConnection;

begin

 MyConnection := TFireDacConnectionAdapter.Create(FDConnection1, False);

 // Use your connection now

 Manager := TObjectManager.Create(MyConnection);

 {...}

end;

var

 MyConnection: IDBConnection;

begin

 MyConnection := AureliusConnection1.CreateConnection;

end;

var MyConnection: IDBConnection;

...

 MyConnection := AureliusConnection1.CreateConnection;

TMS Aurelius 5.11 Page 14 of 269

For that mode, choose an existing data-access component in the "Adapted Connection" combo.

The dialog will list all the supported components. The component to be adapted must be placed

in the same form or data module as TAureliusConnection. Components in other forms or data

modules won't be displayed.

One adapted connection is chosen, "Adapter Name" and "SQL Dialect" will often be selected

automatically. If they don't, just explicitly set the adapter name and the SQL dialect to be used.

To use a native database driver, click "Use native driver support (Driver Mode)":

TMS Aurelius 5.11 Page 15 of 269

Then choose the native "Driver Name". Once it's selected, the valid parameters for the driver will

be displayed. Fill in the parameters accordingly. Refer to "Native Database Drivers" topic for the

full list of the drivers with their respective driver names and parameters.

You can always use the "Test Connection" button to check if your settings are valid.

Configuring the connection using properties

You can configure the connection directly by setting properties, either at runtime from code, or

at design-time using the object inspector.

To connect using a component adapter (adapter mode), set properties AdaptedConnection,

AdapterName and SQLDialect. For example:

To connection using a native database driver (driver mode), set properties DriverName and use

Params to set the parameters:

AureliusConnection1.AdaptedConnection := FDConnection1;

AureliusConnection1.AdapterName := 'FireDac';

AureliusConnection1.SQLDialect := 'PostgreSQL';

AureliusConnection1.DriverName := 'MSSQL';

AureliusConnection1.Params.Values['Server'] := '.\SQLEXPRESS';

AureliusConnection1.Params.Values['Database'] := 'NORTHWND';

AureliusConnection1.Params.Values['TrustedConnection'] := 'True';

TMS Aurelius 5.11 Page 16 of 269

Using the connection

To use TAureliusConnection, use CreateConnection method to create a new IDBConnection

interface and use it:

Each call to CreateConnection will create a new IDBConnection interface. If you are using a

component adapter, it will also clone the existing adapted connection. To achieve that,

TAureliusConnection will clone the owner of the adapted connection. For example, if you are

adapting the FireDac TFDConnection component, and that component is placed in a data

module named TMyDataModule, each type CreateConnection is called it will create a new

instance of TMyDataModule, and then adapt the TFDConnection component in it. When the

IDBConnection interface is not referenced anymore and is destroyed, the instance of

TMyDataModule will also be destroyed.

Generate Entities From Existing Database
TMS Aurelius is an ORM framework which means you need to declare entity classes and map

them to the database. If you have an existing database, you have the option to generate those

classes automatically from the existing database.

First way this can be achieved is using the great TMS Data Modeler tool. It's a database modeling

tool which can import existing database structure to the model, and then generate Delphi source

code with TMS Aurelius classes. It's very powerful, with a scripting system to customize the

source code output, ability to separate classes by units, among other things.

But if you don't want to use a separate tool, and not even leave Delphi IDE, you can quickly

generate entity classes using TAureliusConnection component. Simply configure the database

connection on it, then right-click the component and choose "Generate entities from

database...".

This will connect to the database, import the existing database structure, and open the export

dialog with several options to customize the output source code. You can then select tables to

export, choose naming policy for classes and properties, among other options. You can even

preview the final source code in the "Preview" tab, before confirming. When you click "Ok"

button, a new unit with the declares entities will be created in the same project of

TAureliusConnection component.

var

 MyConnection: IDBConnection;

 Manager: TObjectManager;

begin

 MyConnection := AureliusConnection1.CreateConnection;

 Manager := TObjectManager.Create(MyConnection);

end;

TMS Aurelius 5.11 Page 17 of 269

https://tmssoftware.com/site/tmsdm.asp

In "Mapping" tab you can choose the tables to export.

In "Advanced Settings" tab you can use the following options:

Naming options

You can define the default rule for naming classes, property/fields, associations and many-valued

associations.

Class name comes from table name, property name comes from database field name. Those are

the "base names". For associations you have "Use name from" field which specifies what will be

used for the "base name". From the base name, the Format Mask will be applied. The "%s" in the

format mask will be replaced by the base name. For example, the defualt Format Mask for class

naming is "T%s" which means the class name will be the base name (usually Table Caption)

prefixed with "T".

Additionally, some naming options allow you to:

Camel Case: The first character of the base name or any character followed by underling

will become upper case, all the other will become lower case. For example, if the base

name in model is "SOME_NAME", it will become "Some_Name".

•

TMS Aurelius 5.11 Page 18 of 269

Remove underline: All underlines will be removed. "SOME_NAME" becomes "SOMENAME".

If combined with camel case, it will become "SomeName".

Singularize: If the base name is in plural, it will become singular. "Customers" become

"Customer", "Orders" become "Order". It also applies specified singularization rules for

English language (e.g., "People" becomes "Person", etc.).

Dictionary

Data Modeler can also generate a dictionary with metadata for the classes. This dictionary can be

used in queries in TMS Aurelius. To generate check "Generate Dictionary". You can also specify:

Global Var Name: Defines the name of Delphi global variable to be used to access the

dictionary.

Defaults

Defines some default behaviors when translating tables/fields into classes/properties. You can

override this default behaviors individually for each class/property in the "Mappings" tab.

Field Description

Association Fetch

Mode

The default fetch mode used for associations. Default value is Lazy.

Association

Cascade Type

The default cascade definition for associations. Options are "None" (no

cascade) and "All but Remove" (all cascade options like save, update,

merge, except remove cascade). Default value is None.

Many-Valued

Association Fetch

Mode

The default fetch mode used for many-valued associations. Default is

Lazy.

Map One-to-One

Relationship As

Defines how 1:1 relationships will be converted by default. A 1:1

relationship can be converted as a regular association (property) or can

be considered an inheritance between two classes. Default value is

Association.

Ancestor Class Specifies the name of the class to be used as base class for all entity

classes generated. Default value is empty, which means no ancestor (all

classes will descend from TObject).

Dynamic Props

Container Name

Specifies the default name for the property that will be a container for

dynamic properties. If empty, then by default no property will be created

in the class.

Check for Missing

Sequences

Defines if exporting must abort (raise an error) if a sequence is not

defined for a class. Options are:

- If supported by database: if database supports sequences/generators,

then raise an error if a sequence is not defined (default);

- Always: always raise an error if a sequence is not specified;

- Never: ignore any sequence check.

•

•

•

TMS Aurelius 5.11 Page 19 of 269

Options

Defines some other general options for exporting.

Field Description

Generate

Dictionary

Defines if the dictionary will be generated.

Register

Entities

When checked, the generated unit will have an initialization section with

a call to RegisterEntity for each class declared in the script (e.g.,

RegisterEntity(TSomeClass);).

This will make sure that when using the generated unit, classes will not be

removed from the final executable because they were not being used in the

application. This option is useful when using the entity classes from a

TMS XData server, for example.

Don't use

Nullable<T>

By default, non-required columns will be generated as properties of type

Nullable<T>. Check this option if you don't want to use Nullable, but instead

use the primitive type directly (string, integer, etc.).

Component Adapters
There is an adapter for each data-access component. For dbExpress, for example, you have

TDBExpressConnectionAdapter, which is declared in unit Aurelius.Drivers.dbExpress . All

adapters are declared in unit Aurelius.Drivers.XXX where XXX is the name of data-access

technology you're using. You can create your own adapter by implementing IDBConnection

interfaces, but Aurelius already has the following adapters available:

Technology Adapter class Declared in unit

Adapted

Component Vendor Site

Absolute

Database

TAbsoluteDBConnectionAdapter Aurelius.Drivers.AbsoluteDB TABSDatabase https://www.componentace.com

AnyDac TAnyDacConnectionAdapter Aurelius.Drivers.AnyDac TADConnection https://www.da-soft.com/anydac

dbExpress TDBExpressConnectionAdapter Aurelius.Drivers.dbExpress TSQLConnection Delphi Native

dbGo

(ADO)

TDbGoConnectionAdapter Aurelius.Drivers.dbGo TADOConnection Delphi Native

Direct

Oracle

Access

(DOA)

TDoaConnectionAdapter Aurelius.Drivers.Doa TOracleSession https://www.allroundautomations.com

ElevateDB TElevateDBConnectionAdapter Aurelius.Drivers.ElevateDB TEDBDatabase https://elevatesoftware.com/

FIBPlus TFIBPlusConnectionAdapter Aurelius.Drivers.FIBPlus TFIBDatabase https://github.com/madorin/fibplus

TMS Aurelius 5.11 Page 20 of 269

https://www.tmssoftware.com/site/xdata.asp
https://www.componentace.com
https://www.da-soft.com/anydac
https://www.allroundautomations.com
https://elevatesoftware.com/
https://github.com/madorin/fibplus

Technology Adapter class Declared in unit

Adapted

Component Vendor Site

FireDac TFireDacConnectionAdapter Aurelius.Drivers.FireDac TFDConnection Delphi native

IBObjects

(IBO)

TIBObjectsConnectionAdapter Aurelius.Drivers.IBObjects TIBODatabase https://www.ibobjects.com/

Interbase

Express

(IBX)

TIBExpressConnectionAdapter Aurelius.Drivers.IBExpress TIBDatabase Delphi Native

NativeDB TNativeDBConnectionAdapter Aurelius.Drivers.NativeDB TASASession https://www.nativedb.com

NexusDB TNexusDBConnectionAdapter Aurelius.Drivers.NexusDB TnxDatabase https://www.nexusdb.com

SQL-Direct TSQLDirectConnectionAdapter Aurelius.Drivers.SqlDirect TSDDatabase https://www.sqldirect-soft.com

SQLite TSQLiteNativeConnectionAdapter Aurelius.Drivers.SQLite (not applicable) TMS Aurelius Native

UniDac TUniDacConnectionAdapter Aurelius.Drivers.UniDac TUniConnection https://www.devart.com/unidac

Unified

Interbase

(UIB)

TUIBConnectionAdapter Aurelius.Drivers.UIB TUIBDatabase https://sourceforge.net/projects/uib/

TMS

RemoteDB

Server

TRemoteDBConnectionAdapter Aurelius.Drivers.RemoteDB TRemoteDBDatabase https://www.tmssoftware.com/site/remotedb.asp

ZeosLib TZeosLibConnectionAdapter Aurelius.Drivers.ZeosLib TZConnection https://sourceforge.net/projects/zeoslib

Creating the adapter

To create the adapter, you just need to instantiate it, passing an instance of the component to be

adapted. In the example below, a FireDAC adapter constructor receives a TFDConnection

component.

The adapter usually detects the SQL Dialect automatically, but you can force the adapter to use a

specific dialect, using one of the following overloaded constructors.

Overloaded constructors

There are some overloaded versions of the constructor for all adapters:

MyConnection := TFireDacConnectionAdapter.Create(FDConnection1, False);

TMS Aurelius 5.11 Page 21 of 269

https://www.ibobjects.com/
https://www.nativedb.com
https://www.nexusdb.com
https://www.sqldirect-soft.com
https://www.devart.com/unidac
https://sourceforge.net/projects/uib/
https://www.tmssoftware.com/site/remotedb.asp
https://sourceforge.net/projects/zeoslib

AConnection: specify the database-access component to be adapted.

AOwnsConnection: if true, the component specified in AConnection parameter will be

destroyed when the IDBConnection interface is released. If false, the component will stay

in memory.

ASQLDialect: defines the SQL dialect to use when using this connection. If not specified,

Aurelius will try to discover the SQL Dialect based on the settings in the component being

adapted.

OwnedComponent: specifies the component to be destroyed when the IDBConnection

interface is released. This is useful when using data modules (see below).

Memory Management

Note the second boolean parameter in the Create constructor of the adapter. It indicates if the

underlying connection component will be destroyed when the IDBConnection interface is

destroyed. In the example above ("Creating the adapter"), the FDConnection1 component will

remain in memory, even after MyConnection interface is out of scope and released. If you want

the component to be destroyed, just pass the second parameter as true. You will usually use this

option when you create a connection component just for Aurelius usage. If you are using an

existing component from your application, use false. Quick examples below:

constructor Create(AConnection: T; AOwnsConnection: boolean); overload; virtual;

constructor Create(AConnection: T; ASQLDialect: string;

 AOwnsConnection: boolean); overload; virtual;

constructor Create(AConnection: T; OwnedComponent: TComponent); overload;

virtual;

constructor Create(AConnection: T; ASQLDialect: string;

 OwnedComponent: TComponent); overload; virtual;

•

•

•

•

TMS Aurelius 5.11 Page 22 of 269

Alternatively, you can inform a component to be destroyed when the interface is released. This is

useful when you want to create an instance of a TDataModule (or TForm) and use an adapted

component that is owned by it. For example:

The previous code will create a new instance of data module TConnectionDataModule, then

create a IDBConnection by adapting the SQLConnection1 component that is in the data module.

When MyConnection is released, the data module (MyDataModule) will be destroyed. This is

useful if you want to setup the connection settings at design-time, but want to reuse many

instances of the data module in different connections (for multi-threading purposes, for

example).

Referencing original component

If the component adapter also implements the IDBConnectionAdapter interface, you can retrieve

the original adapted component. For example, given an IDBConnection that you know was

created from a TFireDacConnectionAdapter, you can retrieve the TFDConnection object using the

following code:

var

 MyConnection: IDBConnection;

begin

 MyConnection := TDBExpressConnectionAdapter.Create(SQLConnection1, False);

 // ...

 MyConnection := nil;

 { MyConection is nil, the TDBExpressConnectionAdapter component is destroyed,

 but SQLconnection1 component remains in memory}

end;

var

 MyConnection: IDBConnection;

 SQLConnection1: TSQLConnection;

begin

 SQLConnection1 := TSQLConnection.Create(nil);

 // Set SQLConnection1 properties here in code

 MyConnection := TDBExpressConnectionAdapter.Create(SQLConnection1, True);

 // ...

 MyConnection := nil;

 { MyConection is nil, the TDBExpressConnectionAdapter component is destroyed,

 and SQLConnection1 is also destroyed }

end;

MyDataModule := TConnectionDataModule.Create(nil);

MyConnection := TDBExpressConnectionAdapter.Create(MyDataModule.SQLConnection1, M

yDataModule);

TMS Aurelius 5.11 Page 23 of 269

Native SQLite Adapter

Aurelius provides native SQLite database adapter. You just need to have sqlite3.dll in a path

Windows/Mac can find. Creating SQLite adapter is a little different than other adapters, since you

don't need to pass a component to be adapter. With the SQLite adapter, you just pass the name

of the database file to be open (or created if it doesn't exist):

TSQLiteNativeConnectionAdapter class also has two additional methods that you can use to

manually disable or enable foreign keys in SQLite (foreign keys are enforced at connection level,

not database level in SQLite!).

So if you want to use SQLite with foreign keys, do this to retrieve your connection:

dbGo (ADO) Adapter

Currently dbGo (ADO) is only officially supported when connecting to Microsoft SQL Server

databases. Drivers for other databases might work but were not tested.

Native Database Drivers
Aurelius provides native database connectivity. That means for some databases, you don't need

to use a 3rd-party component adapter to access the database, but instead access it directly

through the database client libraries.

The table below shows the existing native drivers and the connection classes.

var

 MyConnection: IDBConnection;

 FDConnection: TFDConnection;

{...}

 FDConnection := (MyConnection as IDBConnectionAdapter).AdaptedConnection as TFD

Connection;

MySQLiteConnection := TSQLiteNativeConnectionAdapter.Create(

 'C:\Database\SQLite\MyDatabase.sdb');

procedure EnableForeignKeys;

procedure DisableForeignKeys;

var

 SQLiteAdapter: TSQLiteNativeConnectionAdapter;

 MySQLiteConnection: IDBConnection;

begin

 SQLiteAdapter := TSQLiteNativeConnectionAdapter.Create('C:

\Database\SQLite\MyDatabase.sdb');

 SQLiteAdapter.EnableForeignKeys;

 MySQLiteConnection := SQLiteAdapter;

 // Use MySQLiteConnection interface from now on

TMS Aurelius 5.11 Page 24 of 269

Database Driver Name Connection class Declared in unit

Microsoft SQL Server MSSQL TMSSQLConnection Aurelius.Drivers.MSSQL

SQLite SQLite TSQLiteConnection Aurelius.Drivers.SQLite

Creating a connection

To use the native driver from code, you usually just create an instance of the specific connection

class passing to it a connection string that specifies how to connect to the database. The

connection class implements the IDBConnection interface which you can then use. For example:

The connection string is a sequence of ParamName=ParamValue separated by semicolons

(Param1=Value1;Param2=Value2). The param names are specific to each database driver as

following.

SQLite Driver

Driver name is "SQLite", and the following parameters are supported:

Parameter Type Value Example values

Database String A path to an SQLite database file to be

open. Must be a valid SQLite file name, or

even ":memory:" for in-memory databases.

C:

\sqlite\mydb.sqlite

:memory:

EnableForeignKeys Boolean Enables enforcement of foreign key

constraints (using PRAGMA foreign_keys).

Default is false.

True / False

Example:

MSSQL Driver (Microsoft SQL Server)

Driver name is "MSSQL", and the following parameters are supported:

Conn := TMSSQLConnection.Create(

 'Server=.\SQLEXPRESS;Database=Northwnd;TrustedConnection=True');

Manager := TObjectManager.Create(Conn);

Conn := TSQLiteConnection.Create('Database=C:

\sqlite\mydb.sqlite;EnableForeignKeys=True');

TMS Aurelius 5.11 Page 25 of 269

Parameter Type Value Example values

Server String The name of a SQL Server

instance. The value must be

either the name of a server

on the network, an IP

address, or the name of a

SQL Server Configuration

Manager alias.

localhost

.\SQLEXPRESS

localhost,1522

Database String Name of the default SQL

Server database for the

connection.

northwnd

UserName String A valid SQL Server login

account.

sa

Password String The password for the SQL

Server login account

specified in the UID

parameter.

mypassword

TrustedConnection Boolean When "true", driver will use

Windows Authentication

Mode for login validation.

Otherwise instructs the

driver to use a SQL Server

username and password for

login validation, and the

UserName and Password

parameters must be

specified. Default is False.

True/False

MARS Boolean Enables or disables multiple

active result sets (MARS) on

the connection. Default is

False.

True/False

OdbcAdvanced String Semicolon-separated

param=value pairs that will

be added to the raw

connection string to be

passed to the SQL Server

client.

StatsLog_On=yes;StatsLogFile=C:

\temp\mssqlclient.log

LoginTimeout Integer Number of seconds to wait

for a login request to

complete before returning to

the application.

10

TMS Aurelius 5.11 Page 26 of 269

Parameter Type Value Example values

Driver String Specifies the SQL Server

driver name (native or

ODBC) to be used to

connect to the SQL Server.

Default is empty, which

forces Aurelius to

automatically select the

most recent driver installed.

You should mostly leave this

empty, unless you have a

reason to use a specific

driver.

ODBC Driver 13 for SQL Server

Example:

SQL Dialects
To save and manipulate objects in the database, TMS Aurelius internally build and execute SQL

statements. The SQL statements are automatically adjusted to use the correct dialect, according

to the database server being used by the programmer.

When you create an IDBConnection interface using a component adapter, usually the adapter

will automatically specify to Aurelius the SQL dialect to use. For example, if you are using FireDac

components, the adapter will look to the DriverID property and tell which db server you are

using, and then define the correct SQL dialect name that should be used.

However, the SQL dialect must be explicitly registered in the global settings for Aurelius. This is

by design so you don't need to load units for SQL dialects you won't use. To register an SQL

dialect, just use a unit named Aurelius.SQL.XXX where XXX is the name of the SQL dialect. The

following table lists all current SQL dialects supported, the exact string identifier, and the unit

you must add to your project in order for the dialect to be registered.

SQL

dialect

String

identifier Declared in unit Database Web Site

Absolute

Database

AbsoluteDB Aurelius.Sql.AbsoluteDB http://www.componentace.com

DB2 DB2 Aurelius.Sql.DB2 http://www.ibm.com

ElevateDB ElevateDB Aurelius.Sql.ElevateDB http://www.elevatesoftware.com

Firebird Firebird Aurelius.Sql.Firebird http://www.firebirdsql.org

Firebird3

(*)

Firebird3 Aurelius.Sql.Firebird3 http://www.firebirdsql.org

Conn := TMSSQLConnection.Create(

 'Server=.\SQLEXPRESS;Database=Northwnd;TrustedConnection=True');

TMS Aurelius 5.11 Page 27 of 269

http://www.componentace.com
http://www.ibm.com
http://www.elevatesoftware.com
http://www.firebirdsql.org
http://www.firebirdsql.org

SQL

dialect

String

identifier Declared in unit Database Web Site

Interbase Interbase Aurelius.Sql.Interbase http://www.embarcadero.com

Microsoft

SQL Server

MSSQL Aurelius.Sql.MSSQL http://www.microsoft.com/sqlserver

MySQL MySQL Aurelius.Sql.MySql http://www.mysql.com

NexusDB NexusDB Aurelius.Sql.NexusDB http://www.nexusdb.com

Oracle Oracle Aurelius.Sql.Oracle http://www.oracle.com

PostgreSQL PostgreSQL Aurelius.Sql.PostgreSQL http://www.postgresql.org

SQL

Anywhere

SqlAnywhere Aurelius.Sql.SqlAnywhere https://www.sap.com/products/sql-anywhere.html

SQLite SQLite Aurelius.Sql.SQLite http://www.sqlite.org

Note that in some situations, the adapter is not able to identify the correct dialect. It can happen,

for example, when you are using ODBC or just another data access component in which is not

possible to tell which database server the component is trying to access. In this case, when

creating the adapter, you can use an overloaded constructor that allows you to specify the SQL

dialect to use:

When using a native database driver, the SQL dialect is implicit from the driver you use and there

is no need to specify it. The native driver already uses the sql dialects and schema importer units

automatically.

(*) The difference between Firebird and Firebird3 is that the latter uses boolean fields and identity

fields by default. Please check Configuring SQL Dialects for more details on how to configure

specific SQL dialects.

Configuring SQL Dialects
Some SQL Dialects have configuration options that you can use to fine tune how they work. For

that you need to retrieve the original SQL Dialect object and then change specific properties.

This is the pattern you use to retrieve a generator:

MyConnection := TDBExpressConnectionAdapter.Create(SQLConnection1, 'MSSQL',

False);

TMS Aurelius 5.11 Page 28 of 269

http://www.embarcadero.com
http://www.microsoft.com/sqlserver
http://www.mysql.com
http://www.nexusdb.com
http://www.oracle.com
http://www.postgresql.org
https://www.sap.com/products/sql-anywhere.html
http://www.sqlite.org

For all dialects you have the following options:

Properties

Name Description

EnforceAliasMaxLength:

Boolean

Makes sure that the field aliases used by Aurelius in SQL SELECT

statements are not longer than the maximum size for field names.

When this property is false, the field alias could be longer than

maximum allowed for database and would cause errors in some

databases, mainly Firebird. This property is there to avoid backward

compatibility break, but usually you should always set it to true.

UseBoolean: Boolean Specifies how boolean values will be represented in database. If

False (default), boolean fields will be represented by CHAR(1) type.

If True, boolean fields will be represented by BIT/TINYINT type.

For other dialects, you can just replace "Firebird" occurrences by the name of the different

dialect. The following sections show the dialects that have specific properties you can configure:

MSSQL (Microsoft SQL Server)

Sample:

uses

 Aurelius.Sql.Register, Aurelius.Sql.Firebird;

var

 Generator: TFirebirdSQLGenerator;

begin

 Generator := (TSQLGeneratorRegister.GetInstance.GetGenerator('Firebird')

 as TFirebirdSQLGenerator);

 // Set Generator properties

end;

uses Aurelius.Sql.Register, Aurelius.Sql.MSSQL;

{...}

(TSQLGeneratorRegister.GetInstance.GetGenerator('MSSQL')

 as TMSSQLSQLGenerator).UseBoolean := True;

TMS Aurelius 5.11 Page 29 of 269

Properties

Name Description

WorkaroundInsertTriggers:

Boolean

Specifies if Aurelius should add statement to retrieve Identity

values. Basically it would SET NOCOUNT ON and use a temporary

table to retrieve the value. More technical info here:

https://stackoverflow.com/a/42393871.

This property is true by default to make sure things will work in

most situations. But setting it to false might increase

performance or work better when identity values are greater than

32 bits. In this case you could set it to false.

Firebird3 (Firebird 3.x)

Sample:

The code above makes the Firebird3 dialect to behave like the regular Firebird dialect (which is

targeted at Firebird 2.x).

Properties

Name Description

UseBoolean:

Boolean

Specifies how boolean values will be represented in database. If False, then

booleans will be represented by CHAR(1) type. If True, booleans will be

represented by BOOLEAN type. Default is True.

UseIdentity:

Boolean

Specifies how ID generators of type SequenceOrIdentity will behave. If False,

then Sequences will be used. If True, Identity fields will be used. Default is

True.

Schema Importers
To be able to update and validate database schema, Aurelius needs to perform reverse

engineering in the database. This is accomplished by using schema importers that execute

specific SQL statements to retrieve the database schema, depending on the database server

being used. To find the correct importer, Aurelius searches for a list of registered schema

importers, using the same SQL Dialect used by the current connection. So, for example, if the

current SQL Dialect is "MySQL", Aurelius will try to find a schema importer named "MySQL".

uses Aurelius.Sql.Register, Aurelius.Sql.Firebird3;

{...}

(TSQLGeneratorRegister.GetInstance.GetGenerator('Firebird3')

 as TFirebird3SQLGenerator).UseBoolean := False;

(TSQLGeneratorRegister.GetInstance.GetGenerator('Firebird3')

 as TFirebird3SQLGenerator).UseIdentity := False;

TMS Aurelius 5.11 Page 30 of 269

https://stackoverflow.com/a/42393871

By default, no schema importers are registered. You must be explicity register a schema importer

in the global settings for Aurelius. This is by design so you don't need to load units for schema

importers you won't use. To register an schema importer, just use a unit named

Aurelius.Schema.XXX where XXX is the name of the SQL dialect associated with the schema

importer. The following table lists all current schema importers supported, the exact string

identifier, and the unit you must add to your project in order for the dialect to be registered.

Schema Importer

for

String identifier (associated SQL

Dialect) Declared in unit

Absolute Database AbsoluteDB Aurelius.Schema.AbsoluteDB

DB2 DB2 Aurelius.Schema.DB2

ElevateDB ElevateDB Aurelius.Schema.ElevateDB

Firebird Firebird Aurelius.Schema.Firebird

Interbase Interbase Aurelius.Schema.Interbase

Microsoft SQL Server MSSQL Aurelius.Schema.MSSQL

MySQL MySQL Aurelius.Schema.MySql

NexusDB NexusDB Aurelius.Schema.NexusDB

Oracle Oracle Aurelius.Schema.Oracle

PostgreSQL PostgreSQL Aurelius.Schema.PostgreSQL

SQL Anywhere SqlAnywhere Aurelius.Schema.SqlAnywhere

SQLite SQLite Aurelius.Schema.SQLite

NOTE

When using a native database driver, the schema importer is implicit from the driver you use.

The native driver already uses the sql dialects and schema importer units automatically.

Components and Databases Homologation
The following table presents which data-access component can be used to access each relational

database server. Note that some components can access more databases than what's described

here (especially dbGo (ADO) which can access several databases through OleDB drivers).

However, the table below shows what has been tested and is officially supported by TMS

Aurelius.

Native Absolute AnyDac dbExpress dbGo DOA ElevateDB FireDac FIBPlus IBO IBX NativeDB NexusDB SQLDirect UniDac UIB ZeosLib

AbsoluteDB x

DB2 x x x x x

ElevateDB x

Firebird x x x x x x x x

TMS Aurelius 5.11 Page 31 of 269

Native Absolute AnyDac dbExpress dbGo DOA ElevateDB FireDac FIBPlus IBO IBX NativeDB NexusDB SQLDirect UniDac UIB ZeosLib

Interbase x x x x x x x x

MS SQL

Server

x x x x x x x x

MySQL x x x x x

NexusDB x

Oracle x x x x x x x

PostgreSQL x x x

SqlAnywhere x x

SQLite x x x x

Database versions used for homologation are listed below. TMS Aurelius tries to use no syntax or

features of an specific version, its internal code uses the most generic approach as possible.

Thus, other versions will most likely work, especially newer ones, but the list below is provided

for your reference.

Database Version

AbsoluteDB 7.05

DB2 9.7.500

ElevateDB 2.08

Firebird 2.5.1

Interbase XE (10.0.3)

MS SQL Server 2008 R2 (10.50.1600)

MySQL 5.5.17 (Server)

5.1.60 (Client)

NexusDB 3.0900

Oracle 10g Express (10.2.0.1.0)

PostgreSQL 9.1

SqlAnywhere 17

SQLite 3.7.9

Analog to databases above, in table below we list data-access components used for

homologation and respective versions. Newer versions should work with not problems.

Component Library Versions

AbsoluteDB 7.05

TMS Aurelius 5.11 Page 32 of 269

Component Library Versions

AnyDac 5.0.3.1917

dbExpress 16.0

dbGo Delphi 2010 and up

Direct Oracle Access 4.1.3.3

ElevateDB 2.32

FIBPlus 7.2

FireDac Delphi XE5 and up

IBObjects 4.9.14

IBX Delphi 2010 up to XE2

NativeDB 1.98

NexusDB 4.5023

SQL-Direct 6.3

UniDac 8.3.1

Unified Interbase (UIB) 2.5 revision 428 (01-Feb-2013)

ZeosLib 7.3

Database Manager - Creating/Updating
Schema
If you have an existing database, you can use Aurelius on it. You can map your existing or new

classes to the tables and fields of existing databases, and that's it. But for new applications, you

might consider just modeling the classes, and let Aurelius build/update the database structure

for you, creating all database objects needed to persist the objects. To do that, just create a

TDatabaseManager object (declared in unit Aurelius.Engine.DatabaseManager) the same way

you create a TObjectManager, and use one of the methods available to manager the schema

(database structure). Common usage is as following:

TMS Aurelius 5.11 Page 33 of 269

Alternatively, you can also pass a TMappingExplorer instance, which holds a custom mapping

setup.

The following topics explain how to use the database manager object.

TAureliusDBSchema Component

The TAureliusDBSchema component is a non-visual, design-time component that encapsulates

the TDatabaseManager class, used to build, update and validate the schema structure of the

database (tables, fields, foreign and primary keys, etc.).

TAureliusDBSchema and TDatabaseManager have equivalent functionality; the main purpose for

TAureliusDBSchema component is to provide an alternative RAD approach: instead of

instantiating a TDatabaseManager from code, you just drop a TAureliusDBSchema component,

connects it to a TAureliusConnection component, and you are ready to go.

Key properties

Name Description

Connection:

TAureliusConnection

Specifies the TAureliusConnection component to be used as the

database connection.

TAureliusConnection acts as a connection pool of one single

connection: it will create a single instance of IDBConnection and any

manager using it will use the same IDBConnection interface for the life

of the TAureliusConnection component.

The IDBConnection interface will be passed to the TDatabaseManager

constructor to create the instance that will be encapsulated.

uses

 Aurelius.Engine.DatabaseManager;

{...}

var

 DBManager: TDatabaseManager;

begin

 DBManager := TDatabaseManager.Create(MyConnection); // use default mapping

explorer

 // operate on database schema using DBManager

 DBManager.Free;

end;

DBManager := TDatabaseManager.Create(MyConnection, MyMappingExplorer);

TMS Aurelius 5.11 Page 34 of 269

Name Description

ModelNames: string The name(s) of the model(s) to be used by the manager. You can leave

it blank, if you do it will use the default model. Two or more model

names should be separated by comma. From the model names it will

get the property TMappingExplorer component that will be passed to

the TDatabaseManager constructor to create the instance that will be

encapsulated.

DBManager:

TDatabaseManager

The encapsulated TDatabaseManager instance used to perform the

database operations.

Usage

As mentioned, TAureliusDBSchema just encapsulates a TDatabaseManager instance. So for all

functionality (methods, properties), just refer to TDatabaseManager documentation and related

topics that explain how to build, update and validate the database schema.

The encapsulated object is available in property DBManager. If you miss any specific method or

property in TAureliusDBSchema, you can simply fall back to DBManager instance and use it from

there. For example, the following methods are equivalent:

Actually, the first method is just a wrapper for the second one. Here is how

TAureliusDBSchema.UpdateDatabase method is implemented, for example:

Memory management

Here is the lifecycle of the encapsulated TDatabaseManager instance itself:

The TDatabaseManager instance will be created on demand, i.e., when

TAureliusDBSchema is created, the TDatabaseManager is not yet created. It will only be

instantiated when needed.

If the connection or model name is changed, the encapsulated TDatabaseManager

instance will be destroyed. A new TDatabaseManager instance will be created with the

new connection/model, when needed.

Creating New Schema

You can create a new schema from an empty database using method BuildDatabase:

AureliusDBSchema1.UpdateDatabase;

AureliusDBSchema1.DBManager.UpdateDatabase;

procedure TAureliusDBSchema.UpdateDatabase;

begin

 DBManager.UpdateDatabase;

end;

•

•

TMS Aurelius 5.11 Page 35 of 269

This method will execute all SQL statements that create the whole database structure needed to

persist the mapped entity classes. It does not take into account the existing database schema,

so if tables already exist, an "object already exists" error will happen in database server when

executing the statement. You can alternatively just generate the SQL script without executing it.

Even though this method does not perform any reverse engineering to check existing database

structure, a schema validation result is available. Results are provided as if the existing database

is empty.

Updating Existing Schema

You can update the existing database structure using method UpdateDatabase:

This method will:

Perform a schema validation, which consists of:

a. Execute SQL statements to perform a reverse engineering in the database, retrieving the

existing database schema (*);

b. Compare the existing schema with the target schema (all database objects - table,

columns, etc. - need to persist the mapped entity classes);

c. Provide info about the differences between the two schema (see schema validation for

details);

d) Generate the SQL Script needed to update the database schema.

Execute the SQL Script in the database, unless command execution is disabled (see

Generating SQL Script).

uses

 Aurelius.Engine.DatabaseManager;

{...}

var

 DBManager: TDatabaseManager;

begin

 DBManager := TDatabaseManager.Create(MyConnection);

 DBManager.BuildDatabase;

 DBManager.Free;

end;

uses

 Aurelius.Engine.DatabaseManager;

{...}

var

 DBManager: TDatabaseManager;

begin

 DBManager := TDatabaseManager.Create(MyConnection);

 DBManager.UpdateDatabase;

 DBManager.Free;

end;

1.

2.

TMS Aurelius 5.11 Page 36 of 269

NOTE

(*) For Aurelius to properly import database schema, you need to register a schema importer

according to the database server you are connecting to. For example, to import MySQL

schema, just use the unit Aurelius.Schema.MySQL anywhere in your project.

If command execution is disabled, this method behaves exactly as the ValidateDatabase method.

Since this method performs on a database that has existing object and data, it has some

limitations. First, if you are unsure of the effects of schema update, it's strongly recommended

that you check schema validation results before updating. Errors might occur when updating the

schema, for example, if new schema requires a foreign key creating but existing data doesn't fit

into this new constraint. See schema validation for a list of current valid operations and

limitations.

Note that UpdateDatabase is a non-destructive method. This means that even if the validation

reports that a data-holding object (table or column) needs to be dropped, the SQL statement for

it will not be performed.

Dropping Existing Schema

You can drop the whole database structure from an existing database using method

DestroyDatabase:

This method will execute all SQL statements that destroy the whole database structure needed to

persist the mapped entity classes. It does not take into account the existing database schema,

so if tables were already dropped, an "object does not exist" error will happen in database server

when executing the statement. You can alternatively just generate the SQL script without

executing it.

Even though this method does not perform any reverse engineering to check existing database

structure, a schema validation result is available. Results are provided as if the existing database

is complete, with all objects, and target database structure is empty.

uses

 Aurelius.Engine.DatabaseManager;

{...}

var

 DBManager: TDatabaseManager;

begin

 DBManager := TDatabaseManager.Create(MyConnection);

 DBManager.DestroyDatabase;

 DBManager.Free;

end;

TMS Aurelius 5.11 Page 37 of 269

Schema Validation

Schema validation is a process that gives you the differences between the existing database

schema and the needed schema to make the current application to work. You can validate the

existing database structure using method ValidateDatabase. The method returns true if there are

no differences in that comparison (meaning that the existing database structure has all database

objects needed by the application):

This method will:

a. Execute SQL statements to perform a reverse engineering in the database, retrieving the

existing database schema (*).

b. Compare the existing schema with the target schema (all database objects - table, columns,

etc. - need to persist the mapped entity classes).

c. Provide info about the differences between the two schema (see schema validation for details).

d. Generate the SQL Script needed to update the database schema.

NOTE

(*) For Aurelius to properly import database schema, you need to register a schema importer

according to the database server you are connecting to. For example, to import MySQL

schema, just use the unit Aurelius.Schema.MySQL anywhere in your project.

If command execution is disabled, this method behaves exactly as the UpdateDatabase method.

uses

 Aurelius.Engine.DatabaseManager,

 Aurelius.Schema.Messages;

{...}

var

 DBManager: TDatabaseManager;

 SchemaMessage: TSchemaMessage;

begin

 DBManager := TDatabaseManager.Create(MyConnection);

 if DBManager.ValidateDatabase then

 WriteLn('Database strucuture is valid.')

 else

 begin

 WriteLn(Format('Invalid database structure. %d Errors, %d Warnings, %d

Actions',

 [DBManager.ErrorCount, DBManager.WarningCount, DBManager.ActionCount]));

 for SchemaMessage in DBManager.Warnings do

 WriteLn('Warning: ' + SchemaMessage.Text);

 for SchemaMessage in DBManager.Errors do

 WriteLn('Error: ' + SchemaMessage.Text);

 for SchemaMessage in DBManager.Actions do

 WriteLn('Action: ' + SchemaMessage.Text);

 end;

 DBManager.Free;

end;

TMS Aurelius 5.11 Page 38 of 269

The comparison result is provided through properties Actions, Warnings and Errors and also

ActionCount, WarningCount and ErrorCount, defined as following:

TSchemaAction, TSchemaWarning and TSchemaError classes inherit from TSchemaMessage class,

which just has a public Text property with the information about the difference. The concept of

each message type (action, warning, error) is described as follows.

Actions

Actions are reported differences between the two schemas which associated SQL update

statements can be safely executed by the database manager. Examples of differences that

generate actions:

A new table;

A new nullable column in an existing table;

A new sequence;

A new non-unique index (DBIndex);

Foreign key removal (if supported by database);

Unique key removal (if supported by database).

Warnings

Warnings are reported differences between the two schemas which associated SQL update

statements can be executed by the database manager, but it might cause runtime errors

depending on the existing database data. Examples of differences that generate warnings:

A new not null column in an existing table (to be safe, when updating existing schema, try

to always create new columns as nullable);

A new foreign key (usually you will create a new association, which will generate actions

for new foreign key and new columns, which will not cause problem, unless the

association is required). It's a warning if supported by database.

Errors

Errors are reported differences between the two schemas which associated SQL update

statements cannot be executed by the database manager. This means that updating the

schema will not make those differences disappear, and you would have to change the schema

manually. The fact it is reported as "Error" does not mean the application will not work. It just

means that the manager cannot update such differences. Examples of differences that generate

errors:

Column data type change;

Column Null/Not Null constraint change;

property Actions: TEnumerable<TSchemaAction>;

property Warnings: TEnumerable<TSchemaWarning>;

property Errors: TEnumerable<TSchemaError>;

property ActionCount: integer;

property WarningCount: integer;

property ErrorCount: integer;

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 39 of 269

Column length, precision or scale change;

A new foreign key (if database does not support such statement);

Foreign key removal (if database does not support such statement);

Unique key removal (if database does not support such statement);

Changes in primary key (id fields);

Column removal;

Table removal;

Sequence removal;

A new unique key.

Schema comparison options

You can use some properties to define how Aurelius will detect changes in existing schema.

Properties

Name Description

IgnoreConstraintName:

Boolean

When False, the validator will compare constraints (foreign key and

unique key) by their name. If the name is different, they are

considered different keys. This is the default for all databases except

SQLite. When True, the validator will analyze the content of the

foreign key, regardless the name. For example, if the foreign keys

relates the same two tables, using the same fields, it's considered to

be the same foreign key. You can set this option to True if you have

created your database using a different tool than Aurelius, thus the

foreign keys might have different names but you don't want Aurelius

to recreated them.

Generating SQL Script

All TDatabaseManager methods that perform some operation in the database schema generate

an SQL script, available in the SQLStatements property. Most methods also execute such

statements (like BuildDatabase, UpdateDatabase and DropDatabase). Some methods do not

execute, like ValidateDatabase. But in all cases, the associated SQL script is available.

In TDatabaseManager you have the option to disable execution of SQL statements. This way you

have the freedom to execute the statements as you want, using you our error handling system,

your own graphical user interface to execute them, etc. To do that, just set SQLExecutionEnabled

property to false.

Examples:

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 40 of 269

Note that when SQLExecutionEnabled property is false, calling UpdateDatabase is equivalent to

calling ValidateDatabase, so this code:

Could also be written just as:

uses

 Aurelius.Engine.DatabaseManager;

{...}

var

 DBManager: TDatabaseManager;

 procedure OutputSQLScript;

 var

 SQLStatement: string;

 begin

 for SQLStatement in DBManager.SQLStatements do

 WriteLn(SQLStatement);

 end;

begin

 DBManager := TDatabaseManager.Create(MyConnection);

 DBManager.SQLExecutionEnabled := false;

 // Output an SQL Script to build a new database

 DBManager.BuildDatabase;

 OutputSQLScript;

 // Output an SQL to drop the full database

 DBManager.DropDatabase;

 OutputSQLScript;

 // Output an SQL script to update the existing database

 DBManager.UpdateDatabase;

 OutputSQLScript;

 DBManager.Free;

end;

// Output an SQL script to update the existing database

DBManager.SQLExecutionEnabled := false;

DBManager.UpdateDatabase;

OutputSQLScript;

// Output an SQL script to update the existing database

// Regardless of value of SQLExecutionEnabled property

DBManager.ValidateDatabase;

OutputSQLScript;

TMS Aurelius 5.11 Page 41 of 269

Other Properties and Methods

List of TDatabaseManager methods and properties not coverered by other topics in this chapter.

Properties

Name Description

UseTransactions:

Boolean

When True, all operations performed by TDatabaseManager will be

executed in a transaction, i.e., the manager will automatically start a new

transaction, and commit it at the end of operations, or rollback if there is

an error. Nesting apply (if a transaction was already open, no commit or

rollback will be performed). Default is False.

TMS Aurelius 5.11 Page 42 of 269

Mapping
This chapter provides you information about how to map your classes to the database. While a

mapping can be made so simple using a single automapping attribute, it can be fully

configurable and might need lots of concepts to be done the way you need. Several mapping

attributes are available, you can also create your classes using special types like Nullable<T> and

TBlob, and so on.

The topics below describe all the mapping mechanism in TMS Aurelius.

Attributes
Object-Relational Mapping in Aurelius is done by using attributes. With this approach you can

do your mapping directly when coding the classes, and by browsing the source code you can

easily tell how the class is being mapped to the database.

Basically you just add attributes to the class itself, or to a field or property:

For column and associations mapping Aurelius accepts mapping attributes in either class field or

class property (but not both of course). We recommend using mapping attributes in fields

whenever it's possible, for several reasons:

Attributes are kept in private section of your class, leaving the public section clean and

easily readable.

Fields represent better the current state of the object. Properties can have getter and

setters based on other data that it's not exactly the object state for persistance.

Some Aurelius features are better suited for fields. For example, lazy-loaded associations

requires the use of a Proxy type, which makes more sense to be uses in fields (although

you can use it in properties).

Still, there are situations where creating mapping attributes in properties are interesting, when

for example you want to save the result of a runtime calculation in database.

Available attributes (declared in unit Aurelius.Mapping.Attributes):

Basic Mapping

Entity

AbstractEntity

Id

Table

Column

[Table('Customer')]

TMyCustomer = class

private

 [Column('Customer_Name')]

 FCustomerName: string;

...

1.

2.

3.

•

◦

◦

◦

◦

◦

TMS Aurelius 5.11 Page 43 of 269

Sequence

UniqueKey

Enumeration

Association Mapping

Association

JoinColumn

Many-Valued Association Mapping

ManyValuedAssociation

ForeignJoinColumn

Behavior Mapping

Where

OrderBy

Model

DB Structure Mapping

DBIndex

ForeignKey

Inheritance Mapping

Inheritance

DiscriminatorColumn

DiscriminatorValue

PrimaryJoinColumn

Automapping

Automapping

Transient

Concurrency Control

Version

Other attributes

Description

Entity

Indicates that the class is an entity class, which means it can be persisted.

Level: Class Attribute

Description

Every class that you want to be persisted in database must have this attribute. It's also used by

Aurelius for automatic class registration. When automatic registration is active in global

configuration, every class marked with Entity attribute will be automatically registered as an

entity class.

Constructor

Parameters

None.

Usage

◦

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

◦

•

◦

◦

•

◦

◦

◦

◦

•

◦

◦

•

◦

•

◦

constructor Create;

TMS Aurelius 5.11 Page 44 of 269

AbstractEntity

Indicates that the class is an abstract entity: it can hold some mapping information that is

inherited by concrete entity classes, but it will not persisted in the database.

Level: Class Attribute

Description

An abstract entity is a class that can have mapping information, but will not be persisted to the

database. It allows you to have an entity classs that descend from an abstract entity class and

inherit mapping information from it. This way you can have a class hiearchy without having to

persist the ancestor classes, like you would have to do using the single-table or joined-tables

inheritance strategies.

Not every mapping information can be used in abstract entities. In abstract entities you can:

map primitive type columns (using Column attribute)

map the entity id (like attributes Id and UnsavedValue)

map associations

use attributed-based events

add attribute-based validation

use global filters (using attributes like FilterDef and FilterDefParam).

Not supported:

table-specific mapping attributes like Table, Sequence, UniqueKey, DBIndex, ForeignKey

attributes related to inheritance strategy like Inheritance

DiscriminatorColumn

DiscriminatorValue

PrimaryJoinColumn.

Constructor

Parameters

None.

Example

[Entity]

TCustomer = class(TObject)

•

•

•

•

•

•

•

•

•

•

•

constructor Create;

TMS Aurelius 5.11 Page 45 of 269

Id

Specifies the Identifier of the class.

Level: Class Attribute

 [AbstractEntity]

 [Automapping]

 [Id('FId', TIdGenerator.IdentityOrSequence)]

 TBaseEntity = class

 strict private

 FId: Integer;

 [Column('CUSTOM_TAG', [])]

 FCustomTag: Integer;

 FCreatedAt: TDateTime;

 FUpdatedAt: Nullable<TDateTime>;

 protected

 [OnInserting]

 procedure OnInserting;

 [OnValidate]

 function ValidateDates: IValidationResult;

 public

 property Id: Integer read FTheId write FTheId;

 property CustomTag: Integer read FCustomTag write FCustomTag;

 property CreatedAt: TDateTime read FCreatedAt write FCreatedAt;

 property UpdatedAt: Nullable<TDateTime> read FUpdatedAt write FUpdatedAt;

 end;

 [AbstractEntity]

 [Filter('Multitenant')]

 [FilterDef('Multitenant', '{TenantId} = :tenantId')]

 [FilterDefParam('Multitenant', 'tenantId', TypeInfo(string))]

 TMultitenantEntity = class(TBaseEntity)

 private

 [Column('TENANT_ID', [], 50)]

 FTenantId: string;

 public

 property TenantId: string read FTenantId write FTenantId;

 end;

 // TCustomer will inherit all mapping information

 // from TMultitenantEntity and TBaseEntity classes

 [Entity]

 [Automapping]

 TCustomer = class(TMultitenantEntity)

 strict private

 FName: string;

 public

 property Name: string read FName write FName;

 end;

TMS Aurelius 5.11 Page 46 of 269

Description

Every object must be uniquely identified by Aurelius so that it can properly save and manage it.

The concept is similar to a primary key in database. This attribute allows you to specify which

field (or property) in the class will be used to uniquely identify the class. The value of that field/

property must be unique for every object, and you can specify how that value will be generated

for each object.

In addition, if you are creating the database structure from the mapped classes, Aurelius will

create a primary key in the database corresponding to the field/column mapping.

If you are using inheritance, you must only declare the Id attribute in the base class of the

hierarchy (the ancestor class). The inherited child classes can't have their own Id attribute.

For composite id's, specify as many Id attributes as you need to build the composite identifier.

Constructor

Parameters

AMemberName: Contains the name of field or property that identifies the object.

AGenerator: Indicates how the Id value will be generated. Valid values are (prefixed by

TIdGenerator):

None: Id value will not be automatically generated. Your application must assign a

value to it and be sure it's unique.

IdentityOrSequence: Aurelius will ask the database to generate a new Id. If the

database supports sequences and a sequence is defined, then Aurelius will use the

sequence to generate the value. Otherwise, it will use identity (auto-numerated)

fields. If no sequence is defined and database doesn't support identity fields, an

exception will be raised. The name of the sequence to be created and used by

Aurelius can be defined using the Sequence attribute. The type of the property that

identifies the entity should be integer.

Guid: Aurelius will generate a GUID (Globally Unique Identifier) value as the entity

identifier. The type of the property that identifies the entity should be TGuid or

string.

Uuid38: Aurelius will generate a 38-length UUID (Universally Unique Identifier) value

as the entity identifier. An UUID is just a string representation of a GUID value, with

the format "{550e8400-e29b-41d4-a716-446655440000}" (with hyphens and curly

brackets). The type of the property that identifies the entity should be string (with a

minimum length of 38 characters).

Uuid36: Aurelius will generate a 36-length UUID (Universally Unique Identifier) value

as the entity identifier. An UUID is just a string representation of a GUID value, with

the format "550e8400-e29b-41d4-a716-446655440000" (with hyphens but no curly

brackets). The type of the property that identifies the entity should be string (witha

minimum length of 36 characters).

constructor Create(AMemberName: string; AGenerator: TIdGenerator);

•

•

◦

◦

◦

◦

◦

TMS Aurelius 5.11 Page 47 of 269

Uuid32: Aurelius will generate a 32-length UUID (Universally Unique Identifier) value

as the entity identifier. An UUID is just a string representation of a GUID value, with

the format "550e8400e29b41d4a716446655440000" (no hyphens and no curly

brackets). The type of the property that identifies the entity should be string (with a

minimum length of 32 characters).

SmartGuid: Sequential GUID (Globally Unique Identifier) value optimized for the

database being used. The generated sequential GUID will minimize clustered index

fragmentation, which is an usual problem when using regular GUID's, causing

performance loss. Aurelius will choose the best algorithm to generate the GUID

sequence depending on the database being used. For most of them, the GUID will

be sequential in its string format, which is optimum for most databases and also

when you use string properties. For Microsoft SQL Server, for example, it will choose

a different algorithm (sequential in the last bytes) which is best given the way SQL

Server sorts GUID's internally. In general you should use SmartGuid generator

instead of Guid since both achieve the same results but SmartGuid performs better.

NOTE

For composite id's the AGenerator parameter is ignored and None is used.

Usage

Table

Specifies the database table where the objects will be saved to.

Level: Class Attribute

Description

Use the Table attribute to map the class to a database table. Every object instance saved will be a

record in that table.

If you are using inheritance with single table strategy, you must use the Table attribute in the

ancestor class only, since all classes will be saved in the same table.

If you are using inheritance with joined tables strategy, you must use Table attribute in all classes,

since every class will be saved in a different table.

Constructor

Parameters

Name: The name of the table in database.

◦

◦

[Id('FId', TIdGenerator.IdentityOrSequence)]

TCustomer = class(TObject)

private

 [Column('CUSTOMER_ID')]

 FId: integer;

constructor Create(Name: string); overload;

constructor Create(Name, Schema: string); overload;

•

TMS Aurelius 5.11 Page 48 of 269

Schema: Optionally you can specify the schema of the database.

Usage

Column

Specifies the table column where the field/property value will be saved to.

Level: Field/Property Attribute

Description

Use Column attribute to map a field/property to a table column in the database. When saving an

object, Aurelius will save and load the field/property value in the specified table column. Only

fields/properties mapped using a Column attribute will be saved in the database (unless class is

automapped using Automapping attribute).

Aurelius will define the table column data type automatically based on type of field/property

being mapped.

Constructor

Parameters

Name: Contains the name of table column in the database where the field/property will be

mapped to.

Properties: A set containing zero or more options for the column. TColumnProps and

TColumnProp are declared as follow:

Unique: Values of this column must be unique. Aurelius will create an unique key

(index) in the database to ensure unique values for this column. The index name will

be the same as the column name. If you want to define a different name, do not set

this flag and use UniqueKey attribute instead.

Required: Column must be NOT NULL. Values are required for this field/property.

•

[Table('Customers')]

TCustomer = class(TObject)

private

[Table('Orders', 'dbo')]

TOrder = class(TObject)

private

constructor Create(Name: string); overload;

constructor Create(Name: string; Properties: TColumnProps); overload;

constructor Create(Name: string; Properties: TColumnProps; Length: Integer); over

load;

constructor Create(Name: string; Properties: TColumnProps;

 Precision, Scale: Integer); overload;

•

•

TColumnProp = (Unique, Required, NoInsert, NoUpdate, Lazy);

TColumnProps = set of TColumnProp;

◦

◦

TMS Aurelius 5.11 Page 49 of 269

NoInsert: When inserting a record in the database, do not include this column in the

INSERT command. The value of this field/property will not be saved in the database

in INSERT commands. Note that for Id fields using identity (autogenerated), Aurelius

will automatically not include the field in the INSERT statement, regardless if

NoInsert is specified or not.

NoUpdate: When updating a record in the database, do not include this column in

the UPDATE command. The value of this field/property will not be saved in the

database in UPDATE commands. This flag is usually used for Id fields which once

inserted should not be changed anymore.

Lazy: Used for blob fields only. Indicates that lazy-loading will be used for the blob,

i.e., the content of the blob will only be retrieved from the database when needed. If

the property is not of type TBlob, this option will be ignored.

Length: Used for string field/property. It's the maximum length of the table column.

Usually this is mapped to the VARCHAR type, i.e., if Length is 30, the data type of table

column will be VARCHAR(30). It it's not specified, Aurelius will use the default length for

string data types.

Precision, Scale: Used for numeric field/property. Specifies the precision and scale of

numeric columns in the database table. If not specified, default values will be used.

Usage

Model

Specifies the model where the entity/class belongs to, in a multi-model design. It's an optional

attribute.

Level: Class Attribute

Description

Use the Model attribute to tell Aurelius the model where that entity (class) belongs to. This

attribute allows you to build multi-model applications, so that you can separate your mapping in

multiple models. By using the Model attribute you can easily do it in a declarative way, specifying

the model of each class.

You can add multiple Model attributes to the class, meaning that the class belongs to more than

one model.

This attribute is optional and if omitted the class will be considered to belonging to the default

model.

Constructor

◦

◦

◦

•

•

Column('MEDIA_NAME', [TColumnProp.Required], 100)]

property MediaName: string read FMediaName write FMediaName;

[Column('DURATION', [])]

property Duration: Nullable<integer> read FDuration write FDuration;

constructor Create(Name: string);

TMS Aurelius 5.11 Page 50 of 269

Parameters

Name: The name of the model.

Usage

Association

Specifies a many-to-one association (relationship).

Level: Field/Property Attribute

Description

Use Association attribute to indicate that the field/property represents a many-to-one

association with another class. For example, if you have property Customer of type TCustomer, it

means that your object is associated with one (and only one) customer. Associations can only be

defined for fields and properties of class types, and the associated class must also be an Entity

class, so you can have a relationship between one class and another (between tables, at database

level).

You must always use Association attribute together with JoinColumn attribute. While the former

is used to define generic, class-level meta-information about the association, the latter is used to

define database-level relationships (fields that will be foreign keys).

Constructor

Parameters

AProperties: Specifies some general properties for the association. Valid values are:

Lazy: The associated object is not loaded together with the current object. Lazy-

Loading is used. In a SELECT operation, Aurelius will only retrieve the Id of the

associated object. The object will only be loaded when the application effectively

needs it (e.g., when user references property MyObject.AssociatedObject). When it

happens, Aurelius will perform another SELECT in the database just to retrieve the

•

[Entity, Automapping]

[Model('Sample')]

TCustomer = class(TObject)

[Entity, Automapping]

[Model('Sample')]

[Model('Security')]

TUserInfo = class(TObject)

constructor Create; overload;

constructor Create(AProperties: TAssociationProps); overload;

constructor Create(AProperties: TAssociationProps; Cascade: TCascadeTypes); overl

oad;

•

TAssociationProp = (Lazy, Required);

TAssociationProps = set of TAssociationProp;

◦

TMS Aurelius 5.11 Page 51 of 269

associated object data. Only at this point the object is instantiated and data is filled.

If Lazy is not specified, the default behavior is eager-mode loading. It means that

when the object is loaded, the associated object is also fully loaded. Aurelius will

perform a INNER (or LEFT) JOIN to the related tables, fetch all needed fields, create

an instance of the associated object and set all its properties. This is the default

value.

Required: Associated object is required. This is logical information for the model

itself (metadata). This flag will not be used by Aurelius to set the NOT NULL flag of

the underlying database field(s). You will still have to set the column as required in

the JoinColumn attribute, if needed.

Cascade: Defines how Aurelius will behave on the association when the container object is

saved, deleted or updated.

It's recommended that you use one of the predefined cascades, like CascadeTypeAll,

CascadeTypeAllButRemove or CascadeTypeAllRemoveOrphan. For associations,

CascadeTypeAllButRemove is the most recommended one.

SaveUpdate: When object is saved (inserted), or updated, the associated object will

be automatically saved/updated. The associated object is actually saved before the

container object, because the Id of associated object might be needed to save the

container object.

Merge: When object is merged, the associated object will also be merged.

Remove: When object is removed from database, the associated object will also be

removed.

Refresh: When object is refreshed from database, the associated object will also be

refreshed.

RemoveOrphan: Used only in Many-Valued Associations.

Evict: When object is evicted from manager, the associated object will also be

evicted.

Flush: If an object is flushed explicitly, the associated object will also be flushed. This

cascade doesn't have any effect if Flush is called for all objects in manager (without

parameter).

Usage

◦

•

TCascadeType = (SaveUpdate, Merge, Remove, RemoveOrphan, Refresh, Evict, Fl

ush);

TCascadeTypes = set of TCascadeType;

CascadeTypeAll = [Low(TCascadeType)..High(TCascadeType)] - [TCascadeType.Re

moveOrphan];

CascadeTypeAllRemoveOrphan = CascadeTypeAll + [TCascadeType.RemoveOrphan];

CascadeTypeAllButRemove = CascadeTypeAll - [TCascadeType.Remove];

◦

◦

◦

◦

◦

◦

◦

TMS Aurelius 5.11 Page 52 of 269

NOTE

In the previous example, the Proxy<TArtist> type is used because association was declared as

lazy (see Associations and Lazy-Loading). Alternatively you can declare FArtist field just as

TArtist, and in this case association will not be lazy-loaded.

JoinColumn

Specifies the table column used as foreign key for one association.

Level: Field/Property Attribute

Description

Use JoinColumn attribute to map a field/property to a table column in the database. The field/

property must also have an Association attribute defined for it.

The table column defined by JoinColumn will be created as a foreign key to the referenced

association. By default, the relationship created by Aurelius will reference the Id of the associated

object. But you can reference another value in the object, as long as the value is an unique value.

The data type of the table column defined by JoinColumn will be the same as the data type of

the referenced column in the associated table.

When the association is a class with composite Id's, specify as many JoinColumn attributes as the

number of columns in the primary key of association class. For example, if the associated class

has three table columns in the primary key, you must specify three JoinColumn attributes, one

for each column.

Constructor

Parameters

Name: Contains the name of table column in the database used to hold the foreign key.

Properties: A set containing zero or more options for the column. TColumnProps and

TColumnProp are declared as follow:

[Association([], CascadeTypeAllButRemove)]

[JoinColumn('ID_SONG_FORMAT', [])]

property SongFormat: TSongFormat read FSongFormat write FSongFormat;

[Association([TAssociationProp.Lazy], [TCascadeType.SaveUpdate])]

[JoinColumn('ID_ARTIST', [])]

FArtist: Proxy<TArtist>;

constructor Create(Name: string); overload;

constructor Create(Name: string; Properties: TColumnProps); overload;

constructor Create(Name: string; Properties: TColumnProps;

 ReferencedColumnName: string); overload;

•

•

TMS Aurelius 5.11 Page 53 of 269

Unique: Values of this column must be unique. Aurelius will create an unique key

(index) in the database to ensure unique values for this column. In practice, if this

flag is set the relationship will become a one-to-one relationship.

Required: Column must be NOT NULL. Values are required for this field/property.

This flag must be set together with the Required flag in Association attribute.

NoInsert: When inserting a record in the database, do not include this column in the

INSERT command. The value of this field/property will not be saved in the database

in INSERT commands.

NoUpdate: When updating a record in the database, do not include this column in

the UPDATE command. The value of this field/property will not be saved in the

database in UPDATE commands.

Lazy: Not used. This option is only used in Column attribute.

ReferencedColumnName: Indicates the column name in the associated table that will be

referenced as foreign key. The referenced column must be unique in the associated table.

This parameter is optional, if it's not specified (and usually it won't), the name of Id will be

used - in other words, the primary key of the associated table will be referenced by the

foreign key.

Usage

NOTE

In the previous example, the Proxy<TArtist> type is used because association was declared as

lazy (see Associations and Lazy-Loading). Alternatively you can declare FArtist field just as

TArtist, and in this case association will not be lazy-loaded.

ManyValuedAssociation

Specifies an one-to-many association (relationship), or in other words, a collection of objects.

Level: Field/Property Attribute

Description

Use ManyValuedAssociation attribute to indicate that the field/property represents a one-to-

many association - a collection of objects of the same class. For example, if you have property

Addresses of type TList<TAddress>, it means that each object in collection is associated with the

TColumnProp = (Unique, Required, NoInsert, NoUpdate, Lazy);

TColumnProps = set of TColumnProp;

◦

◦

◦

◦

◦

•

[Association]

[JoinColumn('ID_SONG_FORMAT', [])]

property SongFormat: TSongFormat read FSongFormat write FSongFormat;

[Association([TAssociationProp.Lazy], [])]

[JoinColumn('ID_ARTIST', [])]

FArtist: Proxy<TArtist>;

TMS Aurelius 5.11 Page 54 of 269

container object. Many-valued associations can only be defined for fields and properties of type

TList<class>, and the associated class must also be an Entity class, so you can have a relationship

between one class and another (between tables, at database level).

Defining a collection of child objects like this will require that the table holding child objects

records will have a foreign key column referencing the container object. This can be done in two

ways.

Use ForeignJoinColumn attribute to define a foreign key in the child object class.

Create an Association in the child object class and then use MappedBy parameter to

indicate the field/property that holds the association. This will become a bidirectional

association, since you have the child object referencing the parent object though an

Association, and the parent object holding a collection of child objects through a

ManyValuedAssociation.

Constructor

Parameters

AProperties: Specifies some general properties for the association. Valid values are:

Lazy: The associated list is not loaded together with the current object. Lazy-

Loading is used. In a SELECT operation, Aurelius will only retrieve the Id of the

parent object. The list will only be loaded when the application effectively needs it

(e.g., when user references property MyObject.AssociatedList). When it happens,

Aurelius will perform another SELECT in the database just to retrieve the associated

object data. Only at this point the object is instantiated and data is filled.

If Lazy is not specified, the default behavior is eager-mode loading. It means that

after the parent is loaded, the associated list will be immediately load, but still with

another SELECT statement. For lists, since eager mode will not improve

performance, it's always recommended to use Lazy mode, unless you have a very

specific reason for not doing so, like for example, you will destroy the object

manager after retrieving objects and lazy-loading the lists will not be further

possible.

Required: This option is ignored in Many-valued Associations.

Cascade: Defines how Aurelius will behave on the association list when the container

object is saved, deleted or updated.

It's recommended that you use one of the predefined cascades, like CascadeTypeAll,

1.

2.

constructor Create; overload;

constructor Create(AProperties: TAssociationProps); overload;

constructor Create(AProperties: TAssociationProps; Cascade: TCascadeTypes); overl

oad;

constructor Create(AProperties: TAssociationProps; Cascade: TCascadeTypes;

 MappedBy: string); overload;

•

TAssociationProp = (Lazy, Required);

TAssociationProps = set of TAssociationProp;

◦

◦

•

TMS Aurelius 5.11 Page 55 of 269

CascadeTypeAllButRemove or CascadeTypeAllRemoveOrphan. For many-valuded

associations, CascadeTypeAll or CascadeTypeAllRemoveOrphan are the recommended

ones.

SaveUpdate: When object is save (inserted) or updated, the associated object list will

be automatically saved. First the parent object is saved, then all objects in the

collection are also saved.

Merge: When object is merged, all the associated objects in the object list are also

merged.

Remove: When object is removed from database, all objects in the list are also

removed.

Refresh: When object is refreshed from database, the associated list will be

reloaded. If the list is proxied (lazy-loaded), then the proxy will be reset (unloaded),

and objects in list won't be refreshed. If the list is not proxied, objects in list will be

refreshed.

RemoveOrphan: When a detail (child) object is removed from a list, it will also be

deleted (removed from database and destroyed). If RemoveOrphan is not present,

then the child object will not be deleted, just the association with the parent object

will be removed (i.e., the foreign key column will be set to null).

Evict: When object is evicted from manager, the associated object will also be

evicted.

Flush: If an object is flushed explicitly, the associated objects in the list will also be

flushed. This cascade doesn't have any effect if Flush is called for all objects in

manager (without parameter).

MappedBy: This parameter must be used when the association is bidirectional, i.e., the

associated class referenced in the list has also an Association to the object containing the

list, see Description above.

This parameter must contain the name of field or property, in the child object class, that

holds an Association referencing the container object.

Usage

Example using MappedBy parameter:

TCascadeType = (SaveUpdate, Merge, Remove, RemoveOrphan, Refresh, Evict, Fl

ush);

TCascadeTypes = set of TCascadeType;

CascadeTypeAll = [Low(TCascadeType)..High(TCascadeType)] - [TCascadeType.Re

moveOrphan];

CascadeTypeAllRemoveOrphan = CascadeTypeAll + [TCascadeType.RemoveOrphan];

CascadeTypeAllButRemove = CascadeTypeAll - [TCascadeType.Remove];

◦

◦

◦

◦

◦

◦

◦

•

TMS Aurelius 5.11 Page 56 of 269

Example using ForeignJoinColumn attribute (in this example, TTC_InvoiceItem class does not have

an association to TTC_Invoice class, so "INVOICE_ID" field will be created in InvoiceItem table):

NOTE

In the previous example, the Proxy<TAlbum> type is used because association was declared as

lazy (see Associations and Lazy-Loading). Alternatively you can declare FAlbum field just as

TAlbum, and in this case association will not be lazy-loaded.

ForeignJoinColumn

Specifies the table column used as foreign key in the child object, for a many-valued-association.

Level: Field/Property Attribute

Description

Use ForeignJoinColumn attribute to map a field/property to a table column in the database. The

field/property must also have an ManyValuedAssociation attribute defined for it.

The table column defined by ForeignJoinColumn will be created as a foreign key to the

referenced association. Note that the column will be created in the child table, and it will

reference the parent table, i.e, the "container" of the object list.

By default, the relationship created by Aurelius will reference the Id of the associated object. But

you can reference another value in the object, as long as the value is an unique value.

The data type of the table column defined by ForeignJoinColumn will be the same as the data

type of the referenced column in the associated table.

This attribute must only be used if the ManyValuedAssociation is unidirectional. If it's

bidirectional, you should not use it, and just the MappedBy parameter when declaring the

ManyValuedAssociation attribute.

TMediaFile = class

private

 [Association([TAssociationProp.Lazy], [])]

 [JoinColumn('ID_ALBUM', [])]

 FAlbum: Proxy<TAlbum>;

TAlbum = class

public

 [ManyValuedAssociation([], CascadeTypeAllRemoveOrphan, 'FAlbum')]

 property MediaFiles: TList<TMediaFile> read FMediaFiles write FMediaFiles;

TTC_Invoice = class

private

 [ManyValuedAssociation([], CascadeTypeAllRemoveOrphan)]

 [ForeignJoinColumn('INVOICE_ID', [TColumnProp.Required])]

 FItems: TList<TTC_InvoiceItem>;

TMS Aurelius 5.11 Page 57 of 269

When the association is a class with composite Id's, specify as many ForeignJoinColumn

attributes as the number of columns in the primary key of association class. For example, if the

associated class has three table columns in the primary key, you must specify three

ForeignJoinColumn attributes, one for each column.

Constructor

Parameters

Name: Contains the name of table column in the database used to hold the foreign key.

Properties: A set containing zero or more options for the column. TColumnProps and

TColumnProp are declared as follow:

Unique: Values of this column must be unique. Aurelius will create an unique key

(index) in the database to ensure unique values for this column.

Required: Column must be NOT NULL. Values are required for this field/property.

NoInsert: When inserting a record in the database, do not include this column in the

INSERT command. The value of this field/property will not be saved in the database

in INSERT commands.

NoUpdate: When updating a record in the database, do not include this column in

the UPDATE command. The value of this field/property will not be saved in the

database in UPDATE commands.

Lazy: Not used. This option is only used in Column attribute.

ReferencedColumnName: Indicates the column name in the associated table that will be

referenced as foreign key. The referenced column must be unique in the associated table.

This parameter is optional, if it's not specified (and usually it won't), the name of Id field

will be used - in other words, the primary key of the associated table will be referenced by

the foreign key.

Usage

constructor Create(Name: string); overload;

constructor Create(Name: string; Properties: TColumnProps); overload;

constructor Create(Name: string; Properties: TColumnProps;

 ReferencedColumnName: string); overload;

•

•

TColumnProp = (Unique, Required, NoInsert, NoUpdate, Lazy);

TColumnProps = set of TColumnProp;

◦

◦

◦

◦

◦

•

TTC_Invoice = class

private

 [ManyValuedAssociation([], CascadeTypeAll)]

 [ForeignJoinColumn('INVOICE_ID', [TColumnProp.Required])]

 FItems: TList<TTC_InvoiceItem>;

TMS Aurelius 5.11 Page 58 of 269

OrderBy

Specifies the default order of the items in a many-valued association.

Level: Field/Property Attribute

Description

Use OrderBy attribute to define in which order the objects in a many-valued association

(collection) will be loaded from the database. If no OrderBy attribute is present, no order will be

defined (no ORDER BY clause will be added to the SELECT statement that retrieves the records)

and items will be loaded according to the default ordering used by the database server. Note

that after the items are loaded from the database, no further ordering is performed - this

attribute only enforces ordering at database level, not memory level. Thus, if you later manually

add new items to the collection in an unsorted order, they will remain that way.

You can specify one or more member names (property or field names) in this attribute (not

database column names). Multiple member names must be separated by comma (,). You can use

the same member names that you can use when ordering results in a query.

The default order direction is ascending. You can specify a descending order by appending "

DESC" (with space) after the member name.

You can also order by members of associated objects. To do that, prefix the member name with

the name of the association field/property followed by a "." (dot). Nested associations can be

used. For example, if your class has a property "Customer" which in turn has a property

"Country", you can order by country's name using "Customer.Country.Name".

Constructor

Parameters

MemberNames: Contains the name(s) of the member(s) used to order the collection.

Multiple member names must be separated by comma. Associated members must be

prefixed with association name followed by dot. You can optionally use "DESC" suffix to

order by descending direction.

Usage

Where

Specifies a SQL expression to be added the WHERE clause of the final SQL used to retrieve

entities or the items of a many-valued association.

Level: Class or Field/Property Attribute

constructor Create(MemberNames: string);

•

TTC_Invoice = class

private

 [ManyValuedAssociation([], CascadeTypeAll)]

 [OrderBy('Product.Name, Category DESC')]

 FItems: TList<TTC_InvoiceItem>;

TMS Aurelius 5.11 Page 59 of 269

Description

Use Where attribute to define additional filter (SQL expression) to the final SQL used to retrieve a

specified entity, a list of entities or items of a many-valued association.

Just like in the query SQL condition, be aware that the SQL clause will be just injected in the SQL

statement, you must be sure it will work. You can also use property names between curly

brackets. Write the name of the property inside curly brackets and Aurelius will translate it into

the proper alias.fieldname format according to the context. For example, "{Deleted} = 'F'".

If you apply the attribute to a field/property, it must be a many-valued association, and the

WHERE clause will only apply for that list.

If you apply the attribute to a class, it will apply to any situation where entities of that class are

retrieved. When you find a single entity, or when you query entities of that class, the filter will be

applied. Even if the entity is an association (many-to-one) of a parent entity, the filter will be

applied. For example, suppose a TInvoice class has a Customer property of type TCustomer. If

TCustomer entity has a [Where] attribute it will be applied when retrieving the Customer of that

TInvoice instance. Even if the associated customer exists in the database, if it's filtered out by the

WHERE clause, the TInvoice.Customer property will come as nil value.

You can add multiple Where attributes in same class or property. They will all be combined with

the AND operator.

Constructor

Parameters

ASqlClause: The SQL expression that will be added to the WHERE clause to filter the entity

or many-valued association.

Usage

TCustomer entities will not be retrieved if the Deleted field is equal to 'T':

The FNewCustomers list will only bring TCustomer objects if the Status field is equal to 'New'.

Note that the Where clause above of the TCustomer entity will still apply, meaning the Status

must be 'New' and Deleted must not be 'T':

constructor Create(const ASqlClause: string);

•

[Entity, Automapping]

[Where('{Deleted} <> ''T''')]

TCustomer = class

private

 FId: integer;

 FName: string;

TParent = class

private

 [ManyValuedAssociation([], CascadeTypeAll)]

 [Where('{Status} = ''New''')]

 FNewCustomers: TList<TCustomer>;

TMS Aurelius 5.11 Page 60 of 269

Inheritance

Identifies the class as the ancestor for a hierarchy of entity classes.

Level: Class Attribute

Description

Use Inheritance attribute to allow persistence of the current class and all its descendants (if they

are marked with Entity attribute).

If you have a class hierarchy and want Aurelius to save all of those classes, you must add the

Inheritance attribute to the top level (parent) class of all the hierarchy in order to use a specific

inheritance strategy. If you are using single table strategy, you also need to define a

DiscriminatorColumn attribute in the base class, and a DiscriminatorValue attribute in each

descendant class. If you are using joined tables strategy, you need to define a

PrimaryJoinColumn attribute and a Table attribute in each descendant class.

Constructor

Parameters

Strategy: Specifies the inheritance strategy to be used in the class hierarchy. Valid values

are (prefixed by TInheritanceStrategy):

SingleTable: Use single table strategy for the class hierarchy. You must also define a

DiscriminatorColumn attribute in the class and a DiscriminatorValue attribute in

each descendant class.

JoinedTables: Use joined tables strategy for the class hierarchy. In this strategy for

each descendant class you must define a PrimaryJoinColumn and Table attribute.

Usage

DiscriminatorColumn

Specifies the column table to be used as class discriminator in a single table inheritance strategy.

Level: Class Attribute

Description

Use DiscriminatorColumn attribute to specify the column in the table used as class discriminator.

When you use Inheritance attribute and set strategy to single table, you must also define this

attribute. In single table strategy, all classes are saved in the same table, and the value of

discriminator column is the way Aurelius use to tell the class representing each record in the

table. For example, if you have both classes TCar and TMotorcycle inheriting from TVehicle and all

classes being saved in the same table, when Aurelius reads a record it must tell if it represents a

constructor Create(Strategy: TInheritanceStrategy);

•

◦

◦

[Inheritance(TInheritanceStrategy.SingleTable)]

[DiscriminatorColumn('MEDIA_TYPE', TDiscriminatorType.dtString)]

TMediaFile = class

TMS Aurelius 5.11 Page 61 of 269

TCar or TMotorcycle. It does that using the value specified in the discriminator column. Each

descending class must declare the attribute DiscriminatorValue that will define what is the value

to be saved in the discriminator column that will represent the specified class.

Constructor

Parameters

Name: The name of the table column that will hold discriminator values which will identify

the class. This column will be created by Aurelius if you create the database.

DiscriminatorType: Specifies the column data type. Valid values are (prefixed by

TDiscriminatorType):

dtString: Discriminator column type will be string. Discriminator values must be

strings.

dtInteger: Discriminator column type will be integer. Discriminator values must be

integer numbers.

Length: Specifies the length of column data type, only used when DiscriminatorType is

string. If not specified, a default value is used.

Usage

DiscriminatorValue

Specifies the value that identifies a class in the discriminator column, when using single table

inheritance strategy.

Level: Class Attribute

Description

Use DiscriminatorValue to define the value to be saved in the discriminator column when the

class is saved. In a single table inheritance strategy, all classes are saved in the same table. Thus,

when a subclass is saved, Aurelius updates an extra table column with a value that indicates that

the record contains that specific class. This value is specified in this DiscriminatorValue attribute.

It's also used by Aurelius when the record is being read, so it knows which class needs to be

instantiated when loading objects from database.

Constructor

constructor Create(Name: string; DiscriminatorType: TDiscriminatorType);

overload;

constructor Create(Name: string; DiscriminatorType: TDiscriminatorType;

 Length: Integer); overload;

•

•

◦

◦

•

[Inheritance(TInheritanceStrategy.SingleTable)]

[DiscriminatorColumn('MEDIA_TYPE', TDiscriminatorType.dtString)]

TMediaFile = class

constructor Create(Value: string); overload;

constructor Create(Value: Integer); overload;

TMS Aurelius 5.11 Page 62 of 269

Parameters

Value: The value to be used in the discriminator column. Value must be string or integer,

depending on the type of the discriminator column declared in the DiscriminatorColumn

attribute.

Usage

PrimaryJoinColumn

Defines the primary key of a child table that will be referencing the primary key of a parent table,

in a joined tables inheritance strategy.

Level: Class Attribute

Description

Use PrimaryJoinColumn attribute to specify the column that will be used as primary key of the

child table. If you specified a joined tables inheritance strategy using the Inheritance attribute in

the base class, then each descendant class will be saved in a different table in the database, and

it will be linked to the table containing the data of the parent class. This relationship is one-to-

one, so the child table will have a primary key of the same data type of the parent table's primary

key. The child table's primary key will also be a foreign key referencing the parent table. So

PrimaryJoinColumn attribute is used to define the name of the primary key column. Data type

doesn't need to be defined since it will be the same as the parent primary key.

You can omit the PrimaryJoinColumn attribute. In this case, the name of table column used will

be the same as the name of table column in the base class/table.

When the ancestor is a class with composite Id's, you can specify one PrimaryJoinColumn

attribute for each table column in the ancestor class primary key. If you specify less

PrimaryJoinColumn attributes than the number of columns in the primary key, the missing ones

will be considered default, i.e, the name of the table column in the primary key will be used.

Constructor

•

// Ancestor class:

[Inheritance(TInheritanceStrategy.SingleTable)]

[DiscriminatorColumn('MEDIA_TYPE', TDiscriminatorType.dtString)]

TMediaFile = class

// Child classes:

[DiscriminatorValue('SONG')]

TSong = class(TMediaFile)

[DiscriminatorValue('VIDEO')]

TVideo = class(TMediaFile)

constructor Create(Name: string);

TMS Aurelius 5.11 Page 63 of 269

Parameters

Name: The name of the child table column used as primary key and foreign key. If an

empty string is provided, it will use the same name as the table column in the parent's

class/table primary key.

Usage

Sequence

Defines the sequence (generator) used to generate Id values.

Level: Class Attribute

Description

Use the Sequence attribute to define the database sequence (generator) to be created (if

requested) and used by Aurelius to retrieve new Id values. If the database does not support

sequences, or the generator type specified in the Id attribute does not use a database sequence,

this attribute is ignored.

Constructor

Parameters

SequenceName: The name of the sequence/generator in the database.

•

// Ancestor class:

[TABLE('MEDIA_FILES')]

[Inheritance(TInheritanceStrategy.JoinedTables)]

[Id('FId', TIdGenerator.IdentityOrSequence)]

TMediaFile = class

private

 [Column('MEDIA_ID', [TColumnProp.Required])]

 FId: integer;

// Child classes:

[TABLE('SONGS')]

[PrimaryJoinColumn('MEDIAFILE_ID')]

TSong = class(TMediaFile)

// In this case, a field with name MEDIA_ID will be created in table 'VIDEOS'

[TABLE('VIDEOS')]

[PrimaryJoinColumn('')]

TVideo = class(TMediaFile)

// In this case, a field with name MEDIA_ID will be created in table 'LIST_SHOWS'

// Since PrimaryJoinColumn attribute is not present

[TABLE('LIVE_SHOWS')]

TLiveShow = class(TMediaFile)

constructor Create(SequenceName: string); overload;

constructor Create(SequenceName: string; InitialValue, Increment: Integer); overl

oad;

•

TMS Aurelius 5.11 Page 64 of 269

InitialValue: The initial value of the sequence. Default value: 1.

Increment: The increment used to increment the value each time a new value is retrieved

from the sequence. Default value: 1.

Usage

UniqueKey

Defines an exclusive (unique) index for the table.

Level: Class Attribute

Description

Use UniqueKey if you want to define a database-level exclusive (unique) index in the table

associated with the class. Note that you do not need to use this attribute to define unique keys

for field defined in the Id attribute, nor for columns defined as unique in the Column attribute.

Those are created automatically by Aurelius. If you want to create a non-exclusive (non-unique)

index, use DBIndex attribute instead.

Constructor

Parameters

Columns: The name of the table columns that compose the unique key. If two or more

names are specified, they must be separated by comma.

Usage

DBIndex

Defines a non-exclusive index for the table.

Level: Class Attribute

Description

Use DBIndex if you want to define a database-level non-exclusive index in the table associated

with the class. The index will mostly be used to improve performance when executing queries. If

you want to create an unique index, use UniqueKey attribute instead.

Constructor

•

•

[Sequence('SEQ_MEDIA_FILES')]

[Id('FId', TIdGenerator.IdentityOrSequence)]

TMediaFile = class

constructor Create(Columns: string);

•

[UniqueKey('INVOICE_TYPE, INVOICENO')]

TTC_Invoice = class

constructor Create(const Name, Columns: string);

TMS Aurelius 5.11 Page 65 of 269

Parameters

Name: The name of the Index. When updating the database, this is what Aurelius will

check to decide if the index needs to be created or not.

Columns: The name of the table columns that compose the unique key. If two or more

names are specified, they must be separated by comma.

Usage

ForeignKey

Defines the name of a foreign key.

Level: Field/Property Attribute

Description

Use ForeignKey to define a custom name for the foreign key generated by an association or

many-valued association. This attribute is optional even when Automapping is not specified.

When this attribute is not present, Aurelius will automatically choose a name for the foreign key.

Constructor

Parameters

AName: Specifies the name of the foreign key.

Usage

Enumeration

Specifies how to save an enumerated type in the database.

Level: Enumerator Attribute

Description

Use Enumeration attribute if you have fields or properties of enumerated types and you want to

save them in the database. Using Enumerator you define how the enumerated values will be

saved and loaded from the database. The Enumerator attribute must be declared right above the

enumerated type.

Constructor

•

•

[DBIndex('IDX_INVOICE_DATE', 'ISSUEDATE')]

TTC_Invoice = class

constructor Create(AName: string);

•

[Association([TAssociationProp.Lazy], [TCascadeType.SaveUpdate])]

[ForeignKey('FK_SONG_ARTIST')]

[JoinColumn('ID_ARTIST', [])]

FArtist: Proxy<TArtist>;

TMS Aurelius 5.11 Page 66 of 269

Parameters

MappedType: Indicated the type of the enumerated value in the database. Valid values are

(prefixed by TEnumMappingType):

emChar: Enumerated values will be saved as single-chars in the database.

emInteger: Enumerated values will be saved as integer values. The value used is the

ordinal value of the enumerated type, i.e, the first value in the enumerator will be

saved as 0, the second as 1, etc..

emString: Enumerated values will be saved as strings in the database.

MappedValues: If MappedType is char or string, then you must use this parameter to

specify the char/string values corresponding to each enumerated value. The values must

be comma-separated and must be in the same order as the values in the enumerated

type.

Usage

Automapping

Indicates that the class is an entity class, and all its attributes are automapped.

Level: Class Attribute

Description

When Automapping attribute is present in the class, all mapping is done automatically by

Aurelius, based on the class declaration itself. For more information about how automapping

works, see Automapping section.

If AutoMappingMode in global configuration is set to Full, then you don't need to define this

attribute - every entity class is considered to be automapped.

Constructor

Parameters

None.

Usage

constructor Create(MappedType: TEnumMappingType); overload;

constructor Create(MappedType: TEnumMappingType; MappedValues: string); overload;

•

◦

◦

◦

•

[Enumeration(TEnumMappingType.emChar, 'M,F')]

TSex = (tsMale, tsFemale);

constructor Create;

[Entity]

[Automapping]

TCustomer = class(TObject)

TMS Aurelius 5.11 Page 67 of 269

Transient

Indicates a non-persistent field in an automapped class.

Level: Field Attribute

Description

When the class is being automapped using Automapping attribute, by default every field in the

class is persisted. If you don't want an specific field to be persisted, declare a Transient attribute

before it.

Constructor

Parameters

None.

Usage

Version

Indicates that the class member (field/property) holds the version of the entity, to be used in

versioned concurrency control.

Level: Field/Property Attribute

Description

When adding this attribute to any member, Aurelius automatically enabled versioned

concurrency control on entities of that class. This means that Aurelius will make sure that

updates on that entity will only happen if no other user changed entity data in the meantime.

To accomplish that, the entity must hold the "version" value, so Aurelius knows which is the

current version of that entity. You must thus add the Version attribute to any member of the class

(field or property) so Aurelius knows where to save the version value.

The field/property type must be of Integer type.

Constructor

Parameters

None.

Usage

constructor Create;

[Entity]

[Automapping]

TCustomer = class(TObject)

private

 [Transient]

 FTempCalculation: integer;

constructor Create;

TMS Aurelius 5.11 Page 68 of 269

Description

Allows to associate a description to the class or field/property.

Level: Class, Field or Property attribute

Description

Use Description attribute to better document your classes, fields and properties, by adding a

string description to it. Currently this information is not used by Aurelius but this Description

attribute can be created when generating classes from database using TMS Data Modeler tool.

You can later at runtime retrieve this information for any purposes.

Constructor

Parameters

AText: The text to be associated with class, field or property.

Usage

Automapping Feature
Automapping is an Aurelius feature that allows you to map a class without needing to specify all

needed mapping attributes. Usually in an entity class you need to define table where data will be

saved using Table attribute, then for each field or property you want to save you need to specify

the Column attribute to define the table column in the database where the field/property will be

mapped to, etc..

By defining a class as automapped, a lot of this mapping is done automatically based on class

information, if it's not explicity specified. For example, the table name is automatically defined as

the class name, with the "T" prefix removed.

To define a class as automapped, you just need to add the Automapping attribute to the class.

[Entity]

[Automapping]

TCustomer = class(TObject)

private

 [Version]

 FVersion: integer;

constructor Create(AText: string);

•

[Entity]

[Automapping]

[Description('Customer data')]

TCustomer = class(TObject)

private

TMS Aurelius 5.11 Page 69 of 269

https://tmssoftware.com/site/tmsdm.asp

Automapping is not an all-or-nothing feature. Aurelius only performs the automatic mapping if

no attribute is specified. For example, you can define a class as automapped, but you can still

declare the Table attribute to specify a different table name, or you can use Column attribute in

some specific fields or properties to override the default automatic mapping.

Below we list some of rules that automapping use to perform the mapping.

Table mapping

The name of table is assumed to be the name of the class. If the first character of the class name

is an upper case "T", it is removed. All letters become uppercase and upcase characters in the

middle of the name are preceded by underline. For example, class "TCustomer" will be mapped

to table "CUSTOMER", and class "TMyInvoice" will be mapped to table "MY_INVOICE"

Column mapping

Every field in the class is mapped to a table column. Properties are ignored and not saved. If you

don't want a specific class field to be saved automatically, add a Transient attribute to that class

field.

The name of the table column is assumed to be name of the field. If the first character of the

field name is an upper case "F", it is removed. All letters become uppercase and upcase

characters in the middle of the name are preceded by underline. For example, field "FBirthday" is

mapped to table column "BIRTHDAY" and field "FFirstName" is mapped to table column

"FIRST_NAME".

If the class field type is a Nullable<T> type, then the table column will be optional (nullable).

Otherwise, the table column will be required (NOT NULL).

For currency fields, scale and precision are mapped to 4 and 18. For float fields, scale and

precision are mapped to 8 and 18, respectively. If field is a string, length used will be the default

length specified in the global configuration.

If the field is an object instance instead of an scalar value/primitive type, then it will be mapped

as an association, see below.

Associations

If the class field in an object instance (except a list), it will be mapped as an association to that

class. The column name for the foreign key will be the field name (without "F") followed by "_ID".

For example, if the class has a field:

Aurelius will create an association with TCustomer and the name of table column holding the

foreign key will be "Customer_ID".

If the class field is a list type (TList<T>) it will be mapped as a many-valued association. A foreign

key will be created in the class used for the list. The name of table column holding the foreign

key is field name + table name + "_ID". For example, if class TInvoice has a field:

FCustomer: TCustomer

TMS Aurelius 5.11 Page 70 of 269

Aurelius will create a many-valued association with TInvoiceItem, and a table column holding the

foreign key will be created in table "InvoiceItem", with the name "Items_Invoice_ID".

If the field type is a Proxy<T> type, fetch type of the association will be defined as lazy,

otherwise, it will be eager.

Identifier

If no Id attribute is specified in the class, Aurelius will use a field named "FID" in the class as the

class identifier. If such class field does not exist and no Id attribute is defined, an error will be

raised when the class is saved.

Enumerations

Enumerations are not automapped unless the auto mapping mode is configured to Full in global

configuration. In this case, if an enumeration type does not have an Enumeration attribute

defined, it will be automapped as string type, and the mapped value will be the name of the

enumerated value.

For example, the enumerated type:

will be mapped as string with mapped values 'seFemale', 'seMale'.

Sequences

If not specified, the name of the sequence to be created/used (if needed) will be "SEQ_" + table

name. Initial value and increment will defined as 1.

Inheritance

Inheritance is not automapped and if you want to use it you will need explicitly define

Inheritance attribute and the additional attributes needed for complete inheritance mapping.

Customizing automapping

You can customize the naming in automapping mechanism by passing an engine class to the

automapping attribute:

TMyAutomapping must inherit from TAutomappingEngine , and you can then override some

methods to use your custom naming:

FItems: TList<TInvoiceItem>

TSex = (seFemale, seMale);

 [Entity, Automapping(TMyAutomapping)]

 TMyEntity = class

TMS Aurelius 5.11 Page 71 of 269

Nullable Type
Table columns in databases can be marked as optional (nullable) or required (not null). When

you map a class property to a table column in the database, you can choose if the column will be

required or not.

If the column is optional, the column value hold one valid value, or it can be null. Problem is that

primitive types in Delphi cannot be nullable. Using Nullable<T> type which is declared in unit

Bcl.Types.Nullable , you can create a property in your class that can represent the exact value

in the database, i.e., it can hold a value, or can be nullable.

For example, suppose you have the following class field mapped to the database:

The column BIRTHDAY in the database can be null. But the field FBirthday in the class cannot be

null. You can set FBirthday to zero (null date), but this is different from the NULL value in the

database.

Thus, you can use the Nullable<T> type to allow FBirthday field to receive null values:

 TMyAutomapping = class(TAutomappingEngine)

 strict protected

 function FieldNameToSql(const Value: string): string; override;

 public

 function GetTableName(Clazz: TClass): string; override;

 function GetSequenceName(Clazz: TClass): string; override;

 end;

{ TMyAutomapping }

function TMyAutomapping.FieldNameToSql(const Value: string): string;

begin

 Result := Value;

end;

function TMyAutomapping.GetSequenceName(Clazz: TClass): string;

begin

 Result := 'seq' + GetTableName(Clazz);

end;

function TMyAutomapping.GetTableName(Clazz: TClass): string;

begin

 Result := Copy(Clazz.ClassName, Pos('_', Clazz.ClassName) + 1);

end;

[Column('BIRTHDAY', [])]

FBirthday: TDate;

[Column('BIRTHDAY', [])]

FBirthday: Nullable<TDate>;

TMS Aurelius 5.11 Page 72 of 269

You can use FBirthday directly in expressions and functions that need TDate, Delphi compiler will

do the implicit conversion for you:

If the compiler fails in any situation, you can read or write the TDate value using Value property:

To check if the field has a null value, use HasValue or IsNull property:

There is a global Nullable variable named SNull which represents the null value, you can also use

it to read or write null values:

Binary Large Objects (Blobs)
You can map binary (or text) large objects (Blobs) table columns to properties in your class. As

with other properties, Aurelius will properly save and load the content of the property to the

specified table column in the database. In order for it to know that the class member maps to a

blob, you must declare the data type as an array of byte:

or as the TBlob type (recommended):

In both examples above, Aurelius will check the field data type and create a blob field in the

table to hold the content of the binary data. Each SQL dialect uses a different data type for

holding the blobs. Aurelius will choose the most generic one, i.e, that can hold any data (binary)

and the largest possible amount of data. If the blob field already exists in the database, Aurelius

will just load the field content in binary format and set it in the property.

In theory, you could use the TBytes type as well (and any other type that is an array of byte),

however Delphi doesn't provide RTTI type info for the TBytes specifically. It might be a bug or by

design, but you just can't use it. Use TArray<byte> or any other dynamic byte array instead (or

TBlob of course).

Using TBlob type you have more flexibility and features, as described in topics below.

FBirthday := EncodeDate(2000, 1, 1);

FBirthday.Value := Encode(2000, 1, 1);

IsBirthdayNull := not FBirthday.HasValue;

IsBirthdayNull := FBirthday.IsNull;

if FBirthday <> SNull then // birthday is not null

 FBirthday := SNull; // Set to null

[Column('Document', [])]

FDocument: TArray<byte>;

[Column('Photo', [])]

FPhoto: TBlob;

TMS Aurelius 5.11 Page 73 of 269

Lazy-Loading Blobs

When declaring blob attributes in your class, you can configure them for lazy-loading. It means

that whenever Aurelius tries to retrieve an object from the database, it will not include the blob

field in the select, and thus the blob content will not be sent through network from server to

client unless it's needed. If you access the blob content through the blob property, then Aurelius

will execute an SQL statement on-the-fly only to retrieve the blob content.

To map the blob property/field as lazy, you just need two requirements:

Use the TBlob type as the field/property type.

Add TColumnProp.Lazy to the column properties in the Column attribute.

The code below indicates how to declare a lazy-loaded blob:

The TBlob type is implicitly converted to an array of byte but also have methods for retrieving

the blob content as TBytes, string, etc.. Whenever you try to access the blob data through the

TBlob type, the blob content will be retrieved from the database.

TBlob Type

The TBlob type is used to declare blob field/properties. It's not required that you use a TBlob

type, but doing so will allow you to configure lazy-loading blobs and also provides you with

helper methods for handling the binary content.

Usage

Implicit conversion to TBytes

A TBlob implicitly converts to TBytes so you can directly use it in any method that uses it:

1.

2.

TTC_Customer = class

strict private

 // <snip>

 [Column('Photo', [TColumnProp.Lazy])]

 FPhoto: TBlob;

TCustomer = class

private

 [Column('Photo', [TColumnProp.Lazy])]

 FPhoto: TBlob;

public

 property Photo: TBlob read FPhoto write FPhoto;

BytesStream := TBytesStream.Create(Customer1.Photo);

// Use BytesStream anywhere that needs a TStream

TMS Aurelius 5.11 Page 74 of 269

Explicitly using AsBytes property

Alternatively you can use AsBytes property to get or set the value of the blob:

Use AsUnicodeString property to read/set the blob content as string

If you want to work with the blob content as string, you can just use AsUnicodeString property

for that:

If the underlying storage column is a memo, text or blob subtype text, Aurelius will make sure

that the column will have the proper text value.

If it's a raw binary blob, the string will be saved using Unicode encoding.

You should also use AsUnicodeString for reading data from blobs. If the database blob has a

memo value, the DB access component will use its default encoding/charset to read the text, and

Aurelius will force the binary data to be kept in memory (in TBlob value) as Unicode encoding.

Thus using AsUnicodeString will ensure you will read the correct string value.

For backward compatibility, you can use AsString property. That will read/save values using ANSI

encoding. Unless you have a specific reason for using AsString, you should always use

AsUnicodeString.

Raw access to the data using Data and Size properties

If you want to have directly access to data, for high performance operations, without having to

copy a byte array or converting data to a string, you can use read-only properties Data and Size.

Data is a pointer (PByte) to the first byte of the data, and Size contains the size of blob data.

The code below saves the blob content into a stream:

Using streams to save/load the blob

You can also use TBlob.LoadFromStream and SaveToStream methods to directly load blob

content from a stream, or save to a stream:

// MyBytesContent is a TBytes variable

Customer1.Photo.AsBytes := MyBytesContent;

Customer1.Photo.AsUnicodeString := 'Set string directly to the blob';

MyStream := TFileStream.Create('BlobContent.dat', fmCreate);

try

 MyStream.Write(Customer1.Photo.Data^, Customer1.Photo.Size);

finally

 MyStream.Free;

end;

TMS Aurelius 5.11 Page 75 of 269

IsNull property

Use IsNull property to check if a blob is empty (no bytes):

Clearing the blob

You can clear the blob content (set blob content to zero bytes) by setting IsNull property to true,

or by calling Clear method:

Loaded and Available properties

TBlob provides two boolean properties: Loaded and Available, and they refer to the status of data

availability when blob content is configured to be lazy-loaded.

Available property allows you to check if blob content is available, without forcing the content to

be loaded. If Available is true, it means that the blob content is already available in memory, even

if it's empty. If it's false, it means the blob content is not available in memory and a request must

be performed to load the content.

Loaded property behaves in a similar way. When Loaded is true, it means that the blob content of

a lazy-loaded blob was already loaded from the database. If Loaded is false, it means the content

was not loaded.

The difference between Loaded and Available is that when a new TBlob record is created,

Available is true (because data is available - it's empty) and Loaded is false (because no content

was loaded - because there is no content to load).

Associations and Lazy-Loading
Aurelius supports associations between objects, which are mapped to foreign keys in the

database. Suppose you have the following TInvoice class:

MyStream := TFileStream.Create('BlobContent.dat', fmCreate);

try

 Customer1.Photo.LoadFromStream(MyStream);

 Customer1.Photo.SaveToStream(AnotherStream);

finally

 MyStream.Free;

end;

if not Customer1.Photo.IsNull then

 // Do something

// Clear Photo and Description blobs content.

// Both statement are equivalent

Customer1.Photo.IsNull := true;

Customer1.Photo.Clear;

TMS Aurelius 5.11 Page 76 of 269

The class TInvoice has an association to the class TCustomer. By using Association mapping

attribute, you can define this association and Aurelius deals with it automatically - customer data

will be saved in its own table, and in Invoice table only thing saved will be a value in a foreign key

field, referencing the primary key in Customer table.

Also, TInvoice has a list of invoice items, which is also a type of association. You can define such

lists using ManyValuedAssociation mapping attribute. In this case, the TInvoiceItem objects in the

list will have a foreign key referencing the primary key in Invoice table.

Eager Loading

When an object is retrieved from the database, its properties are retrieved and set. This is also

true for associations. By default, eager-loading is performed, which means associated objects

and lists are loaded and filled when object is loaded. In the TInvoice example above, when a

TInvoice instance is loaded, Aurelius also creates a TCustomer instance, fill its data and set it to

the FCustomer field. Aurelius uses a single SQL statement to retrieve data for all associations.

FInvoiceItems list is also loaded. In this case, an extra SELECT statement is performed to load the

list.

Lazy Loading

You can optionally define associations to be lazy-loaded. This means that Aurelius will not

retrieve association data from database until it's really needed (when the property is accessed).

You define lazy-loading associations this way:

Declare the class field as a Proxy<TMyClass> type, instead of TMyClass (Proxy<T> type is

declared in unit Aurelius.Types.Proxy).

Declare the Association (or ManyValuedAssociation) attribute above the field, and define

fetch mode as lazy in attribute parameters.

Declare a property of type TMyClass with getter and setter that read/write from/to the

proxy value field.

Example:

TInvoice = class

private

 FCustomer: TCustomer;

 FInvoiceItems: TList<TInvoiceItem>;

1.

2.

3.

TMS Aurelius 5.11 Page 77 of 269

In the example above, Album will not be loaded when TMediaFile object is loaded. But if in

Delphi code you do this:

then Aurelius will perform an extra SELECT statement on the fly, instantiate a new TAlbum object

and fill its data.

Lazy loading lists

Lists can be set as lazy as well, which means the list will only be filled when the list object is

accessed. It works in a very similar way to lazy-loading in normal associations. The only

difference is that since you might need an instance to the TList object to manipulate the

collection, you must initialize it and then destroy it. Note that you should not access Value

property directly when creating/destroying the list object. Use methods SetInitialValue and

DestroyValue. The code below illustrates how to do that.

TMediaFile = class

private

 [Association([TAssociationProp.Lazy], [])]

 [JoinColumn('ID_ALBUM', [])]

 FAlbum: Proxy<TAlbum>;

 function GetAlbum: TAlbum;

 procedure SetAlbum(const Value: TAlbum);

public

 property Album: TAlbum read GetAlbum write SetAlbum;

implementation

function TMediaFile.GetAlbum: TAlbum;

begin

 Result := FAlbum.Value;

end;

procedure TMediaFile.SetAlbum(const Value: TAlbum);

begin

 FAlbum.Value := Value;

end;

TheAlbum := MyMediaFileObject.Album;

TMS Aurelius 5.11 Page 78 of 269

Proxy<T> Available property

Available property allows you to check if proxy object is available, without forcing it be loaded. If

Available is true, it means that the proxy object is already available in memory, even if it's empty.

If it's false, it means the object is not available in memory and a request must be performed to

load the content. In other words, Available property indicates if accessing the object will fire a

new server request to retrieve the object.

Proxy<T> Key property

You can read Key property directly from the Proxy<T> value to get the database values for the

foreign key used to load this proxy. This way you have access to the underlying database value

without needing to force the proxy to load. Note that Key might not be always available - it will

be filled by the object manager when the data is loaded from the database. If you set the proxy

value manually, Key value might differ from the actualy id of the object in Proxy<T>.

TInvoice = class

private

 [ManyValuedAssociation([TAssociationProp.Lazy], CascadeTypeAll)]

 [ForeignJoinColumn('INVOICE_ID', [TColumnProp.Required])]

 FItems: Proxy<TList<TInvoiceItem>>;

private

 function GetItems: TList<TInvoiceItem>;

public

 constructor Create; virtual;

 destructor Destroy; override;

 property Items: TList<TInvoiceItem> read GetItems;

end;

implementation

constructor TInvoice.Create;

begin

 FItems.SetInitialValue(TList<TInvoiceItem>.Create);

end;

destructor TInvoice.Destroy;

begin

 FItems.DestroyValue;

 inherited;

end;

function TInvoice.GetItems: TList<TInvoiceItem>;

begin

 result := FItems.Value;

end;

TMS Aurelius 5.11 Page 79 of 269

Inheritance Strategies
There are currently two strategies for you to map class inheritance into the relational database:

Single Table: All classes in the hierarchy are mapped to a single table in the database.

Joined Tables: Each class is mapped to one different table, each one linked to the parent's

table.

Inheritance is defined in Aurelius using the Inheritance attribute.

Single Table Strategy

With this strategy, all classes in the class hierarchy are mapped to a single table in relational

database.

The concrete class of the object is indicated by the values in a special column in the table named

discriminator column. This column is specified by the programmer and its content is used to

identify the real class of the object. The discriminator column must be of string or integer type.

The advantage of this strategy is that the database is simple, and performance is optimized,

since queries don't need to have too many joins or unions.

One disadvantage is that all columns belonging to child classes must be declared as not

required, since they must be null if the row in the table corresponds to a super class.

Joined Tables Strategy

In this strategy there is one table for each class in the class hierarchy.

•

•

TMS Aurelius 5.11 Page 80 of 269

Each table represents a class in the hierarchy, and columns in the table are associated to the

properties declared in the class itself. Even abstract classes have their own table, since they might

have declared properties as well.

Tables are joined together using foreign keys. Each table representing a child class has a foreign

key referencing the table representing the parent class. The foreign key is also the primary key,

so the relationship cardinality between the tables is 1:1. In the previous illustration, the table

Cricketer has a foreign key referencing the primary key in table Player.

The advantage of this strategy is that the database is normalized and the database model is very

similar to the class model. Also, unlike the Single Table Strategy, all columns in tables are relevant

to all table rows.

One disadvantage is performance. To retrieve a single object several inner or left joins might be

required, becoming even worse when complex queries are used. Database refactoring is also

more difficult - if you need to move a property to a different class in hierarchy, for example,

more than one table needs to be updated.

Composite Id
You can use composite identifier in TMS Aurelius. Although possible, it's strongly recommended

that you use single-attribute, single-column identifiers. The use of composite id should be used

only for legacy applications where you already have a database schema that uses keys with

multiple columns. Still in those cases you could try to add an auto-generated field in the table

and use it as id.

Using composite Id's is straightforward: you just use the same attributes used for single Id: Id,

JoinColumn, ForeignJoinColumn and PrimaryJoinColumn attributes. The only difference is that

you add those attributes two or more times to the classes.

For example, the following TAppointment class has a composite Id using the attributes

AppointmentDate and Patient (you can use associations as well):

TMS Aurelius 5.11 Page 81 of 269

Note that while TAppointment has a composite Id of two attributes, the number of underlying

database table columns is three. This is because Patient attribute is part of Id, and the TPerson

class itself has a composite Id. So primary key columns of table APPOINTMENT will be

APPOINTMENT_DATE, PATIENT_LASTNAME and PATIENT_FIRSTNAME.

Also pay attention to the usage of JoinColumn attributes in field FPatient. Since TPerson has a

composite Id, you must specify as many JoinColumn attributes as the number of table columns

used for the referenced table. This is the same for ForeignJoinColumn and PrimaryJoinColumn

attributes.

As illustrated in the previous example, you can have association attributes as part of a composite

identifier. However, there is one limitation: you can't have lazy-loaded associations as part of the

Id. All associations that are part of an Id are loaded in eager mode. In the previous example,

[Entity]

[Table('PERSON')]

[Id('FLastName', TIdGenerator.None)]

[Id('FFistName', TIdGenerator.None)]

TPerson = class

strict private

 [Column('LAST_NAME', [TColumnProp.Required], 50)]

 FLastName: string;

 [Column('FIRST_NAME', [TColumnProp.Required], 50)]

 FFirstName: string;

public

 property LastName: string read FLastName write FLastName;

 property FirstName: string read FFiratName write FFiratName;

end;

[Entity]

[Table('APPOINTMENT')]

[Id('FAppointmentDate', TIdGenerator.None)]

[Id('FPatient', TIdGenerator.None)]

TAppointment = class

strict private

 [Association([TAssociationProp.Lazy, TAssociationProp.Required],

 [TCascadeType.Merge, TCascadeType.SaveUpdate])]

 [JoinColumn('PATIENT_LASTNAME', [TColumnProp.Required])]

 [JoinColumn('PATIENT_FIRSTNAME', [TColumnProp.Required])]

 FPatient: Proxy<TPerson>;

 [Column('APPOINTMENT_DATE', [TColumnProp.Required])]

 FAppointmentDate: TDateTime;

 function GetPatient: TPerson;

 procedure SetPatient(const Value: TPerson);

public

 property Patient: TPerson read GetPatient write SetPatient;

 property AppointmentDate: TDateTime read FAppointmentDate write FAppointmentDat

e;

end;

TMS Aurelius 5.11 Page 82 of 269

although FPatient association was declared with TAssociationProp.Lazy, using a proxy, this

settings will be ignored and the TPerson object will be fully loaded when a TAppointment object

is loaded from the database.

When using composite Id, the generator specified in the Id attribute is ignored, and all are

considered as TIdGenerator.None.

When using Id values for finding objects, for example when using Find method of object

manager or using IdEq expression in a query, you are required to provide an Id value. The type of

this value is Variant. For composite Id's, you must provide an array of variant (use VarArrayCreate

method for that) where each item of the array refers to the value of a table column. For

associations in Id's, you must provide a value for each id of association (in the example above, to

find a class TAppointment you should provide a variant array of length = 3, with the values of

appointment data, patient's last name and first name values).

Mapping Examples
This topic lists some code snippets that illustrates how to use attributes to build the object-

relational mapping.

Basic Mapping

unit Artist;

interface

uses

 Aurelius.Mapping.Attributes,

 Aurelius.Types.Nullable;

type

 [Entity]

 [Table('ARTISTS')]

 [Sequence('SEQ_ARTISTS')]

 [Id('FId', TIdGenerator.IdentityOrSequence)]

 TArtist = class

 private

 [Column('ID', [TColumnProp.Unique, TColumnProp.Required,

TColumnProp.NoUpdate])]

 FId: Integer;

 FArtistName: string;

 FGenre: Nullable<string>;

 public

 property Id: integer read FId;

TMS Aurelius 5.11 Page 83 of 269

Single-Table Inheritance and Associations

In the example below, TSong and TVideo inherit from TMediaFile. The TMediaFile class has two

associations: Album and Artist. Both are lazy associations.

 [Column('ARTIST_NAME', [TColumnProp.Required], 100)]

 property ArtistName: string read FArtistName write FArtistName;

 [Column('GENRE', [], 100)]

 property Genre: Nullable<string> read FGenre write FGenre;

 end;

implementation

end.

unit MediaFile;

interface

uses

 Generics.Collections,

 Artist, Album,

 Aurelius.Mapping.Attributes,

 Aurelius.Types.Nullable,

 Aurelius.Types.Proxy;

type

 [Entity]

 [Table('MEDIA_FILES')]

 [Sequence('SEQ_MEDIA_FILES')]

 [Inheritance(TInheritanceStrategy.SingleTable)]

 [DiscriminatorColumn('MEDIA_TYPE', TDiscriminatorType.dtString)]

 [Id('FId', TIdGenerator.IdentityOrSequence)]

 TMediaFile = class

 private

 [Column('ID', [TColumnProp.Unique, TColumnProp.Required, TColumnProp.DontUpda

te])]

 FId: Integer;

 FMediaName: string;

 FFileLocation: string;

 FDuration: Nullable<integer>;

 [Association([TAssociationProp.Lazy], [])]

 [JoinColumn('ID_ALBUM', [])]

 FAlbum: Proxy<TAlbum>;

 [Association([TAssociationProp.Lazy], [])]

 [JoinColumn('ID_ARTIST', [])]

 FArtist: Proxy<TArtist>;

TMS Aurelius 5.11 Page 84 of 269

 function GetAlbum: TAlbum;

 function GetArtist: TArtist;

 procedure SetAlbum(const Value: TAlbum);

 procedure SetArtist(const Value: TArtist);

 public

 property Id: integer read FId;

 [Column('MEDIA_NAME', [TColumnProp.Required], 100)]

 property MediaName: string read FMediaName write FMediaName;

 [Column('FILE_LOCATION', [], 300)]

 property FileLocation: string read FFileLocation write FFileLocation;

 [Column('DURATION', [])]

 property Duration: Nullable<integer> read FDuration write FDuration;

 property Album: TAlbum read GetAlbum write SetAlbum;

 property Artist: TArtist read GetArtist write SetArtist;

 end;

 [Entity]

 [DiscriminatorValue('SONG')]

 TSong = class(TMediaFile)

 private

 FSongFormat: TSongFormat;

 public

 [Association]

 [JoinColumn('ID_SONG_FORMAT', [])]

 property SongFormat: TSongFormat read FSongFormat write FSongFormat;

 end;

 [Entity]

 [DiscriminatorValue('VIDEO')]

 TVideo = class(TMediaFile)

 private

 FVideoFormat: TVideoFormat;

 public

 [Association]

 [JoinColumn('ID_VIDEO_FORMAT', [])]

 property VideoFormat: TVideoFormat read FVideoFormat write FVideoFormat;

 end;

implementation

{ TMediaFile }

function TMediaFile.GetAlbum: TAlbum;

begin

 Result := FAlbum.Value;

end;

function TMediaFile.GetArtist: TArtist;

TMS Aurelius 5.11 Page 85 of 269

Joined-Tables Inheritance

In this example, TBird and TMammal classes inherit from TAnimal. Each class has its own table.

Specific bird data is saved in "BIRD" table, and common animal data is saved in "ANIMAL" table.

begin

 Result := FArtist.Value;

end;

procedure TMediaFile.SetAlbum(const Value: TAlbum);

begin

 FAlbum.Value := Value;

end;

procedure TMediaFile.SetArtist(const Value: TArtist);

begin

 FArtist.Value := Value;

end;

end.

unit Animals;

interface

uses

 Generics.Collections,

 Aurelius.Mapping.Attributes,

 Aurelius.Types.Nullable,

 Aurelius.Types.Proxy;

type

 [Entity]

 [Table('ANIMAL')]

 [Sequence('SEQ_ANIMAL')]

 [Inheritance(TInheritanceStrategy.JoinedTables)]

 [Id('FId', TIdGenerator.IdentityOrSequence)]

 TAnimal = class

 strict private

 [Column('ID', [TColumnProp.Unique, TColumnProp.Required, TColumnProp.DontUpda

te])]

 FId: Integer;

 [Column('ANIMAL_NAME', [TColumnProp.Required], 50)]

 FName: string;

 public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 end;

 [Entity]

 [Table('BIRD')]

TMS Aurelius 5.11 Page 86 of 269

Registering Entity Classes
Aurelius doesn't require you to register the entity classes. Just by adding Entity attribute to the

class it knows that the class is mapped and it will add it automatically to the default model or a

model you have explicitly specified.

However, if you don't use the class anywhere in your application, the linker optimizer will remove

it from the final application executable, and Aurelius will never know about it (since it retrieves

information at runtime). There are situations where this can happen very often:

You have just started your application and wants Aurelius to create the database structure

for you, but you still didn't use any of your classes. Aurelius will not create the tables since

the classes just don't exist in executable.

You are creating a server application, especially using XData, without any specific server-

side logic. You will notice that XData will respond to 404 (not found) to the URL resource

addresses corresponding to your classes. This is just because XData server doesn't know

about those classes.

To solve these kind of problems, all you would have to do is use the class somewhere in your

application. It could be a simple "TMyClass.Create.Free". Nevertheless, to help you out in this

task, there is a function RegisterEntity in unit Aurelius.Mapping.Attributes that you can use to

make sure your class will be "touched" and thus included in final executable.

 [PrimaryJoinColumn('ANIMAL_ID')]

 TBird = class(TAnimal)

 strict private

 [Column('CAN_FLY', [], 0)]

 FCanFly: Nullable<boolean>;

 [Column('BIRD_BREED', [], 50)]

 FBirdBreed: Nullable<string>;

 public

 property CanFly: Nullable<boolean> read FCanFly write FCanFly;

 property BirdBreed: Nullable<string> read FBirdBreed write FBirdBreed;

 end;

 [Entity]

 [Table('MAMMAL')]

 [PrimaryJoinColumn('ANIMAL_ID')]

 TMammal = class(TAnimal)

 strict private

 [Column('LAST_PREGNANCY_DAYS', [], 0)]

 FLastPregnancyDays: Nullable<integer>;

 public

 property LastPregnancyDays: Nullable<integer> read FLastPregnancyDays

 write FLastPregnancyDays;

 end;

implementation

end.

•

•

TMS Aurelius 5.11 Page 87 of 269

https://www.tmssoftware.com/site/xdata.asp

So in the same unit you have your classes mapped you can optinally just call RegisterEntity in

initialization section for all classes to make sure they will be present in application:

unit MyEntities;

uses {...}, Aurelius.Mapping.Attributes;

type

 [Entity, Automapping]

 TCustomer = class

 private

 FId: integer;

 {...}

initialization

 RegisterEntity(TCustomer);

 RegisterEntity(TCountry);

 RegisterEntity(TInvoice);

 {...}

end.

TMS Aurelius 5.11 Page 88 of 269

Multi-Model Design
Most Aurelius applications uses single-model mapping. This means that all classes you map

belongs to the same model. So for example when retrieving objects from the database, or

creating the database structure, objects of all mapped classes will be available.

But in some situations, you might need to have multiple mapping models. For example, you

want your TCustomer entity class to belong to your default model, but you want TUserInfo entity

class to belong to a different model ("Security" model for example). There are several reasons for

this, for example:

You have more than one database you want to access from your application, with totally

different structures.

You have some objects that you don't want to save to a database, but just want to use

them in memory (using SQLite memory database).

You use other tools that uses Aurelius and you want to logically separate your entity

classes for that. For example, when using TMS XData, you might want to use different

models to create different server setups.

Any other reason you have to separate your classes into different mappings.

There are two ways to define multiple mapping models: using Model attribute (preferrable), or

manually creating a mapping setup. The following topics describe the two options and explain

the concepts of multi-model design in Aurelius.

Multi-Model Step-By-Step
This topic explains very shortly how to use multiple mapping models with Aurelius. For more

details about each step, please refer to main Multi-Model Design chapter.

1. Add a Model attribute to each class indicating the model where the class belongs to:

2. Retrieve the TMappingExplorer object associated with the model:

•

•

•

•

[Entity, Automapping]

[Model('Sample')]

TSampleCustomer = class

{...}

[Entity, Automapping]

[Model('Security')]

TUserInfo = class

{...}

 // no model attribute means default model

[Entity, Automapping]

TCustomer = class

 {...}

TMS Aurelius 5.11 Page 89 of 269

https://www.tmssoftware.com/site/xdata.asp

3. Create an object manager using the proper mapping explorer:

or simply:

For default manager you can simply omit the explorer:

4. You can also use the explorers in other needed places. For example, to create a database

structure:

uses

 {...}, Aurelius.Mapping.Explorer;

var

 SampleExplorer: TMappingExplorer;

 SecurityExplorer: TMappingExplorer;

 DefaultExplorer: TMappingExplorer;

begin

 SampleExplorer := TMappingExplorer.Get('Sample');

 SecurityExplorer := TMappingExplorer.Get('Security');

 DefaultExplorer := TMappingExplorer.Default;

SampleManager := TObjectManager.Create(SampleConnection, SampleExplorer);

SecurityManager := TObjectManager.Create(SecurityConnection, SecurityExplorer);

DefaultManager := TObjectManager.Create(MyConnection, DefaultExplorer);

SampleManager := TObjectManager.Create(SampleConnection, TMappingExplorer.Get('Sa

mple'));

SecurityManager := TObjectManager.Create(SecurityConnection,

TMappingExplorer.Get('Security'));

DefaultManager := TObjectManager.Create(MyConnection, TMappingExplorer.Default);

DefaultManager := TObjectManager.Create(MyConnection);

// this example creates tables for "Sample" model in

// a SQL Server database using FireDac,

// and "Security" model in a in-memory SQLite database

SampleConnection := TFireDacConnectionAdapter.Create(FDConnection1, false);

DBManager := TDatabaseManager.Create(SampleConnection, TMappingExplorer.Get('Samp

le'));

DBManager.UpdateDatabase;

DBManager.Free;

SecurityConnection := TSQLiteNativeConnectionAdapter.Create(':memory:');

DBManager := TDatabaseManager.Create(SecurityConnection, TMappingExplorer.Get('Se

curity'));

DBManager.UpdateDatabase;

DBManager.Free;

TMS Aurelius 5.11 Page 90 of 269

Using Model attribute
Defining multiple mapping models in Aurelius is very straightforward if you use Model attribute.

Basically all you need to do is annotate a class with the model attribute telling Aurelius the

model where that class belongs to. For example, the following code specifies that class TUserInfo

belongs to model "Security":

You can also include the class in multiple models, just by adding the Model attribute multiple

times. The following example specifies that the class TSample belongs to both models "Security"

and "Sample":

In Aurelius, every mapped class belongs to a model. If you omit the Model attribute (since it's

optional), the class will be included in the default model.

If you want to add a class to both default model and a different model, you can just add it to

default model (named "Default"):

You can then use the different models by retrieving the TMappingExplorer instance associated

with a model.

// TUserInfo belongs to model "Security"

[Entity, Automapping]

[Model('Security')]

TUserInfo = class

 {...}

// TSample belongs to model "Security" and "Sample"

[Entity, Automapping]

[Model('Security')]

[Model('Sample')]

TSample = class

 {...}

// This class belongs to default model

[Entity, Automapping]

TCustomer = class

 {...}

// TUser belongs to both "Security" and default model

[Entity, Automapping]

[Model('Security')]

[Model('Default')]

TUser = class

 {...}

TMS Aurelius 5.11 Page 91 of 269

TMappingExplorer
After Aurelius retrieves information about your mapping, it saves all that info in an object of

class TMappingExplorer (declared in unit Aurelius.Mapping.Explorer). In other words, a

TMappingExplorer object holds all mapping information. Although in some cases you might

never need to deal with it directly, it is a key class when using Aurelius because that's the class it

uses to perform all its operations on the entities.

When you create an object manager, for example, you do it this way:

And that is the same for the database manager. You can omit the parameter and create it like

this:

But this just means that you are telling the manager to use the default mapping explorer. It's the

equivalent of doing this:

Retrieving a TMappingExplorer instance

As explained above, in single-model applications you will rarely need to deal with

TMappingExplorer instances. All the mapping is available in the default TMappingExplorer

instance, which is used automatically by the object manager and database manager. But when

you have multiple mapping models in your application, you will need to tell the manager what

mapping model it will be using. To help you in that task, Aurelius provides you with global

TMappingExplorer instances. Aurelius creates (in a lazy way) one instance for each mapping

model you have.

To retrieve the TMappingExplorer instance associated with a model, just use the

TMappingExplorer.Get class property passing the model name. In the following example, the

object manager will use the "Security" model, instead of the default one.

Note that you don't need to destroy the TMappingExplorer instance in this case, those are global

instances that are destroyed automatically by Aurelius when application terminates. To retrieve

the default instance, use the Default property:

Manager := TObjectManager.Create(DBConnection, MyMappingExplorer);

Manager := TObjectManager.Create(DBConnection);

Manager := TObjectManager.Create(DBConnection, TMappingExplorer.Default);

Manager := TObjectManager.Create(DBConnection, TMappingExplorer.Get('Security'));

Manager := TObjectManager.Create(DBConnection, TMappingExplorer.Default);

TMS Aurelius 5.11 Page 92 of 269

Creating a TMappingExplorer explicitly

Usually you don't need to create a mapping explorer explicitly. As mentioned above, Aurelius

automatically creates a default mapping explorer (available in class property

TMappingExplorer.Default) and always uses it in any place where a TMappingExplorer object is

needed but explicitly provided (like when creating the object manager). And you can also

retrieve a mapping explorer instance for a specific model. So it's very rare you need to create one

your own.

But if you still need to do so, you can explicitly create a TMappingExplorer object using either a

mapping setup or a model name. Here are the following available constructors.

To create a mapping explorer based on a mapping setup, just pass the setup to the constructor

(check here to learn how to create mapping setups).

Or, alternatively, you can just pass the model name. The explorer will only consider all entities

belonging to the specified model:

NOTE

You are responsible to destroy the TMappingExplorer instance you create explicitly.

Mapping Setup
Aurelius uses the mapping you have done to manipulate the objects. You do the mapping at

design-time (adding attributes to your classes and class members), but this information is of

course retrieved at run-time by Aurelius and is cached for better performance. This cached

information is kept in an object of class TMappingExplorer. Whenever a TObjectManager object

is created to manipulate the objects, a TMappingExplorer object must be provided to it, in order

for the object manager to retrieve meta information about the mapping (or the default

TMappingExplorer instance will be used).

To create a TMappingExplorer object explicitly, you can pass an instance of a TMappingSetup

object.

So the order of "injection" of objects is illustrated below:

The following topics explain different ways of specifying the mapping setup and what custom

settings you can do with mapping.

constructor Create(ASetup: TMappingSetup); overload;

constructor Create(const ModelName: string); overload;

MyExplorer := TMappingExplorer.Create(MyMappingSetup);

MyExplorer := TMappingExplorer.Create('Sample');

TMappingSetup -> TMappingExplorer -> TObjectManager

TMS Aurelius 5.11 Page 93 of 269

NOTE

Using Model attribute is a much easier way to create multi-model Aurelius applications when

compared to mapping setup. Check the step-by-step topic to learn more about it.

Defining a Mapping Setup

To have full control over the mapping setup, the overall behavior is the following.

Create and configure a TMappingSetup object.

Create a TMappingExplorer object passing the TMappingSetup instance.

Destroy the TMappingSetup object. Keep the TMappingExplorer instance.

Create several TObjectManager instances passing the TMappingExplorer object.

Destroy the TMappingExplorer object at the end of your application (or when all

TObjectManager objects are destroyed and you have finished using Aurelius objects).

The concept is that you obtain a TMappingExplorer object that contains an immutable cache of

the mapping scheme, using some initial settings defined in TMappingSetup. Then you keep the

instance of that TMappingeExplorer during the lifetime of the application, using it to create

several object manager instances.

Sample code:

1.

2.

3.

4.

5.

uses

 Aurelius.Mapping.Setup,

 Aurelius.Mapping.Explorer,

 Aurelius.Engine.ObjectManager;

{...}

var

 MapSetup: TMappingSetup;

begin

 MapSetup := TMappingSetup.Create;

 try

 // Configure MapSetup object

 {..}

 // Now create exporer based on mapping setup

 FMappingExplorer := TMappingExplorer.Create(MapSetup);

 finally

 MapSetup.Free;

 end;

TMS Aurelius 5.11 Page 94 of 269

Default Mapping Setup Behavior

In most situations, you as a programmer don't need to worry about manually defining a

mapping setup. This is because Aurelius provide some default settings and default instances that

makes it transparent for you (and also for backward compatibility).

There is a global TMappingExplorer object available in the following class function:

that is lazily initialized that is used by Aurelius when you don't explicitly define a

TMappingExplorer to use. That's what makes you possible to instantiate TObjectManager objects

this way:

The previous code is equivalent to this:

Note that the TMappingSetup object is not specified here. It means that the TMappingExplorer

object initially available in TMappingExplorer.DefaultInstance internally uses an empty

TMappingSetup object. This just means that no customization in the setup was done, and the

default mapping (and all the design-time mapping done by you) is used normally.

If you still want to define a custom mapping setup, but you don't want to create all your object

manager instances passing a new explorer, you can alternatively change the

TMappingExplorer.DefaultInstance. This way you can define a custom setup, and from that point,

all TObjectManager objects to be created without an explicit TMappingExplorer parameter will

use the new default instance. The following code illustrates how to change the default instance:

 // Now use FMappingExplorer to create instances of object manager

 FManager := TObjectManager.Create(MyConnection, FMappingExplorer);

 try

 // manipulate objects using the manager

 finally

 FManager.Free;

 end;

 // Don't forget to destroy FMappingExplorer at the end of application

end;

class function TMappingExplorer.DefaultInstance: TMappingExplorer;

Manager := TObjectManager.Create(MyConnection);

Manager := TObjectManager.Create(MyConnection, TMappingExplorer.DefaultInstance);

TMS Aurelius 5.11 Page 95 of 269

Please attention to the comment in the code above. Make sure you have no existing

TObjectManager instances that uses the old TMappingExplorer instance being replaced. This is

because when calling ReplaceDefaultInstance method, the old default instance of

TMappingExplorer is destroyed, and if there are any TObjectManager instances referencing the

destroyed explorer, unexpected behavior might occur.

Nevertheless, you would usually execute such example code above in the beginning of your

application.

Mapped Classes

By default, TMS Aurelius maps all classes in the application marked with Entity attribute, for the

default model. Alternatively, you can manually define which class will be mapped in each

mapping setup. This allows you to have a differents set of classes for each database connection

in the same application. For example, you can have classes A, B and C mapped to a SQL Server

connection, and classes D and E mapped to a local SQLite connection.

uses

 Aurelius.Mapping.Setup,

 Aurelius.Mapping.Explorer,

 Aurelius.Engine.ObjectManager;

{...}

var

 MapSetup: TMappingSetup;

begin

 MapSetup := TMappingSetup.Create;

 try

 // Configure the mapping setup

 // Replace default instance of TMappingExplorer

 // MAKE SURE that no TObjectManager instances are alive using the old

DefaultInstance

 TMappingExplorer.ReplaceDefaultInstance(TMappingExplorer.Create(MapSetup));

 finally

 MapSetup.Free;

 end;

 FManager := TObjectManager.Create(MyConnection);

 try

 // manipulate objects using the manager

 finally

 FManager.Free;

 end;

 // No need to destroy the old or new default instances. Aurelius will manage

them.

end;

TMS Aurelius 5.11 Page 96 of 269

Defining mapped classes

Mapped classes are defined using TMappingSetup.MappedClasses property. This provides you a

TMappedClasses class which several methods and properties to define the classes to be mapped.

Default behavior

You don't need to manually register classes in MappedClasses property. If it is empty, Aurelius

will automatically register all classes in the application marked with the Entity attribute, for the

default model - the classes without a explicit Model attribute.

If you want the mapping setup to automatically load entities from another model, just set the

ModelName property:

uses

 Aurelius.Mapping.Setup,

 Aurelius.Mapping.Explorer,

 Aurelius.Mapping.MappedClasses,

 Aurelius.Engine.ObjectManager;

{...}

var

 MapSetup1: TMappingSetup;

 MapSetup2: TMappingSetup;

begin

 MapSetup1 := TMappingSetup.Create;

 MapSetup2 := TMappingSetup.Create;

 try

 MapSetup1.MappedClasses.RegisterClass(TCustomer);

 MapSetup1.MappedClasses.RegisterClass(TCountry);

 MapSetup2.MappedClasses.RegisterClass(TInvoice);

 FMappingExplorer1 := TMappingExplorer.Create(MapSetup1);

 FMappingExplorer2 := TMappingExplorer.Create(MapSetup2);

 finally

 MapSetup.Free;

 end;

 // FManager1 will connect to SQL Server and will only deal

 // with entity classes TCustomer and TCountry

 FManager1 := TObjectManager.Create(MySQLServerConnection, FMappingExplorer1);

 // FManager2 will connect to SQLite and will only deal with entity class

TInvoice

 FManager2 := TObjectManager.Create(MySQLiteConnection, FMappingExplorer2);

 // Don't forget to destroy FMappingExplorer1 and FMappingExplorer2 at the end

of application

end;

 MapSetup.ModelName := 'MyModel';

TMS Aurelius 5.11 Page 97 of 269

Methods and properties

The following methods and properties are available in TMappedClasses class.

Registers a class in the mapping setup.

Register a set of classes in the mapping setup (you can pass a TList<TClass> or any other class

descending from TEnumerable<TClass>).

Unregister all mapped classes. This returns to the default state, where all classes marked with

Entity attribute will be registered.

Indicates if there is any class registered as a mapped class. When IsEmpty returns true, it means

that the default classes will be used (all classes marked with Entity attribute).

Lists all classes currently registered as mapped classes.

Unregister a specified class. This method is useful when combined with GetEntityClasses. As an

example, the following will register all classes marked with Entity attribute (the default classes),

except TInternalConfig:

Helper functions that return classes in the application marked with Entity attribute.

You can call GetModelClasses to retrieve entity classes belonging to the model specified by

ModelName.

You can call GetDefaultClasses to retrieve entity classes belonging to the default model (either

classes with no Model attribute or belonging to model "Default").

Or you can use GetEntityClasses to retrieve all entity classes regardless of the model they belong

to. This is not a list of the currently mapped classes (use Classes property for that). This property

is just a helper property in case you want to register all classes marked with Entity attribute and

procedure RegisterClass(Clazz: TClass);

procedure RegisterClasses(AClasses: TEnumerable<TClass>);

procedure Clear;

function IsEmpty: boolean;

property Classes: TEnumerable<TClass> read GetClasses;

procedure UnregisterClass(Clazz: TClass);

MapSetup.MappedClasses.RegisterClasses(TMappedClasses.GetEntityClasses);

MapSetup.MappedClasses.UnregisterClass(TInternalConfig);

class function GetEntityClasses: TEnumerable<TClass>;

class function GetDefaultClasses: TEnumerable<TClass>;

class function GetModelClasses(const ModelName: string): TEnumerable<TClass>;

TMS Aurelius 5.11 Page 98 of 269

then remove some classes. It's useful when used together with UnregisterClass method. Note

that if ModelName is empty string when calling GetModelClasses, model will be ignored and all

classes marked with Entity attribute, regardless of the model, will be retrieved.

Calling GetModelClasses('') is equivalent to calling GetEntityClasses.

Calling GetModelClasses(TMappedClasses.DefaultModelName) is equivalent to calilng

GetDefaultClasses.

Dynamic Properties

Dynamic properties are a way to define mapping to database columns at runtime. Regular

mapping is done as following:

But what if don't know at design-time if the MEDIA_NAME column will be available in the

database? What if your application runs in many different customers and the database schema in

each customer is slightly different and columns are not known at design-time? To solve this

problem, you can use dynamic properties, which allows you to manipulate the property this way:

The following steps describe how to use them.

Preparing Class for Dynamic Properties

To make your class ready for dynamic properties, you must add a new property that will be used

as a container of all dynamic properties the object will have. This container must be managed

(created and destroyed) by the class and is an object of type TDynamicProperties:

[Column('MEDIA_NAME', [TColumnProp.Required], 100)]

property MediaName: string read FMediaName write FMediaName;

MyAlbum.CustomProps['MediaName'] := 'My media name';

uses

 Aurelius.Mapping.Attributes,

 Aurelius.Types.DynamicProperties,

type

 [Entity]

 [Automapping]

 TPerson = class

 private

 FId: integer;

 FName: string;

 FProps: TDynamicProperties;

 public

 constructor Create;

 destructor Destroy; override;

 property Id: integer read FId write FId;

 property Name: string read FName write FName;

 property Props: TDynamicProperties read FProps;

 end;

TMS Aurelius 5.11 Page 99 of 269

The Automapping attribute is being used in the example, but it's not required to use dynamic

properties. You just need to declare the TDynamicProperties property, with no attributes

associated to it.

Registering Dynamic Properties

Dynamic properties must be registered at run-time. To do that, you need to use a custom

mapping setup. You need to create a TMappingSetup object, register the dynamic properties

using DynamicProps property, and then create a TMappingExplorer object from this setup to be

used when creating TObjectManager instances, or just change the

TMappingExplorer.DefaultInstance.

The DynamicProps property is an indexed property which index is the class where the dynamic

property will be registered. The property returns a TList<TDynamicProperty> which you can use

to manipulate the registered dynamic properties. You don't need to create or destroy such list,

it's managed by the TMappingSetup object. You just add TDynamicProperty instances to it, and

you also don't need to manage such instances.

The following code illustrates how to create some dynamic properties in the class TPerson we

created in the topic "Preparing Class for Dynamic Properties".

constructor TPerson.Create;

begin

 FProps := TDynamicProperties.Create;

end;

destructor TPerson.Destroy;

begin

 FProps.Free;

 inherited;

end;

uses

 {...}, Aurelius.Mapping.Setup;

procedure TDataModule1.CreateDynamicProps(ASetup: TMappingSetup);

var

 PersonProps: TList<TDynamicProperty>;

begin

 PersonProps := ASetup.DynamicProps[TPerson];

 PersonProps.Add(

 TDynamicProperty.Create('Props', 'HairStyle', TypeInfo(THairStyle),

 TDynamicColumn.Create('HAIR_STYLE')));

 PersonProps.Add(

 TDynamicProperty.Create('Props', 'Photo', TypeInfo(TBlob),

 TDynamicColumn.Create('PHOTO')));

 PersonProps.Add(

 TDynamicProperty.Create('Props', 'Extra', TypeInfo(string),

 TDynamicColumn.Create('COL_EXTRA', [], 30)));

end;

TMS Aurelius 5.11 Page 100 of 269

In the previous example, we have registered three dynamic properties in class TPerson:

HairStyle, which is a property of type THairStyle (enumerated type) and will be saved in

database column HAIR_STYLE;

Photo, a property of type TBlob, to be saved in column PHOTO;

Extra, a property of type string, to be saved in column COL_EXTRA, size 30.

Note that the type of dynamic property must be informed. It should be the type of the property

(not the type of database column) as if the property was a real property in the class.

You can create dynamic properties of any type supported by Aurelius, with two exceptions:

associations are not supported (and such Proxy types are not allowed) and Nullable types are

also not supported, but because they are not needed. All dynamic properties are nullable

because they are in essence TValue types and you can always set them to TValue.Empty values

(representing a null value).

The first parameter of TDynamicProperty.Create method must have the name of the TPerson

property which will hold the dynamic property values (we have created a property Props of type

TDynamicProperties in class TPerson).

Declaration of TDynamicProperty and TDynamicColumn objects are as following:

procedure TDataModule1.DefineMappingSetup;

var

 MapSetup: TMappingSetup;

begin

 MapSetup := TMappingSetup.Create;

 try

 CreateDynamicProps(MapSetup);

 TMappingExplorer.ReplaceDefaultInstance(TMappingExplorer.Create(MapSetup));

 finally

 MapSetup.Free;

 end;

end;

•

•

•

TDynamicProperty = class

public

 constructor Create(AContainerName, APropName: string; APropType: PTypeInfo;

 ColumnDef: TDynamicColumn);

 destructor Destroy; override;

 function Clone: TDynamicProperty;

 property ContainerName: string read FContainerName write FContainerName;

 property PropertyName: string read FPropertyName write FPropertyName;

 property PropertyType: PTypeInfo read FPropertyType write FPropertyType;

 property Column: TDynamicColumn read FColumn write FColumn;

end;

TDynamicColumn = class

public

 constructor Create(Name: string); overload;

 constructor Create(Name: string; Properties: TColumnProps); overload;

TMS Aurelius 5.11 Page 101 of 269

NOTE

The overloaded Create methods of TDynamicColumn are very similar to the ones used in

Column attribute. The TDynamicColumn contains info about the physical table column in the

database where the dynamic property will be mapped to, and its properties behave the same

as the ones described in the documentation of Column attribute.

Using Dynamic Properties

Once you have prepared your class for dynamic properties, and registered the dynamic

properties in the mapping setup, you can manipulate the properties as any other property of

your object, using the TDynamicProperties container object. It's declared as following:

This is how you would use it:

Note that in the example above, the dynamic property behave exactly as a regular property. The

Flush method have detected that the "Extra" property was changed, and will update it in the

database accordingly.

Be aware that Props type is TValue, which is a generic container. Some implicit conversions are

possible, as illustrated in the previous example using the dynamic property "Extra". However, in

some cases (and to be safe you can use this approach whenever you are not sure about using it

or not) you will need to force the TValue to hold the correct type of the property. The following

example shows how to define a value for the dynamic property HairStyle, which was registered

as the type THairStyle (enumerated type):

 constructor Create(Name: string; Properties: TColumnProps; Length: Integer); ov

erload;

 constructor Create(Name: string; Properties: TColumnProps; Precision, Scale: In

teger); overload;

 function Clone: TDynamicColumn;

 property Name: string read FName write FName;

 property Properties: TColumnProps read FProperties write FProperties;

 property Length: integer read FLength write FLength;

 property Precision: integer read FPrecision write FPrecision;

 property Scale: integer read FScale write FScale;

end;

TDynamicProperties = class

public

 property Prop[const PropName: string]: TValue read GetItem write SetItem; defau

lt;

 property Props: TEnumerable<TPair<string, TValue>> read GetProps;

end;

Person := Manager.Find<TPerson>(PersonId);

Person.Props['Extra'] := 'Some value';

Manager.Flush;

ExtraValue := Person.Props['Extra'];

TMS Aurelius 5.11 Page 102 of 269

The same applies to blob properties, which must be of type TBlob:

Dynamic blob properties can also be lazy-loaded just as any regular blob property.

Dynamic Properties in Queries and Datasets

When it comes to queries and datasets, dynamic properties behave exactly as regular properties.

In queries, they are accessed by name as any other query. So for example the following query:

will list all people with HairStyle equals to "Long" and Extra containing "value", ordered by Extra.

No special treatment is required, and the query doesn't care if HairStyle or Extra are dynamic or

regular properties.

The same applies to the TAureliusDataset. The dynamic properties are initialized in fielddefs as

any other property, and can be accessed through dataset fields:

Person := TPerson.Create;

Person.Props['HairStyle'] := TValue.From<THairStyle>(THairStyle.Long);

Manager.Save(Person);

PersonHairStyle := Person.Props['HairStyle'].AsType<THairStyle>;

var

 Blob: TBlob;

begin

 // Saving a blob

 Blob.LoadFromStream(SomeStream);

 Person.Props['Photo'] := TValue.From<TBlob>(Blob);

 Manager.SaveOrUpdate(Person);

 // Reading a blob

 Blob := Person.Props['Photo'].AsType<TBlob>;

 Blob.SaveToStream(MyStream);

Results := Manager.Find<TPerson>

 .Where(

 (Linq['HairStyle'] = THairStyle.Long) and

 Linq['Extra'].Like('%value%')

)

 .AddOrder(TOrder.Asc('Extra'))

 .List;

TMS Aurelius 5.11 Page 103 of 269

// DS: TAureliusDataset;

DS.Manager := Manager;

Person := TPerson.Create;

DS.SetSourceObject(Person);

DS.Open;

DS.Edit;

DS.FieldByName('Name').AsString := 'Jack';

DS.FieldByName('Extra').AsString := 'extra value';

// Enumerated types are treated by its ordinal value in dataset

DS.FieldByName('HairStyle').AsInteger := Ord(THairStyle.Short);

// use BlobField as usual

BlobField := DS.FieldByName('Photo') as TBlobField;

TMS Aurelius 5.11 Page 104 of 269

Manipulating Objects
This chapter explains how to manipulate objects. Once you have properly connected to the

database and configure all mapping between the objects and the database, it's time for the real

action. The following topics explain how to save, update, delete and other topics about dealing

with objects. Querying objects using complex criteria and projections is explained in a specific

chapter only for queries.

Object Manager
The Object Manager is implemented by the TObjectManager class which is declared in unit

Aurelius.Engine.ObjectManager :

It's the layer between your application and the database, providing methods for saving, loading,

updating, querying objects. It performs memory management, by controlling objects lifetime

cycle, destroying them when they are not needed anymore, and caching objects by using

identity mappings to ensure a single object is not loaded twice in the same manager.

The Object Manager also keeps tracking of changes in objects - you can update the content of

objects (change properties, add associations, etc.) and then call Flush method to ask the object

manager to update all object changes in the database at once.

The list below is a quick reference for the main methods and properties provided by

TObjectManager object. A separate topic is provided for each method listed below.

Creating a new object manager

Directly create a TObjectManager instance, passing the IDBConnection interface that represents a

database connection:

Alternatively, you can also pass a TMappingExplorer instance, which holds a mapping model

different than the default.

uses

 {...}, Aurelius.Engine.ObjectManager;

Manager := TObjectManager.Create(MyConnection);

try

 // perform operations with objects

finally

 Manager.Free;

end;

Manager := TObjectManager.Create(MyConnection, MyMappingExplorer);

// or

Manager := TObjectManager.Create(MyConnection, TMappingExplorer.Get('MyModel'));

TMS Aurelius 5.11 Page 105 of 269

Save method

Use it to save (insert into database) new entity objects:

Update method

Use it to including a transient into the manager. To effectively persist updates, you need to call

Flush method.

SaveOrUpdate method

Use it to save or update an object depending on the Id specified in the object (update if there is

an Id, save it otherwise):

Flush method

Performs all changes made to the managed objects, usually to update objects.

Flush method for single entity

Commit to the database changes made to a single object - it's an overloaded version of Flush

method that receives an object:

Customer := TCustomer.Create;

Customer.Name := 'TMS Software';

Manager.Save(Customer);

Customer := TCustomer.Create;

Customer.Id := 10;

Customer.Email := 'customer@company.com';

Manager.Update(Customer);

Customer.LastName := 'Smith';

Manager.SaveOrUpdate(Customer);

Customer1 := Manager.Find<TCustomer>(1);

Customer2 := Manager.Find<TCustomer>(2);

Customer1.Email := 'company@address.com';

Customer2.City := 'Miami';

// Update Customer1 e-mail and Customer2 city in database

Manager.Flush;

TMS Aurelius 5.11 Page 106 of 269

Merge method

Use it to merge a transient object into the object manager and obtain the persistent object.

In the example above, Merge will look in the cache or database for a TCustomer with id equals to

12. If it's not found, an exception is raised. If found, it will update the cached customer object

with the new information and return a reference to the cached object in ManagedCustomer.

Customer reference will still point to an unmanaged object, so two instances of TCustomer will

be in memory.

Replicate method

The Replicate method behaves exactly the same as the merge method above. The only difference

is that, in the example above, if no Customer with id 12 is found in the database, instead of

raising an exception, Replicate will create the new customer with that id.

Find method

Use Find method to retrieve an object given its Id:

The id value is a variant type and must contain a value of the same type of the class Identifier

(specified with the Id attribute). For example, if the identifier is a string type, id value must be a

variant containing a string. For classes with composite id, a variant array of variant must be

specified with all the values of the id fields.

You can alternatively use the non-generic overload of Find method. It might be useful for

runtime/dynamic operations where you don't know the object class at the compile time:

Customer1 := Manager.Find<TCustomer>(1);

Customer2 := Manager.Find<TCustomer>(2);

Customer1.Email := 'company@address.com';

Customer2.City := 'Miami';

// Update Customer1 e-mail - Customer2 changes are not persisted

Manager.Flush(Customer1);

Customer := TCustomer.Create;

Customer.Id := 12;

Customer.Name := 'New name';

ManagedCustomer := Manager.Merge<TCustomer>(Customer);

Customer := Manager.Find<TCustomer>(CustomerId);

Customer := Manager.Find(TCustomer, CustomerId);

TMS Aurelius 5.11 Page 107 of 269

Remove method

Use it to remove the object from the persistence (i.e., delete it from database and from object

manager cache).

Find<T> method

Use Find<T> to create a new query to find objects based on the specified criteria.

CreateCriteria<T> method

CreateCriteria is just an alias for Find<T> method. Both are equivalent:

Evict method

Use to evict (dettach) an entity from the manager:

IsAttached method

Checks if the specified object instance is already attached (persistent) in the object manager.

FindCached<T> method

Use FindCached method to retrieve an object from the manager's cache, given its Id.

This method is similar to Find method but the difference is that if the object is not in manager

cache, Aurelius will not hit the database to retrieve the objec - instead, it will return nil. Because

of that, this method should be used only to check if the object is already in the manager - it's not

useful to retrieve data from database.

CustomerToRemove := Manager.Find<TCustomer>(CustomerId);

Manager.Remove(CustomerToRemove);

Results := Manager.Find<TTC_Customer>

 .Where(Linq['Name'] = 'Mia Rosenbaum')

 .List;

Results := Manager.CreateCriteria<TTC_Customer>

 .Where(Linq['Name'] = 'Mia Rosenbaum')

 .List;

Manager.Evict(Customer);

if not Manager.IsAttached(Customer) then

 Manager.Update(Customer);

Customer := Manager.FindCached<TCustomer>(CustomerId);

TMS Aurelius 5.11 Page 108 of 269

You can alternatively use the non-generic overload of FindCached method. It might be useful for

runtime/dynamic operations where you don't know the object class at the compile time:

IsCached<T> method

Checks if an object of the specified class with the specified id is already loaded in the object

manager.

You can use the non-generic version as well:

HasChanges method

Checks if a call to Flush will result in database operations. In other words, verifies if any object in

the manager was modified since it was loaded from the database. HasChanges checks not only if

properties were modified but also if any lists of the object has been modified (an item was

added or removed).

HasChanges checks for any change in all objects in manager. You can use an overload that

receives an object as parameter, to check if that specific entity was modified:

OwnsObjects property

If true (default), all managed objects are destroyed when the TObjectManager object is

destroyed. If false, the objects remain in memory.

Customer := Manager.FindCached(TCustomer, CustomerId);

if not Manager.IsCached<TCustomer>(CustomerId) then

 ShowMessage('Not loaded');

if not Manager.IsCached(TCustomer, CustomerId) then

 ShowMessage('Not loaded');

Customer := Manager.Find<TCustomer>(1);

Customer.Email := 'company@address.com';

if Manager.HasChanges then

 // code will enter here as Email was changed

if Manager.HasChanges(Customer) then // only checks for changes in Customer

Customer := Manager.Find<TCustomer>(CustomerId);

Manager.OwnsObjects := false;

Manager.Free;

// Customer object is still available after Manager is destroyed

TMS Aurelius 5.11 Page 109 of 269

ProxyLoad and BlobLoad methods

Use to load a proxy object (or blob) based on meta information (see Lazy-Loading with JSON for

more information).

UseTransactions property

When true, all internal operations peformed by the object manager (Save, Update, Merge,

Remove, etc.) as enclosed between transactions (it means if no transaction is active, the manager

will create one just for the operation, then later commit). This is needed because even a single

manager operation can perform several SQL statements in the database (due to cascades for

example).

If false, the manager won't create new transactions, and it's up to you to make sure that a

transaction is active, otherwise if the internal process fails, some records might become updated

in the database, while others don't.

The default value of this property is controlled globally by the TGlobalConfiguration object.

DeferDestruction property

When true, all manager operations that destroy objects, such as Remove, will not immediately

destroy them, but instead hold them in an internal list to be destroyed when the object manager

is destroyed.

This can be useful if you still have references to the removed object in places like lists or

datasets, and such references might still be used until manager is destroyed. This sometimes

avoids invalid pointer operations and access violations caused by referencing those destroyed

instances.

For backward compatibility, default value is false.

TAureliusManager Component
The TAureliusManager component is a non-visual, design-time component that encapsulates the

TObjectManager class, used to persist and retrieve objects in database.

TAureliusManager and TObjectManager have equivalent functionality, the main purpose for

TAureliusManager component is to provide an alternative RAD approach: instead of instantiating

a TObjectManager from code, you just drop a TAureliusManager component, connects it to a

TAureliusConnection component, and you are ready to go.

function ProxyLoad(ProxyInfo: IProxyInfo): TObject;

function BlobLoad(BlobInfo: IBlobInfo): TArray<byte>;

TMS Aurelius 5.11 Page 110 of 269

Key properties

Name Description

Connection:

TAureliusConnection

Specifies the TAureliusConnection component to be used as the

database connection. Any persistence operation performed by the

manager will use the connection provided by the TAureliusConnection

component.

TAureliusConnection acts as a connection pool of one single

connection: it will create a single instance of IDBConnection and any

manager using it will use the same IDBConnection interface for the life

of the TAureliusConnection component.

The IDBConnection interface will be passed to the TObjectManager

constructor to create the instance that will be encapsulated.

ModelName: string The name of the model to be used by the manager. You can leave it

blank, if you do it will use the default model. From the model name it

will get the property TMappingExplorer component that will be

passed to the TObjectManager constructor to create the instance that

will be encapsulated.

ObjManager:

TObjectManager

The encapsulated TObjectManager instance used to perform the

database operations.

Usage

As mentioned, TAureliusManager just encapsulates a TObjectManager instance. So for all

functionality (methods, properties), just refer to TObjectManager documentation and related

topics that explain how to save objects, update them, retrieve, querying, etc.

The encapsulated object is available in property ObjManager. If you miss any specific method or

property in TAureliusManager, you can simply fall back to ObjManager instance and use it from

there. For example, the following methods are equivalent:

Actually effectively, the first method is just a wrapper for the second one. Here is how

TAureliusManager.Save method is implemented, for example:

AureliusManager1.Save(Customer);

AureliusManager1.ObjManager.Save(Customer);

procedure TAureliusManager.Save(Entity: TObject);

begin

 ObjManager.Save(Entity);

end;

TMS Aurelius 5.11 Page 111 of 269

TObjectManager memory management

All entities are managed inside the TObjectManager instance, using the regular memory

management mechanism of such class. The only thing you should be aware is the lifecycle of the

TObjectManager instance itself:

The TObjectManager instance will be created on demand, i.e., when TAureliusManager is

created, the TObjectManager is not yet created. It will only be instantiated when needed;

If the connection or model name is changed, the encapsulated TObjectManager instance

will be destroyed (and as a consequence all entities managed by it). A new

TObjectManager instance will be created with the new connection/model, when needed.

Memory Management
Entity objects are saved and loaded to/from database using a TObjectManager object, which

provides methods and properties for such operations. All entity objects cached in

TObjectManager are managed by it, and you don't need to free such objects (unless you set

OwnsObjects property to False). Also, entity objects retrieved from database, either loading by

identifier or using queries, are also managed by the TObjectManager.

Concept of object state

In Aurelius when an object is told to be persistent (or cached, or managed) it means that the

TObjectManager object is aware of that object and is "managing" it. When TObjectManager

loads any object from the database, the object instances created in the loading process are

persistent. You can also turn objects into persistent object when you for example call Save,

Update or Merge methods.

When the TObjectManager is not aware of the object, the object is told to be transient (or

uncached, or unmanaged).

Don't confuse a transient object with an object that is not saved into the database yet. You might

have a TCustomer object which has been already saved in the database, but if the TCustomer

instance you have is not being managed by the TObjectManager, it's transient.

Also, don't confuse persistent with saved. A persistent object means that TObjectManager is

aware of it and it's managing it, but it might not be saved to the database yet.

Object lists

It's important to note that when retrieving object lists from queries, the list itself must be

destroyed, although the objects in it are not. Note that when you use projections in queries, the

objects returned are not entity objects, but result objects. In this case the objects are not

managed by the object manager, but the list retrieved in result queries have their OwnsObjects

set to true, so destroying the list will destroy the objects as well.

•

•

TMS Aurelius 5.11 Page 112 of 269

Unique instances

When dealing with entity objects (saving, loading, querying, etc.), object manager keeps an

internal Identity Map to ensure that only one instance of each entity is loaded in the

TObjectManager object. Each entity is identified by it's Id attribute. So for example, if you

execute two different queries using the same object manager, and the query returns the same

entity (same id) in the queries, the object instance in the both queries returned will be the same.

The object manager will not create a different object instance every time you query the object. If

you use a different TObjectManager object for each query, then you will have different instances

of the same entity object

Manually adding ownership

The manager owns all entity objects it manages, in other words, which are persisted. But

sometimes you want to tell the manager to own an object even before a persistence operation,

using the AddOwnership method. This is very common when using the Save method. The

object passed to Save will only be owned by the manager if the operation is successful. If the

operation fails, you would have to manually destroy it.

To improve this workflow, you can explicitly tell the manager to own the entity to be saved in

advance, so regardless if the Save method fails, or not, the manager will always destroy the

object:

Examples

The code snippets below illustrates several the different situations mentioned above.

Saving objects

Loading objects

Customer := TTC_Customer.Create;

Customer.Name := 'Customer Name';

// Tell the manager to destroy Customer

ObjectManager1.AddOwnership(Customer);

// Customer will always be destroyed even

// if Save fails

ObjectManager1.Save(Customer);

Customer := TTC_Customer.Create;

Customer.Name := 'Customer Name';

ObjectManager1.Save(Customer);

// From now on, you don't need to destroy Customer object anymore

// It will be destroyed when ObjectManager1 is destroyed

TMS Aurelius 5.11 Page 113 of 269

Retrieving entities from queries

Retrieving projected query results

Using unmanaged objects

If for some reason you want to keep object instances available even after the object manager is

destroyed (for example, after a query, you want to destroy object manager but keep the returned

objects in memory), then just set the TObjectManager.OwnsObjects property to false:

Customer := Manager1.Find<TCustomer>(CustomerId);

Customer2 := Manager1.Find<TCustomer>(CustomerId);

// Since CustomerId is the same for both queries, the same instance will be

// returned in Customer and Customer2 (Customer = Customer2), and you don't

// need to destroy such instance, it's manager by Manager1.

Results := Manager.Find<TCustomer>

 .Add(Linq['Name'] = 'TMS Software')

 .List;

Results.Free;

// Results is a TObjectList<TCustomer> object that needs to be destroyed

// However, the object instances it holds are not destroyed and are kept

// in Manager cache. The instances are also ensured to be unique in Manager

context

Results := Manager.Find<TTC_Estimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Sum('EstimateNo'))

 .Add(TProjections.Group('c.Name'))

)

 .ListValues;

Results.Free;

// In this case the query does not return entity objects, but result objects

(TCriteriaResult)

// Such result objects are not managed by TObjectManager. However, in this case,

// The Results object list is returned with its OwnsObjects property set to true.

Thus, when

// you destroy Results object, the TCriteriaResult objects it holds will also be

destroyed.

Manager.OwnsObjects := false;

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'] = 'TMS Software')

 .List;

Manager.Free;

// Now although Manager object was destroyed, all objects in Results list

// will be kept in memory, EVEN if you destroy Results list itself later.

TMS Aurelius 5.11 Page 114 of 269

Saving Objects
Using TObjectManager you can save (insert) objects using Save method. It is analog to SQL

INSERT statement - it saves the object in database.

The identifier of the object (mapped using Id attribute) must not have a value, otherwise an

exception will be raised - unless the generator defined in Id attribute is TIdGenerator.None. In this

case, you must manually provide the id value of the object, and so of course Aurelius will accept

an object with an id value. But you must be sure that there are no objects in the database with

the same id value, to avoid duplicate values in the primary key.

When saving an object, associations and items in collections might be saved as well, depending

on how cascade options are set when you defined the Association and ManyValuedAssociation

attribute. In the example below, customer is defined to have SaveUpdate cascade. It means that

when invoice is saved, the customer is saved as well, before the invoice.

You can also use SaveOrUpdate method to save objects. The difference from Save is that if the

object has an id value set, SaveOrUpdate will internally call Update method instead of Save

method. So, if you use TIdGenerator.None in the Id attribute of your object class, SaveOrUpdate

will not work.

Updating Objects - Flush
You modify objects using the TObjectManager method Flush. The state of all objects persisted in

object manager is tracked by it. Thus, if you change any property of any object after it's loaded

by the database, those changes will be updated to the database when Flush method is called.

Consider the example below:

Customer1 := TCustomer.Create;

Customer1.Name := 'John Smith';

Customer1.Sex := tsMale;

Customer1.Birthday := EncodeDate(1986, 1, 1);

Manager1.Save(Customer1);

Customer := TTC_Customer.Create;

Customer.Name := 'Customer Name';

Invoice := TTC_Invoice.Create;

Invoice.InvoiceType := 999;

Invoice.InvoiceNo := 123456;

Invoice.Customer := Customer;

Invoice.IssueDate := Date;

Manager1.Save(Invoice);

Customer1 := Manager1.Find<TCustomer>(CustomerId);

Customer1.Email := 'newemail@domain.com';

Customer2 := Manager1.Find<TCustomer>(Customer2Id);

Customer2.Email := 'another@email.com';

Manager1.Flush;

TMS Aurelius 5.11 Page 115 of 269

The Flush method will detect all objects which content has been changed since they were

loaded, and then update them all in the database. In the example above, both customers 1 and 2

will have their e-mail changed.

It's possible that, by any reason, you want to update a detached object, in other words, an object

that is not being tracked (persisted) by the manager. This might happen, for example, if you

loaded an object with the manager, then destroyed the manager but kept the object reference

(using TObjectManager.OwnsObjects = false). Or, for example, if you created the object instance

yourself, and set its id property to a valid value. In this case the object is not in the manager, but

you want to update the database using the object you have.

In this case, you can use Update method. This method will just take the passed transient instance

and attach it to the TObjectManager. Then when you later call Flush, the changes will be

persisted to the database. Note that when you call Update, no data is retrieved from the

database. This means that the object manager doesn't know the original state of the object (data

saved in database). The consequence is that all properties of the object passed to Update

method will later be saved to the database when Flush is called. So you must be sure that all the

persistent properties of the object have the correct value to be saved to the database.

In the example above, a TCustomer object was loaded in Manager1. It's not attached to

Manager2. When Update method is called in Manager2, all data in Customer2 object will be

updated to the database, and it will become persistent in Manager2.

The cascades defined in Association attributes in your class are applied here. Any associated

object or collection item that has TCascadeType.SaveUpdate defined will also be updated in

database.

Merging

If you call Update method passing, say, Object1, but there was already another object attached to

the TObjectManager with the same id (Object2), an exception will be raised. In this case, you can

use Merge method to merge a transient object ("outside" the manager) into a persistent object

("inside" the manager).

Flushing a single object

Calling Flush might be slow if you have many entities in the manager. Flush will iterate through

all entities and check if any of them is modified - and persist changes to the database.

Alternatively, you can flush a single entity by using an overloaded version of Flush that receives a

single object:

Customer2 := Manager1.Find<TCustomer>(Customer2Id);

Manager1.OwnsObjects := false;

Manager1.Free;

Customer2.Name := 'Mary';

Customer2.Sex := tsFemale;

Manager2.Update(Customer2);

Manager2.Flush;

TMS Aurelius 5.11 Page 116 of 269

In the example above, only changes made to Customer1 will be persisted. Customer2 changes

will still be in memory only, and you would have to call Flush or Flush(Customer2) to persist the

changes. This gives you finer control over what should be persisted and helps you increase

performance of your code.

You must be careful, though, about associated objects. When you call Flush without specifying

an object you are safe that all changes in the manager are persisted. You flushing a single object,

associated objects might be flushed or not, depending on how the cascade options are set for

that Association (or Many-Valued Association). If the association includes the

TCascadeType.Flush, then it will also be flushed.

Merging/Replicating Objects
When you use Update method in a TObjectManager object, there should be no managed object

with same Id in the object manager, otherwise an exception is raised. You can avoid such

exception using the Merge or Replicate methods. These methods behave almost exactly the

same, and will take a transient instance and merge it into the persistent instance. In other words,

all the content of the transient object will be copied to the persistent object. Note that the

transient object will continue to be transient.

If there is no persistent object in the object manager with the same id, the object manager will

load an object from the database with the same id of the transient object being merged.

If the object has an id and no object is found in the database with that id, the behavior depends

on the method called (and that is the only difference between Merge and Replicate methods):

if Merge method was called, an exception will be raised;

if Replicate method was called, a new object with the specified id will be saved (inserted).

In the example above, a TCustomer object was created and assigned an existing id. When calling

Merge method, all data in Customer2 will be copied to the persistent object with same id in

Manager2. If no persistent object exists in memory, it will be loaded from the database.

Customer2 variable will still reference a transient object. The result value of Merge/Replicate

method is a reference to the persistent object in the object manager.

Customer1 := Manager1.Find<TCustomer>(CustomerId);

Customer1.Email := 'newemail@domain.com';

Customer2 := Manager1.Find<TCustomer>(Customer2Id);

Customer2.Email := 'another@email.com';

Manager1.Flush(Customer1);

•

•

Customer2 := TCustomer.Create;

Customer2.Id := Customer2Id;

Customer2.Name := 'Mary';

Customer2.Sex := tsFemale;

MergedCustomer := Manager2.Merge<TCustomer>(Customer2);

Manager2.Flush;

TMS Aurelius 5.11 Page 117 of 269

If the transient object passed to Merge/Replicate has no id, then a Save operation takes place.

Merge/Replicate will create a new internal instance of object, copy all the contents from the

passed object to the internal one, and Save (insert) the newly created object. Again, the object

returned by Merge/Replicate is different from the one passed. Take a look at the following

example:

In the example above, NewCustomer doesn't have an id. In this case, Merge/Replicate will create

a new customer in database, and return the newly created object. MergedCustomer points to a

different instance than NewCustomer. MergedCustomer is the persistent one that is tracked by

the object manager (and will be destroyed by it when manager is destroyed). NewCustomer

continues to be a transient instance and must be manually destroyed.

Note that Merge/Replicate does nothing in the database in update operations - it just updates

the persistent object in memory. To effectively update the object in the database you should

then call Flush method. The only exception is the one described above when the object has no

id, or when Replicate saves a new object with existing id. In those cases, a Save (insert) operation

is performed immediately in the database.

The cascades defined in Association and ManyValuedAssociation attributes in your class are

applied here. Any associated object or collection item that has TCascadeType.Merge defined will

also be merged/replicated into the manager and the reference will be changed. For example, if

Customer has a Country property pointing to a transient TCountry object, The TCountry object

will me merged, a new instance will be returned from the merging process, and

Customer.Country property will be changed to reference the new instanced returned by the

merging process.

Removing Objects
You can remove an object from the database using Remove method from a TObjectManager

object. Just pass the object that you want to remove. The object must be attached to the object

manager.

The cascades defined in Association and ManyValuedAssociation attributes in your class are

applied here. Any associated object or collection item with delete cascade will also be removed

from database.

The object passed to Remove method will eventually be destroyed. If

TObjectManager.DeferDestruction property is false (default), the object will be destroyed

immediately. If it's true, object will be destroyed when the manager is destroyed.

NewCustomer := TCustomer.Create;

NewCustomer.Name := 'John';

MergedCustomer := Manager2.Replicate<TCustomer>(NewCustomer);

// MergedCustomer <> NewCustomer! NewCustomer must be destroyed

Customer1 := Manager1.Find<TCustomer>(CustomerId);

Manager1.Remove(Customer1);

TMS Aurelius 5.11 Page 118 of 269

Finding Objects
You can quickly find (load) objects using Find method of TObjectManager. You just need to pass

the Id of the object, and object manager will retrieve the instance of the object loaded in

memory. If the object is not attached to the object manager (not in memory), then it tries to load

the object from database. If there is no object (record) in the database with that Id, it returns nil.

The associations will be loaded depending on how the fetch mode was defined in Association

attribute. They will be loaded on the fly or on demand, depending if they are set as lazy-loaded

associations or not.

If you want to retrieve several objects of a class from the database using some criteria (filtering,

ordering), just use Find without parameter, it will return a Criteria object which you can use to

add filters, ordering and later retrieve the results:

Aurelius is very powerful on querying capabilities. There is a full chapter explaining how to

perform Aurelius queries.

Refreshing Objects
You can refresh an object using Refresh method from a TObjectManager object. Just pass the

object that you want to refresh. The object must be attached to the object manager.

Refresh method performs operates almost the same way as Find method. The main difference is

that Find method only create new instances that don't exist in the manager and if the instance

already exists, it's left untouched. Refresh method, instead, will perform the SELECT statement in

the database no matter what, and if the instances already exist in manager, it will update its

properties and associations with data retrieved from the database, discarding the existing values

in memory, if different.

Note existing transient associations will NOT be destroyed. For example, consider the following

code:

Customer1 := Manager1.Find<TCustomer>(CustomerId);

// Customer1 has an instance to the loaded customer object.

var

 Customers: TList<TCustomer>;

begin

 Customers := Manager1.Find<TCustomer>.List;

 // Take just the first 10 customers ordered by name

 Customers := Manager1.Find<TCustomer>.Take(10).OrderBy('Name').List;

Manager1.Refresh(Customer1);

Customer1 := Manager.Find<TCustomer>(1);

NewCountry := TCountry.Create;

Customer1.Country := NewCountry;

Manager.Refresh(Customer1);

TMS Aurelius 5.11 Page 119 of 269

In the code above a TCustomer instance is loaded from the database, and its Country property is

updated to point to a transient TCountry reference. When Refresh method is called, Customer1

properties will be reloaded from the database, and thus Country property will point again to the

original TCountry instance in the manager (or nil if there is no country associated with he

customer). However, the instance referenced by NewCountry will not be destroyed. It's up to you

to destroy the transient instances unreferenced by Refresh method.

The cascades defined in Association and ManyValuedAssociation attributes in your class are

applied here. Any associated object or collection item with Refresh cascade will also have its

properties refreshed.

Evicting Objects
In some situations you want to remove (dettach) an object from the TObjectManager, but

without deleting it from database (so you can't use Remove method) and without destroying the

instance.

To do that, you can use Evict method. Just pass the object that you want to evict. If the object is

not attached to the manager, no operation is performed.

The cascades defined in Association and ManyValuedAssociation attributes in your class are

applied here. Any associated object or collection item with cascade option including

TCascadeType.Evict will also be evicted (dettached) from the manager.

Note that since the object is not in the manager anymore, you must be sure to destroy it (unless

of course you attach it to another manager using for example Update method). Also pay

attention to associated objects. If TCascadeType.Evict is defined for associated objects, they will

also be evicted and must be destroyed as well.

Transaction Usage
You can use transactions when manipulating objects, so that you make sure all operations under

the transaction are performed successfully (commit) or anything is reverted (rollback). Usage is

simple and is done pretty much the same way you would do when accessing a database in a

traditional way.

The transactions are started under the IDBConnection interface context. You can start a

transaction using IDBConnection.BeginTransaction method, which will return a IDBTransaction

interface. The IDBTransaction in turn has only two methods: Commit and Rollback.

Manager1.Evict(Customer1);

TMS Aurelius 5.11 Page 120 of 269

Transactions in Aurelius can be nested. This means that if a transaction was already started in

IDBConnection but not commited or rolled back yet, creating a new transaction and commiting

or rolling it back has no effect. For example:

Concurrency Control
When working with multiple users/clients, it might be possible that two or more users try to

change the same entity (records in database). TMS Aurelius provides some mechanisms to avoid

problems in those situations.

Changed fields

When updating objects, Aurelius detects which property have changed since the entity was

loaded from the database in the manager, and it only updates those columns in the database.

For example, suppose two users load the same TCustomer (with same id) from the database at

the same time:

Now first user changes customer's city and update, and second user changes customer's

document and update:

uses {...}, Aurelius.Drivers.Interfaces;

var

 Transaction: IDBTransaction;

begin

 Transaction := Manager.Connection.BeginTransaction;

 try

 { Perform manager operations }

 Transaction.Commit;

 except

 Transaction.Rollback;

 raise;

 end;

end;

OuterTransaction := Manager.Connection.BeginTransaction;

InnerTransaction := Manager.Connection.BeginTransaction;

InnerTransaction.Commit; // This has NO effect, the same for rollback.

OuterTransaction.Commit; // Commit (or Rollback) is effectively performed here

// User1

User1Customer := Manager1.Find<TCustomer>(1);

// User2

User2Customer := Manager2.Find<TCustomer>(1);

TMS Aurelius 5.11 Page 121 of 269

Here are the SQL executed by Aurelius for each user (SQL were simplified for better

understanding, the actual SQL uses parameters):

Even if TCustomer class has lots of customer, and some properties might be outdated in

memory, it doesn't cause any trouble or data loss here, because only changed data will be

commited to the database. In the end, the TCustomer object in database will have both the new

city and new document correct.

This is a basic mechanism that solves concurrency problems in many cases. If it's not enough,

you can use entity versioning.

Entity Versioning

It might be possible that two users change the exactly same property, in this case, one of the

users will "lose" their changes, because it will be overwritten by the other user. Or some other

types of operations are performed where all fields are updated (when entity is put in manager

without being loaded from database for example, so the manager can't tell which properties

were changed).

Or maybe you just need to be sure that the object being updated needs to hold the very latest

data. A typical case is where you are updating account balance or inventory records, so you

increment/decrement values and need to ensure that no other user changed that data since you

loaded.

In this case, you can use entity versioning. To accomplish this, you just need to create an extra

integer property in the class, map it (so it's persisted in database) and add the [Version] attribute

to it:

// User1

User1Customer.City := 'New City';

Manager1.Flush;

// User2

User2Customer.Document := '012345';

Manager2.Flush;

-- User1:

Update Customer

Set City = 'New City'

Where Id = 1

-- User2:

Update Customer

Set Document = '012345'

Where Id = 1

TMS Aurelius 5.11 Page 122 of 269

And that's it. Once you do this, Aurelius will make sure that if you update (or delete) an entity,

data it holds is the very latest one. If it's not, because for example another user changed the

database record in the meanwhile, an exception will be raised and then you can decide what to

do (refresh the object for example).

Let's take a look at how it works. First, two users load the same object at the same time:

Then User1 updates customer:

This is the SQL executed by Aurelius:

Record is changed successfully because the current version in database is 1, so the actual record

is updated.

Now, if User2 tries to update the old customer:

Aurelius tries to execute the same SQL:

[Entity, Automapping]

TCustomer = class

private

 FId: Integer;

 FName: String;

 {...}

 [Version]

 FVersion: Integer;

 {...}

end;

// User1

User1Customer := Manager1.Find<TCustomer>(1);

// User1Customer.Version is 1

// User2

User2Customer := Manager2.Find<TCustomer>(1);

// User2Customer.Version is 1

User1Customer.City := 'New City';

User1Customer.Flush;

// User1Customer.Version becomes 2 (also in database)

Update Customer

Set City = 'New City', Version = 2

Where Id = 1 and Version = 1

// User2Customer.Version is still 1!

User2Customer.City := 'Another city';

User2Customer.Flush;

TMS Aurelius 5.11 Page 123 of 269

However this will fail, because the version in the database is not 1 anymore, but 2. Aurelius will

detect that no records were affected, and will raise an EVersionedConcurrencyControl exception.

Cached Updates
When persisting objects by calling object manager methods like Save, Flush or Remove, the

manager will immediately perform SQL statements to reflect such changes in the database. For

example, calling this:

Will immediately execute the following SQL statement in the database:

With cached updates feature, you have the option to defer the execution of all SQL statements

to a later time, when you call ApplyUpdates method. This is enabled by setting CachedUpdates to

true. Take the following code as an example:

This code should perform the following SQL statements:

INSERT (to save the customer - see "exceptions" below);

UPDATE (to modify the status field of the invoice);

DELETE (to delete the city).

However, all the statements will be executed one after another, when ApplyUpdates is called.

Exceptions

There are exceptions for this rule. When the id value of an entity is generated by the database

during an INSERT statement, then the INSERT SQL statement will be executed immediately. So

for example, the statement below:

Update Customer

Set City = 'Another City', Version = 2

Where Id = 1 and Version = 1

Manager.Remove(Customer);

DELETE FROM CUSTOMERS WHERE ID = :id

Manager.CachedUpdates := True;

Manager.Save(Customer);

Invoice.Status := isPaid;

Manager.Flush(Invoice);

WrongCity := Manager.Find<TCity>(5);

Manager.Remove(City);

Manager.ApplyUpdates;

1.

2.

3.

Manager.Save(Customer);

TMS Aurelius 5.11 Page 124 of 269

Might be executed immediately, even when CachedUpdates property is true, if Customer is set to

be of type IdentityOrSequence, and the underlying database uses the identity mode (the id is

generated automatically during the INSERT statement).

Note that this doesn't apply if the database uses SEQUENCE. In other words, even if the id is of

type IdentityOrSequence, if the id is generated by reading the SEQUENCE value, then the SQL

statement used to retrieve the SEQUENCE value will be executed, but the INSERT statement will

be deferred until ApplyUpdates is called.

Cached actions

You can read the CachedCount property to know how many actions are pending and will be

applied in the next call to CachedUpdates.

Batch (Bulk) Updates
Aurelius allows you to modify data in batches. For example, suppose you want to update one

hundred customer records, modifying their phone number. With batch updates, a single SQL

statement will be executed to modify all records at once. This improves performance significantly

in such operations.

Batch updates works together with cached updates. You need to use cached updates

mechanism, then just use TObjectManager.BatchSize property to tell Aurelius the maximum

number of records that can be updated using a single SQL statement.

Consider the following code:

TotalPendingActions := Manager.CachedCount;

// Retrieve some customers from database

CustomerA := Manager.Find<TCustomer>(1);

CustomerB := Manager.Find<TCustomer>(2);

CustomerC := Manager.Find<TCustomer>(3);

// Set batch size and enable cache updates

Manager.BatchSize := 100;

Manager.CachedUpdates := True;

// Modify customer A, B and C

CustomerA.City := 'New York';

Manager.Flush(CustomerA);

CustomerB.City := 'Berlin';

Manager.Flush(CustomerB);

CustomerC.City := 'London';

Manager.Flush(CustomerC);

// Now apply updates

Manager.ApplyUpdates;

TMS Aurelius 5.11 Page 125 of 269

Aurelius will execute a single SQL statement to modify the three customers. The SQL statement

will be something like this:

And the parameter values for all records ("New York" and 1, "Berlin" and 2, "London" and 3) will

be sent at once together with the SQL statement.

Batch algorithm

Aurelius will perform the batch automatically. You can perform any actions you want. All actions

will be cached, and if the actions build SQL statement that are the same, they will be grouped

together in a batch, up until the size specified by BatchSize.

Thus, the order of actions is important. For example, if you perform:

Insert CustomerA

Modify CustomerA City

Insert CustomerB

Modify CustomerB City

No batches will be created and a SQL statement will be executed for each operation. However, if

you perform the actions this way:

Insert CustomerA

Insert CustomerB

Modify CustomerA City

Modify CustomerB City

Then two batches of size 2 will be created. A single SQL statement will be executed to insert the

two customers, and another SQL statement will be executed to modify the two customers.

Also note that the batch will be performed if all SQL statements are the same. For example, if you

modify Customer A city, and then modify Customer B name, no batch will be created. Even

though both are update actions, the first will result in a SQL statement that modifies city field,

and the other will result in a SQL statement that modifies name field.

Driver-dependent behavior

The way the statement is executed depends on the underlying driver and RDBMS being used.

Some drivers support the batch mechanism where all parameters are sent at once. Other drivers

do not support it, in this case Aurelius will simulate such batch by executing several SQL

statements using a pre-prepared one. Still it will be faster than executing a single statement for

every record.

The current drivers that support real batch updates (array DML) are:

Native Aurelius connectivity;

FireDAC;

UniDAC (except when connecting to Firedac, Interbase and NexusDB).

UPDATE Customers SET Name = :p1 WHERE Id = :p2

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 126 of 269

For all other drivers, the batch will be simulated. Note that you don't need to modify anything in

your code, regardless of the driver and the database you are using. Aurelius will work

transparently in all cases, and use the best mechanism available to perform the batch updates.

TMS Aurelius 5.11 Page 127 of 269

Queries
You can perform queries with Aurelius, just like you would do with SQL statements. The

difference is that in Aurelius you perform queries at object level, filtering properties and

associations. Most classes you need to use for querying are declared in unit

Aurelius.Criteria.Base .

Creating Queries
Queries are represented by an instance of TCriteria object. To execute queries, you just create an

instance of TCriteria object, use its methods to add filtering, ordering, projections, etc., and then

call List method to execute the query and retrieve results.

Create a new query (TCriteria instance)

Use either Find<T>, CreateCriteria<T> or CreateCriteria method of a TObjectManager instance

to create a new query instance. You must always define the class which you want to search

objects for:

or the recommended generic version, which will return a TCriteria<T> object:

Memory management

One important thing you should know: the TCriteria object instance is automatically destroyed

when you retrieve query results, either using List, ListValues, UniqueResult or UniqueValue

methods. This is done this way so it's easier for you to use the fluent interface, so you don't need

to keep instances to objects in variables and destroy them.

So be aware that you don't need to destroy the TCriteria object you created using CreateCriteria

or Find, unless for some reason you don't retrieve the query results.

If you don't want this behavior to apply and you want to take full control over the TCriteria

lifecycle (for example, you want to keep TCriteria alive for some time to add more filters

programatically), you can set TCriteria.AutoDestroy property to false (it's true by default). This

way TCriteria will not be destroyed automatically and you must destroy it at some point:

MyCriteria := Manager1.CreateCriteria(TCustomer);

MyCriteria := Manager1.Find<TCustomer>;

MyCriteria := Manager1.CreateCriteria<TCustomer>;

MyCriteria := Manager1.CreateCriteria(TCustomer);

MyCriteria.AutoDestroy := false;

// You MUST destroy MyCriteria eventually, even after retrieving results

TMS Aurelius 5.11 Page 128 of 269

Fluent Interface
The criteria objects you create implement a fluent interface. This means that most methods in

the class will return an instance of the object itself. This is just a easier way to build your queries.

So instead of building the query like this:

You can simply write it this way:

Almost all the examples in this chapter uses the fluent interface so you can fully understand how

to use it.

Retrieving Results
Usually query results are a list of objects of an specified class. You usually call List or List<T>

methods to retrieve an object list, or Open to get a fetch-on-demand cursor. If you use a list, this

will retrieve you a TList<T> object with all the queries objects. If you are sure your query will

return a single value, use UniqueResult (or UniqueValue for projections), which will return a single

instance of the object.

It's also important to know how memory management is performed with the queried objects, so

you properly know when you need to destroy the retrieved results, and when you don't. Also,

you don't need to destroy the query you created using CreateCriteria/Find, it's automatically

destroyed when you query the results.

The following topics describe different ways of retrieving the results of a query.

Retrieving an Object List

After building your query, you can use List method to retrieve filtered/ordered objects. The

method to be used depends on how you created your TCriteria object, it could be List or List<T>.

The result type will always be a TList<T> where T is the class you are filtering.

If you created the criteria using non-generic Find method, you will need to call List<T> method.

var

 Results: TObjectList<TCustomer>;

 Criteria: TCriteria<TCustomer>;

 Filter: TCustomCriterion;

begin

 Criteria := Manager1.Find<TCustomer>;

 Filter := Linq['Name'] = 'Mia Rosenbaum';

 Criteria.Add(Filter);

 Results := Criteria.List;

var

 Results: TObjectList<TCustomer>;

begin

 Results := Manager1.Find<TCustomer>

 .Add(Linq['Name'] = 'Mia Rosenbaum')

 .List;

TMS Aurelius 5.11 Page 129 of 269

If you created the generic criteria using Find<T> or CreateCriteria<T> method, just call List

method and it will return the correct object list:

Using this approach, a query will be executed, all objects will be fetched from the database,

connection will be closed and a newly created TList<T> object will be returned with all fetched

objects. You must later destroy the TList<T> object.

Unique Result

If you are sure your query will return a single value, use UniqueResult instead (or

UniqueResult<T> for non-generic criteria). Instead of a TList<T>, it will just return an instance of

TObject:

If the query returns no objects, then UniqueResult will return nil. If the query returns more than

one different object, an EResultsNotUnique exception will be raised.

Note that if the query returns more than one record, but all records relate to the same object,

then no exception will be raised, and the unique object will be returned.

var

 Results: TList<TCustomer>;

 MyCriteria: TCriteria;

begin

 MyCriteria := ObjectManager1.Find(TCustomer);

 // <snip> Build the query

 // Retrieve results

 Results := MyCriteria.List<TCustomer>;

var

 Results: TList<TCustomer>;

 MyCriteria: TCriteria<TCustomer>;

begin

 MyCriteria := ObjectManager1.Find<TCustomer>;

 // <snip> Build the query

 // Retrieve results

 Results := MyCriteria.List;

var

 UniqueCustomer: TCustomer;

 MyCriteria: TCriteria<TCustomer>;

begin

 MyCriteria := ObjectManager1.Find<TCustomer>;

 // <snip> Build the query

 // Retrieve the single result

 UniqueCustomer := MyCriteria.UniqueResult;

TMS Aurelius 5.11 Page 130 of 269

Fetching Objects Using Cursor

Alternatively to retrieve an object list, you can get results by using a cursor. With this approach,

Aurelius executes a query in the database and returns a cursor for you to fetch objects on

demand. In this case, the query will remain open until you destroy the cursor.

While this approach has the advantage to keeping a database connection alive, it takes

advantage of fetch-on-demand features of the underlying component set you are using,

allowing you to get initial results without having to fetch all the objects returned. You don't even

need to fetch all results, you can close the cursor before it. Cursor can also be used in

TAureliusDataset to make it more responsive to visual controls like DB Grids.

To obtain a cursor, use the Open method:

The Open method returns an ICriteriaCursor (or ICriteriaCursor<T>) interface which is destroyed

automatically by reference counting. The underlying TCriteria object (MyCriteria variable in the

example above) is automatically destroyed when cursor is destroyed. Since ICriteriaCursor<T>

implements GetEnumerator you can also iterate through the returned entities directly:

The ICriteriaCursor and ICriteriaCursor<T> interfaces are declared as following.

var

 MyCriteria: TCriteria<TCustomer>;

 Cursor: ICriteriaCursor<TCustomer>;

 FetchedCustomer: TCustomer;

begin

 MyCriteria := ObjectManager1.Find<TCustomer>;

 // <snip> Build the query

 // Retrieve results

 Cursor := MyCriteria.Open;

 while Cursor.Next do

 begin

 FetchedCustomer := Cursor.Get;

 // Do something with FetchedCustomer

 end;

 // No need to destroy cursor

var

 FetchedCustomer: TCustomer;

begin

 for FetchedCustomer in ObjectManager1.Find<TCustomer>.Open do

 begin

 // Do something with FetchedCustomer

 end;

TMS Aurelius 5.11 Page 131 of 269

Next method increases cursor position. If result is true, then the new position is valid and there

is an object to fetch. If result is false, there are no more objects to be fetched, and cursor must

be destroyed. It's important to note that when the cursor is open, it remains in an undefined

position. You must call Next method first, before fetching any object. If the very Next call returns

false, it means the cursor has no records.

Fetch method is used to retrieve the object in the current cursor position. If Next was never

called, or if the result of last Next call was false, Fetch will return unpredictable values. Never call

Fetch in such situation.

Get<T> method is just a strong-typed version of Fetch method.

BaseClass method returns the base class used in the criteria query. In the example above, base

class would be TCustomer.

ResultClass method returns the class of the returned objects. Usually it's the same as BaseClass,

unless in specific cases like when you are using projections, for example. In this case ResultClass

will be TCriteriaResult.

Results with Projections

If you added projections to your query, the results will not be entity objects anymore, but instead

an special object type that holds a list of values. For example, if you use sum and grouping in

your orders, you will not receive a list of TOrder objects anymore, but instead a list of values for

the sum results and grouping name.

If that's the case, you should use either:

ListValues method, if you want to retrieve an object list (this is the equivalent of List

method for entity objects);

UniqueValue method, if you want to retrieve an unique value (this is the equivalent of

UniqueResult method for entity objects);

Open method to retrieve results using a cursor. In this case, the method is the same for

either projected or non-projected queries. The only different is the type of object that will

be returned.

When using queries with projections, the object returned is a TCriteriaResult object. The

TCriteriaResult is an object that has a default property Values which you can use to retrieve the

values using an index:

ICriteriaCursor = interface

 function Next: boolean;

 function Fetch: TObject;

 function BaseClass: TClass;

 function ResultClass: TClass;

end;

ICriteriaCursor<T: class> = interface(ICriteriaCursor)

 function Get: T;

 function GetEnumerator: TEnumerator<T>;

end;

•

•

•

TMS Aurelius 5.11 Page 132 of 269

Alternatively, you can find the value by name. The name is specified by the alias of projections. If

no alias is specified, an internal autonumerated name is used.

If the property doesn't exist, an error is raised. TCriteriaResult also has an additional HasProp

method for you to check if the specified value exists. The following code contains the

TCriteriaResult public methods and properties.

var

 Results: TObjectList<TCriteriaResult>;

 MyCriteria: TCriteria<TCustomer>;

 FirstValueInFirstRecord: Variant;

begin

 MyCriteria := ObjectManager1.Find<TCustomer>;

 // <snip> Build the query and add projections to it

 // Retrieve projected results

 Results := MyCriteria.ListValues;

 FirstValueInFirstRecord := Results[0].Values[0];

uses {...}, Aurelius.Criteria.Projections,

 Aurelius.CriteriaBase, Aurelius.Criteria.Linq;

var

 Results: TObjectList<TCriteriaResult>;

begin

 Results := Manager.Find<TTC_Estimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Sum('EstimateNo').As_('EstimateSum'))

 .Add(TProjections.Group('c.Name'))

)

 .Add(Linq['c.Name'].Like('M%'))

 .OrderBy('EstimateSum')

 .ListValues;

 EstimateSum := Results[0].Values['EstimateSum'];

 CustomerName := Results[0].Values[1]; // no alias specified for c.Name

end;

TCriteriaResult = class

public

 function HasProp(PropName: string): boolean;

 property PropNames[Index: integer]: string read GetPropName;

 property Values[Index: integer]: Variant read GetValue; default;

 property Values[PropName: string]: Variant read GetPropValue; default;

 property Count: integer read GetCount;

end;

TMS Aurelius 5.11 Page 133 of 269

It's important to note that TCriteriaResult objects are not managed by the TObjectManager, so

the retrieved objects must be destroyed. When using ListValues method to retrieve the results,

the returned list is a TObjectList<T> object that already has its OwnsObjects property set to true.

So destroyed the list should be enough. When using UniqueValue or Open methods, you must

be sure to destroy the TCriteriaResult objects.

Filtering Results
You can narrow the result of your query by adding filter expressions to your query. This is similar

to the WHERE clause in an SQL statement. Any expression object descends from

TCustomCriterion, and you can use Add or Where methods to add such objects to the query:

You can add more than one expression to the query. The expression will be combined with an

"and" operator, which means only objects which satisfies all conditions will be returned (Add and

Where methods are equivalents):

Or you can simply use logical operators directly:

In the topics below you will find all the advanced features for building queries in Aurelius.

Creating Expressions Using Linq

To filter results you must add TCustomCriterion objects to the query object. The

TCustomCriterion objects just represent a conditional expression that the object must satisfy to

be included in the result. To create such objects, you can use the Linq factory. It's declared in

Aurelius.Criteria.Linq unit:

Linq variable is just a helper object with several methods (Equal, GreaterThan, etc.) that you can

use to easily create TCustomCriterion instances. For example, the following lines produce the

same object and will result in the same query:

uses {...}, Aurelius.Criteria.Linq;

Results := Manager1.Find<TCustomer>

 .Where(Linq['Name'] = 'Mia Rosenbaum')

 .List;

Results := Manager1.Find<TCustomer>

 .Add(Linq['Country'] = 'US')

 .Add(Linq['Age'] = 30)

 .List;

Results := Manager1.Find<TCustomer>

 .Where((Linq['Country'] = 'US') and (Linq['Age'] = 30))

 .List;

uses Aurelius.Criteria.Linq

TMS Aurelius 5.11 Page 134 of 269

You can always use the default indexed property passing the property name to start using

queries. That will represent a property projection:

Note that in all the methods listed here, the method can receive a string (representing a property

name) or a projection. See TProjections.Prop for more details.

You can use Linq to create the following conditions:

Equals

Retrieves a condition where the specified property (or projection) value must be equals to the

specified value or projection. You can use Equals or Eq method, or the = operator, they all do the

same.

Example - Return customers where Name property is equal to "Mia Rosenbaum".

Another way to write it:

Greater Than

Retrieves a condition where the specified property (or projection) value must be greater than the

specified value. You can use either GreatherThan or Gt method, or the > operator, they all do the

same.

Example - Return customers where Birthday property is greater than 10-10-1981 and less than

02-02-1986.

Another way to write it:

Criterion := TSimpleExpression.Create(TPropertyProjection.Create('Age'), 30, eoGr

eater));

Criterion := Linq.GreaterThan('Age', 30);

Criterion := Linq['Age'] > 30;

Linq[<propertyname>]

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'] = 'Mia Rosenbaum')

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq.Eq('Name', 'Mia Rosenbaum'))

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 (Linq['Birthday'] > EncodeDate(1981, 10, 10))

 and (Linq['Birthday'] < EncodeDate(1986, 2, 2))

)

 .List;

TMS Aurelius 5.11 Page 135 of 269

Greater Than or Equals To

Retrieves a condition where the specified property (or projection) value must be greater than or

equals to the specified value. You can use either GreaterOrEqual or Ge method, or >= operator,

they all do the same.

Example - Return customers where Birthday property is greater than or equals to 10-10-1981

and less than or equals to 02-02-1986.

Another way to write it:

Less Than

Retrieves a condition where the specified property (or projection) value must be less than the

specified value. You can use either LessThan or Lt method, or < operator, they all do the same.

Example - Return customers where Birthday property is greater than 10-10-1981 and less than

02-02-1986.

Another way to write it:

Results := Manager.Find<TCustomer>

 .Add(Linq.GreaterThan('Birthday', EncodeDate(1981, 10, 10)))

 .Add(Linq.LessThan('Birthday', EncodeDate(1986, 2, 2)))

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 (Linq['Birthday'] >= EncodeDate(1981, 10, 10))

 and (Linq['Birthday'] <= EncodeDate(1986, 2, 2))

)

 .List;

Results := Manager.Find<TCustomer>

 .Add(Linq.GreaterOrEqual('Birthday', EncodeDate(1981, 10, 10)))

 .Add(Linq.LessOrEqual('Birthday', EncodeDate(1986, 2, 2)))

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 (Linq['Birthday'] > EncodeDate(1981, 10, 10))

 and (Linq['Birthday'] < EncodeDate(1986, 2, 2))

)

 .List;

Results := Manager.Find<TCustomer>

 .Add(Linq.GreaterThan('Birthday', EncodeDate(1981, 10, 10)))

 .Add(Linq.LessThan('Birthday', EncodeDate(1986, 2, 2)))

 .List;

TMS Aurelius 5.11 Page 136 of 269

Less Than Or Equals To

Retrieves a condition where the specified property (or projection) value must be less than or

equals to the specified value. You can use either LessOrEqual or Le method, or <= operator, they

all do the same.

Example - Return customers where Birthday property is greater than or equals to 10-10-1981

and less than or equals to 02-02-1986.

Another way to write it:

Like

Retrieves a condition where the specified property (or projection) value contains the text

specified. It's equivalent to the LIKE operator in SQL statements. You must specify the wildchar %

in the value condition.

Example - Return customers where Sex property is not null, and Name starts with "M".

Another write to write it:

ILike

Retrieves a condition where the specified property (or projection) value contains the text

specified, case insensitive. It's equivalent to the ILIKE operator in SQL statements. You must

specify the wildchar % in the value condition.

Results := Manager.Find<TCustomer>

 .Where(

 (Linq['Birthday'] >= EncodeDate(1981, 10, 10))

 and (Linq['Birthday'] <= EncodeDate(1986, 2, 2))

)

 .List;

Results := Manager.Find<TCustomer>

 .Add(Linq.GreaterOrEqual('Birthday', EncodeDate(1981, 10, 10)))

 .Add(Linq.LessOrEqual('Birthday', EncodeDate(1986, 2, 2)))

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 Linq['Sex'].IsNotNull and Linq['Name'].Like('M%')

)

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 Linq.IsNotNull('Sex') and Linq.Like('Name', 'M%')

)

 .List;

TMS Aurelius 5.11 Page 137 of 269

Example - Return customers where Sex property is not null, and Name starts with "M" (or "m", it's

case insensitive).

Another write to write it:

IsNull

Retrieves a condition where the specified property (or projection) contains a null value.

Example - Return customers where Sex property is female, or Sex property is null.

Another way to write it:

IsNotNull

Retrieves a condition where the specified property (or projection) does not contain a null value.

Example - Return customers where Sex property is not null, and Name starts with "M".

Another way to write it:

Results := Manager.Find<TCustomer>

 .Where(

 Linq['Sex'].IsNotNull and Linq['Name'].ILike('M%')

)

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 Linq.IsNotNull('Sex') and Linq.ILike('Name', 'M%')

)

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 (Linq['Sex'] = tsFemale) or Linq['Sex'].IsNull

)

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 Linq.Eq('Sex', tsFemale) or Linq.IsNull('Sex')

)

 .List;

Results := Manager.Find<TCustomer>

 .Where(

 Linq['Name'].Like('M%') and Linq['Sex'].IsNotNull

)

 .List;

TMS Aurelius 5.11 Page 138 of 269

Identifier Equals

Retrieves a condition where the identifier of the specified class is equal to a value. This is very

similar to using Equals, but in this case you don't need to specify the property name - Aurelius

already knows that you are referring to the Id. Also, for composite id's, you can provide an array

of variant for all the values of the composite id, the query will compare all table columns

belonging to the composite id with all values provided in the array of variant.

Example - Return customer where identifier is equal to 1.

Example - Using composite id: return person where last name is "Smith" and first name is "John"

(considering that the id of this class is made of properties LastName and FirstName):

Sql Expression

Creates a custom SQL expression condition. Use this for total flexibility, if you might fall into a

situation where regular query filters provided by Aurelius are not enough. The SQL you provide

in this expression must conform with the underlying database syntax. Aurelius doesn't perform

any syntax conversion (except aliases and parameters, see below).

Example - Return customer where database column CUSTOMER_NAME is equal to "Mia

Rosenbaum".

Results := Manager.Find<TCustomer>

 .Where(

 Linq.Like('Name', 'M%') and Linq.IsNotNull('Sex')

)

 .List;

Customer := Manager.Find<TCustomer>

 .Where(Linq.IdEq(1))

 .UniqueResult;

var

 Id: Variant;

 Person: TPerson;

begin

 Id := VarArrayCreate([0, 1], varVariant);

 Id[0] := 'Smith'; // last name

 Id[1] := 'John'; // first name

 Person := Manager.Find<TPerson>

 .Where(Linq.IdEq(Id))

 .UniqueResult;

Results := Manager.Find<TCustomer>

 .Where(Linq.Sql('A.CUSTOMER_NAME = ''Mia Rosenbaum'''))

 .List;

TMS Aurelius 5.11 Page 139 of 269

Aliases

Note that since the SQL expression will be just injected in the SQL statement, you must be sure it

will work. In the example above, the exact alias name ("A") and field name ("CUSTOMER_NAME")

needed to be included.

In order to prevent you from knowing which alias to use (which is especially tricky when Aurelius

need to use joins in SQL statement), you can use placeholders (aliases) between curly brackets.

Write the name of the property inside curly brackets and Aurelius will translate it into the proper

alias.fieldname format according to the SQL.

The following example does the same as the previous one, but instead of using the field name

directly, you use the name of property TCustomer.Name.

When querying associations, you can also prefix the property name with the alias of the

association (see how to query Associations):

Note that when you use subcriteria, the context of the property in curly brackets will be the

subcriteria class. The following query is equivalent to the previous one:

Parameters

You can also use parameters in the Sql projection, to avoid having to use specific database

syntax for literals. For example, if you want to compare a field with a date value, you would need

to specify a date literal with a syntax that is compatible with the database SQL syntax. To avoid

this, Aurelius allows you to use parameters in Sql expression. You can use up to two parameters

in each expression. The parameters must be indicated by a question mark ("?") and the type of

parameters must be provided in a generic parameter for the Sql method.

Example - using one parameter of type TSex:

Example - using two parameters of type TDate:

Results := Manager.Find<TCustomer>

 .Where(Linq.Sql('{Name} = ''Mia Rosenbaum'''))

 .List;

Results := Manager.Find<TCustomer>

 .CreateAlias('Country', 'c')

 .Where(Linq.Sql('{c.Name} = ''United States'''))

 .List;

Results := Manager.Find<TCustomer>

 .SubCriteria('Country')

 .Where(Linq.Sql('{Name} = ''United States'''))

 .List<TCustomer>;

Results := Manager.Find<TCustomer>

 .Where(Linq.Sql<TSex>('{Sex} IN (?)', TSex.tsFemale))

 .List;

TMS Aurelius 5.11 Page 140 of 269

Starts With

Retrieves a condition where the specified property (or projection) string value must start with the

specified value.

Example - Return customers where Name property starts with "Mia".

Alternative way to write it:

Ends With

Retrieves a condition where the specified property (or projection) string value must end with the

specified value.

Example - Return customers where Name property ends with "Junior".

Alternative way to write it:

Contains

Retrieves a condition where the specified property (or projection) string value must contain the

specified value.

Example - Return customers where Name property contains "Walker".

Results := Manager.Find<TEstimate>

 .Where(

 Linq.Sql<TDate, TDate>(

 '{IssueDate} IS NULL OR (({IssueDate} > ?) AND ({IssueDate} < ?))',

 EncodeDate(1999, 2, 10), EncodeDate(2000, 8, 30))

)

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'].StartsWith('Mia'))

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq.StartsWith('Name', 'Mia'))

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'].EndsWith('Junior'))

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq.EndsWith('Name', 'Junior'))

 .List;

TMS Aurelius 5.11 Page 141 of 269

Alternative way to write it:

In

The actual method name is "_In". Checks if the value of a specified property (or projection)

belongs to a set of predefined values. The predefined set of values can be of type string, integer

or enumerated.

Example - Return invoices where Status property is either Approved or Rejected, and year of issue

date is 2016 or 2014.

Alternative way to write it:

Comparing Projections

In most of the examples of filtering in queries, we used just the name of the property and

compare it to a value. For example:

But Aurelius query is much powerful than that. Linq['Name'] actually represents a projection, and

you can use any projection in any expression you want.

This gives you great flexibility since you can create many different types of projections and

compare them. For example, you can compare two projections, as follows.

Example - Return orders where cancelation date is greater than shipping date:

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'].Contains('Walker'))

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq.Contains('Name', 'Walker'))

 .List;

Results := Manager.Find<TInvoice>

 .Add(Linq['Status']._In([TInvoiceStatus.Approved, TInvoiceStatus.Rejected]))

 .Add(Linq['IssueDate'].Year._In([2016, 2014])

 .List;

Results := Manager.Find<TInvoice>

 .Add(Linq._In('Status', [TInvoiceStatus.Approved, TInvoiceStatus.Rejected]))

 .Add(Linq._In('IssueDate', [2016, 2014]);

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'] = 'Mia')

.List;

TMS Aurelius 5.11 Page 142 of 269

Or you can even use complex expressions. We can for example change the above query to bring

all orders where the year of cancelation date is the same as the year of shipping date:

Associations

You can add condition expressions to associations of the class being queried. For example, you

can retrieve invoices filtered by the name of invoice customer.

To add a condition for an association, you have three options: use subcriteria, aliases or rely on

auto alias mechanism.

Auto alias

You can search associated objects by simply referencing their subproperties from the association

property. Support you have a TEstimate class which has a Customer property of type

TCustomer . The customer entity, in turn, has a Name property. You can query for all invoices

which customer name starts with M this way:

Aurelius will automatically create a subcriteria with alias Customer . Nested associations are

possible by adding more of them separated by dots. To query for invoices where country of

customer is United States:

This feature was introduced in version 5.6 and is turned on by default.

Using aliases

Instead of using auto alias, you can explicitly create an alias for an association to filter by sub

properties of such association.

Results := Manager.Find<TOrder>

 .Where(Linq['CancelationDate'] > Linq['ShippingDate'])

 .List;

Results := Manager.Find<TOrder>

 .Where(Linq['CancelationDate'].Year = Linq['ShippingDate'].Year)

 .List;

Results := Manager.Find<TEstimate>

 .Where(Linq['Customer.Name'].StartsWith('M'))

 .List;

Results := Manager.Find<TEstimate>

 .Where(Linq['Customer.Country.Name'] = 'United States')

 .List;

TMS Aurelius 5.11 Page 143 of 269

Calling CreateAlias does not return a new TCriteria instance, but instead it returns the original

TCriteria. So the expression context is still the original class (in the example above, TEstimate).

Thus, to reference a Customer property the "c" alias prefix was needed. Note that since the

original TCriteria<TEstimate> object is being used, you can call List method (instead of List<T>).

Just like SubCriteria calls, you can also use nested CreateAlias methods, by settings aliases for

associations of associations. It's important to note that the context in the fluent interface is

always the original TCriteria class:

Using SubCriteria

You can alternatively create a sub-criteria which related to the association being filtered, using

SubCriteria method of the TCriteria object itself. It returns a new TCriteria object which context is

the association class, not the main class being queried.

In the example above the class TInvoice has a property Customer which is an association to the

TCustomer class. The filter "Name = 'M%'" is applied to the customer, not the invoice. SubCriteria

method is being called and receives "Customer" parameter, which is the name of associated

property. This returns a new TCriteria object. The expressions added to it related to TCustomer

class, that's why 'Name' refers to the TCustomer.Name property, not TInvoice.Name (if that ever

existed).

Note that SubCriteria method returns a TCriteria object (the non-generic version). That's why we

need to call List<TInvoice> method (not just List).

You can have nested SubCriteria calls, there is not a level limit for it. In the example below, the

query returns all estimates for which the country of the customer is "United States".

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Where(Linq['c.Name'].Like('M%'))

 .List;

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'ct')

 .CreateAlias('ct.Country', 'cn')

 .Where(Linq['cn.Name'] = 'United States')

 .List;

Results := Manager.Find<TInvoice>

 .SubCriteria('Customer')

 .Where(Linq['Name'].Like('M%'))

 .List<TInvoice>;

Results := Manager.Find<TEstimate>

 .SubCriteria('Customer')

 .SubCriteria('Country')

 .Where(Linq['Name'] = 'United States')

 .List<TEstimate>;

TMS Aurelius 5.11 Page 144 of 269

Mixing SubCriteria and aliases

You can safely mix SubCriteria and CreateAlias calls in the same query:

Specifying Eager fetching for associations loaded as lazy by default

Your class mapping might have defined associations to be marked as lazy-loaded (using proxies).

This means if you retrieve one hundred records and you want to access the associated object,

one hundred SQL statements will be executed to retrieve such value. You can optionally override

the default loading mechanism and set the association to be eager-loaded. This way Aurelius will

build an extra JOIN in the SQL statement to retrieve the associated objects in a single SQL.

You can that by using FetchEager method passing the name of the association to be loaded

eagerly:

You can also use dots (.) to provide subproperties to be loaded eagerly:

Alternatively, you can also pass TFetchMode.Eager as the third parameter of CreateAlias or

second parameter of SubCriteria method:

With either of the queries above, even if TEstimate.Customer association is set as lazy-loading,

Aurelius will create a single SQL with a JOIN between estimates and customers and retrieve all

customers at once. This gives you an extra degree of flexibility when it comes to optimize your

application.

Ordering Results
You can order the results by any property of the class being query, or by a property of an

association of the class. Just use either AddOrder or OrderBy methods of the TCriteria object. You

must define name of the property (or projection) being ordered, and if the order is ascending or

descending. See examples below.

Results := Manager.Find<TEstimate>

 .SubCriteria('Customer')

 .CreateAlias('Country', 'cn')

 .Where(Linq['cn.Name'] = 'United States')

 .List<TEstimate>;

 Results := Manager.Find<TEstimate>

 .FetchEager('Customer')

 .List;

 Results := Manager.Find<TEstimate>

 .FetchEager('Customer.Country')

 .List;

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'ct', TFetchMode.Eager)

 .List;

TMS Aurelius 5.11 Page 145 of 269

Example - Retrieve customers ordered by Name.

Same query using AddOrder (instead of OrderBy):

You can also use association aliases in orderings.

Example - Retrieve all estimates which IssueDate is not null, ordered by customer name in

descending order (second parameter in OrderBy specify ascending/descending - false means

descending, it's true by default).

Same query using AddOrder:

If you need to order by complex expressions, it's recommended that you use a Alias projection

for it. In the example below, the order refers to the EstimateSum alias, which is just an alias for

the sum expression.

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'].Like('M%'))

 .OrderBy('Name')

 .List;

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'].Like('M%'))

 .AddOrder(TOrder.Asc('Name'))

 .List;

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Where(Linq['IssueDate'].IsNotNull)

 .OrderBy('c.Name', false)

 .List;

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Add(Linq['IssueDate'].IsNotNull)

 .AddOrder(TOrder.Desc('c.Name'))

 .List;

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Sum('EstimateNo').As_('EstimateSum'))

 .Add(TProjections.Group('c.Name'))

)

 .Where(Linq['c.Name'].Like('M%'))

 .AddOrder(TOrder.Asc('EstimateSum'))

 .ListValues;

TMS Aurelius 5.11 Page 146 of 269

Projections
You can make even more advanced queries in Aurelius by using projections. For example, instead

of selecting pure object instances (TCustomer for example) you can perform grouping, select

sum, average, a function that retrieves the year of a date, among others. There is a formal

definition for projection, but you can think of a projection just as an expression that returns a

value, for example, a call to Sum function, a literal, or the value of a property.

Usually you will use projections to return specific/calculated values instead of objects, or to

perform complex condition expressions (to retrieve all customers where the year of birthday

column is equal to 1999).

For example, the following query retrieves the number of invoices for the year 2013 and

illustrates how to use projections in both select and where parts of the query.

The following topics explain in details what projections are and how you can use them.

Projections Overview

Any projection object descends from TProjection class. To make a query return projections

(calculated values) instead of entities, use the SetProjections or Select method.

The example below calculates the sum of all estimates where the customer name beings with

"M".

You can only have a single projection specified for the select part of the query. If you call

SetProjections or Select method twice in a single query, it will replace the projection specified in

the previous call. If you want to specify multiple projections, using a projection list:

Query over estimates, retrieving the sum of EstimateNo, grouped by customer name.

uses {...}, Aurelius.Criteria.Linq, Aurelius.Criteria.Projections;

TotalInvoicesFor2013 := Manager.Find<TInvoice>

 .Select(TProjections.Count('Id'))

 .Where(Linq['IssueDate'].Year = 2013)

 .UniqueValue;

uses {...}, Aurelius.Criteria.Linq, Aurelius.Criteria.Projections;

Value := Manager.Find<TEstimate>

 .Select(TProjections.Sum('EstimateNo'))

 .CreateAlias('Customer', 'c')

 .Where(Linq['c.Name'].Like('M%'))

 .UniqueValue;

TMS Aurelius 5.11 Page 147 of 269

Note that when using projections, the query can instances of the queried class or list of

TCriteriaResult objects, which you can use to retrieve the projection values. The result depends if

you use ListValues / UniqueValue or List / UniqueResult methods to retreive the results.

The Select method is exactly the same as the method SetProjections, it's just included as an

option so it looks better in some queries.

In all the examples above, the TProjection objects added to the criteria were created using the

TProjections factory class. The TProjections is just a helper class with several class methods that

you can use to easily create TProjection instances.

You can also use projections in the where clause to add complex queries. Many of the condition

expressions you can use in a query can compare projections, for example:

will list all customers which year of birth is greather than 2000.

Creating Projections Using TProjections

Any projection you want to use is a TProjection object. To create such objects, you can use the

TProjections factory class. It's declared in Aurelius.Criteria.Projections unit.

The TProjections class is just a helper class with several class methods (Sum, Group, etc.) that you

can use to easily create TProjection instances. For example, the following lines produce the same

object:

You can use TProjections to create the following projections:

Aggregated Functions

There are several methods in TProjections class that create a projection that represents an

aggregated function over a property value (or a projection). Available methods are:

Sum: Calculated the sum of values

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Sum('EstimateNo'))

 .Add(TProjections.Group('c.Name'))

)

 .ListValues;

YoungCustomers := Manager.Find<TCustomer>

 .Where(Linq['Birthday'].Year > 2000)

 .List;

uses Aurelius.Criteria.Projections

Projection := TAggregateProjection.Create('sum', TPropertyProjection.Create('Tota

l'));

Projection := TProjections.Sum('Total');

•

TMS Aurelius 5.11 Page 148 of 269

Min: Retrieves the minimum value

Max: Retrieves the maximum value

Avg: Calculates the average of all values

Count: Retrieves the number of objects the satisfy the condition

Example - Calculates the sum of all estimates where the customer name begins with "M".

Alternative way to write the same query:

Prop

Creates a projection that represents the value of a property. In most cases, you will use that

projection transparently, because the following constructions will return such projection for you:

Alternatively there are overloads for almost all methods in Linq and TProjection classes that

accept a string instead of a projection. The string represents a property name and internally all it

does is to create a property projection using Prop method.

The example below illustrates how Prop method can be used.

The following two queries are equivalent, both retrieve the name of the customers ordered by

the Name:

The following three queries are also equivalent:

•

•

•

•

Value := Manager.Find<TEstimate>

 .Select(Linq['EstimateNo'].Sum)

 .CreateAlias('Customer', 'c')

 .Where(Linq['c.Name'].Like('M%'))

 .UniqueValue;

Value := Manager.Find<TEstimate>

 .Select(TProjections.Sum('EstimateNo'))

 .CreateAlias('Customer', 'c')

 .Where(Linq['c.Name'].Like('M%'))

 .UniqueValue;

Linq['Name']

Linq['IssueDate']

Results := Manager.Find<TCustomer>

 .Select(Linq['Name'])

 .AddOrder(TOrder.Asc(Linq['Name']))

 .ListValues;

{...}

Results := Manager.Find<TCustomer>

 .Select(TProjections.Prop('Name'))

 .AddOrder(TOrder.Asc(TProjections.Prop('Name')))

 .ListValues;

TMS Aurelius 5.11 Page 149 of 269

Limiting the selected properties

The property project is the only projection you can use and still retrieve entity objects instead of

TCriteriaResult . If your query has only property projections, then you can still use List (or

UniqueResult) to retrieve entities:

In the above example, the query will return a list of TCustomer objects. But they underlying SQL

statement will be optimized to only include columns Name and Birthday , and the returned

TCustomer object will only have such properties set.

WARNING

Be careful when using entities which properties are only partial set. If you use such objects to

do a full update, the unreturned empty properties will be set back to the database and

respective database columns will be erased.

You can also use aliased projections to specify subproperties to return:

Results := Manager.Find<TCustomer>

 .Add(Linq.Eq('Name', 'Mia Rosenbaum'))

 .List;

{...}

Results := Manager.Find<TCustomer>

 .Add(Linq.Eq(TProjections.Prop('Name'), 'Mia Rosenbaum'))

 .List;

{...}

Results := Manager.Find<TCustomer>

 .Add(Linq.Eq(Linq['Name'], 'Mia Rosenbaum'))

 .List;

Customers := Manager.Find<TCustomer>

 .Select(TProjections.ProjectionList

 .Add(Linq['Name'])

 .Add(Linq['Birthday'])

)

 .List;

TMS Aurelius 5.11 Page 150 of 269

Group

Creates a projection that represents a group. This is similar to the GROUP BY clause in an SQL

statement, but the difference is that you don't need to set a Group By anywhere - you just add a

grouped projection to the projection list and Aurelius groups is automatically.

The query below retrieves the sum of EstimateNo grouped by customer name. The projected

values are the EstimateNo sum, and the customer name. Since the customer name is already one

of the selected projections and it's grouped, that's all you need - you don't have to add the

customer name in some sort of Group By section.

Add

Adds two numeric values.

Example:

Another way to write it:

 Estimates := Manager.Find<TEstimate>

 .Select(TProjections.ProjectionList

 .Add(Linq['EstimateNo'])

 .Add(Linq['Customer'])

 .Add(Linq['Customer.Name'])

 .Add(Linq['Customer.Sex'])

 .Add(Linq['Customer.Country'])

 .Add(Linq['Customer.Country.Id'])

)

 .FetchEager('Customer')

 .FetchEager('Customer.Country')

 .List

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Sum('EstimateNo'))

 .Add(TProjections.Group('c.Name'))

)

 .ListValues;

Results := Manager.Find<TInvoice>

 .Select(Linq['Total'] + Linq['Additional'])

 .List;

Results := Manager.Find<TInvoice>

 .Select(Linq.Add(Linq['Total'], Linq['Additional']))

 .List;

TMS Aurelius 5.11 Page 151 of 269

Subtract

Subtracts two numeric values.

Example:

Another way to write it:

Multiply

Multiplies two numeric values.

Example:

Another way to write it:

Divide

Divides two numeric values.

Example:

Another way to write it:

Results := Manager.Find<TInvoice>

 .Select(Linq['Total'] - Linq['Discount'])

 .List;

Results := Manager.Find<TInvoice>

 .Select(Linq.Subtract(Linq['Total'], Linq['Discount']))

 .List;

Results := Manager.Find<TInvoiceItem>

 .Select((Linq['Quantity'] * Linq['UnitaryValue']).As_('TotalValue'))

 .List;

Results := Manager.Find<TInvoiceItem>

 .Select(Linq.Multiply(Linq['Quantity'], Linq['UnitaryValue']).As_('TotalValue')

)

 .List;

Results := Manager.Find<TInvoiceItem>

 .Select((Linq['Total'] / Linq['Quantity']).As_('ItemValue'))

 .List;

Results := Manager.Find<TInvoiceItem>

 .Select(Linq.Multiply(Linq['Total'], Linq['Quantity']).As_('ItemValue'))

 .List;

TMS Aurelius 5.11 Page 152 of 269

Aurelius ensures consistency among different databases. When performing division between two

integer values, many databases truncate the result and return an integer, rounded value. For

example, 7 / 5 results 1. Some databases do not behave that way.

In Aurelius, the division operator performs with Pascal behavior: the result is a floating point

operation, even when dividing two integer values. Thus, 7 / 5 will return 1.4, as expected.

Condition

Creates a conditional projection. It works as an If..Then..Else clause, and it's equivalent to the

"CASE..WHEN..ELSE" expression in SQL.

Example - Retrieves the customer name and a string value representing the customer sex. If sex

is tsFemale, return "Female", if it's tsMale return "Male". If it's null, then return "Null".

Literal<T>

Creates a constant projection. It's just a literal value of scalar type T. Aurelius automatically

translates the literal into the database syntax. The Literal<T> method is different from Value<T>

in the sense that literals are declared directly in the SQL statement, while values are declared as

parameters and the value is set in the parameter value.

Example - Retrieves some literal values.

Another example using Condition projection:

Results := Manager.Find<TCustomer>

 .Select(TProjections.ProjectionList

 .Add(Linq['Name'])

 .Add(TProjections.Condition(

 Linq['Sex'].IsNull,

 Linq.Literal<string>('Null'),

 TProjections.Condition(

 Linq['Sex'] = tsMale,

 Linq.Literal<string>('Male'),

 Linq.Literal<string>('Female')

)

)

)

)

 .ListValues;

Results := Manager.Find<TCustomer>

 .Select(TProjections.ProjectionList

 .Add(Linq.Literal<string>('Test'))

 .Add(Linq.Literal<Currency>(1.53))

 .Add(Linq.Literal<double>(3.14e-2))

 .Add(Linq.Literal<integer>(100))

 .Add(Linq.Literal<TDateTime>(Date1))

)

 .ListValues;

TMS Aurelius 5.11 Page 153 of 269

Value<T>

Creates a constant projection. It's just a value of scalar type T. It works similar to Literal<T>

method, the difference is that literals are declared directly in the SQL statement, while values are

declared as parameters and the value is set in the parameter value.

ProjectionList

Retrieves a list of projections. It's used when setting the projection of a query using Select or

SetProjections method. Since only one projection is allowed per query, you define more than one

projections by adding a projection list. This method returns a TProjectionList object which defines

the Add method that you use to add projections to the list.

Example - Creates a projection list with two projections: Sum of EstimateNo and Customer Name.

Alias

Associates an alias to a projection so it can be referenced in other parts of criteria. Currently only

orderings can refer to aliased projections. It's useful when you need to use complex expressions

in the order by clause - some databases do not accept such expressions, so you can just

reference an existing projection in the query, as illustrated below.

Example - Retrieve all estimates grouped by customer name, ordered by the sum of estimates for

each customer.

Results := Manager.Find<TCustomer>

 .Select(TProjections.ProjectionList

 .Add(Linq['Name'])

 .Add(TProjections.Condition(

 Linq['Sex'].IsNull,

 Linq.Literal<string>('Null'),

 TProjections.Condition(

 Linq['Sex'] = tsMale,

 Linq.Literal<string>('Male'),

 Linq.Literal<string>('Female')

)

)

)

)

 .ListValues;

Results := Manager.Find<TEstimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Sum('EstimateNo'))

 .Add(TProjections.Group('c.Name'))

)

 .ListValues;

TMS Aurelius 5.11 Page 154 of 269

Alternatively you can create aliased projections using the TProjections.Alias method of any simple

projection. This query does the same as the previous query:

Sql Projection

Creates a projection using a custom SQL expression. Use this for total flexibility, if you might fall

into a situation where regular projections provided by Aurelius are not enough. The SQL you

provide in this expression must conform with the underlying database syntax. Aurelius doesn't

perform any syntax conversion (except aliases, see below).

Example - Return specific projections.

Note that since the SQL expression will be just injected in the SQL statement, you must be sure it

will work. In the example above, the exact alias name ("A") and field name ("CUSTOMER_NAME")

needed to be included in projection "CustName".

In order to prevent you from knowing which alias to use (which is especially tricky when Aurelius

need to use joins in SQL statement), you can use placeholders (aliases) between curly brackets.

Write the name of the property inside curly brackets and Aurelius will translate it into the proper

alias.fieldname format according to eh SQL. In the previous example, projections "DoubleId" and

Results := Manager.Find<TTC_Estimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(Linq['EstimateNo'].Sum.As_('EstimateSum'))

 .Add(Linq['c.Name'].Group)

)

 .Add(Linq['c.Name'].Like('M%'))

 .AddOrder(TOrder.Asc('EstimateSum'))

 .ListValues;

Results := Manager.Find<TTC_Estimate>

 .CreateAlias('Customer', 'c')

 .Select(TProjections.ProjectionList

 .Add(TProjections.Alias(TProjections.Sum('EstimateNo'), 'EstimateSum'))

 .Add(TProjections.Group('c.Name'))

)

 .Add(Linq.Like('c.Name', 'M%'))

 .AddOrder(TOrder.Asc('EstimateSum'))

 .ListValues;

Results := Manager.Find<TCustomer>

 .CreateAlias('Country', 'c')

 .Select(TProjections.ProjectionList

 .Add(Linq['Id'].As_('Id'))

 .Add(TProjections.Sql<string>('A.CUSTOMER_NAME').As_('CustName'))

 .Add(TProjections.Sql<double>('{id} * 2').As_('DoubleId'))

 .Add(TProjections.Sql<integer>('{c.id} * 2').As_('DoubleCountryId'))

)

 .ListValues;

TMS Aurelius 5.11 Page 155 of 269

"DoubleCountryId" use placeholders that will be replaced by the proper "Alias.ColumnName"

syntax corresponding to the referenced property. "{id}" refers to property TCustomer.Id, while

"{c.Id}" refers to property TCustomer.Country.Id.

The generic parameter in the Sql method must indicate the type returned by the Sql projection.

Year

Retrieves the year of a specified date/time value.

Example:

Year method creates a projection that extracts the year of a date value. Equivalent code:

Month

Retrieves the month of a specified date/time value.

Example:

Month method creates a projection that extracts the month of a projection with a date value.

Equivalent code:

Day

Retrieves the day of a specified date.

Example:

Day method creates a projection that extracts the day of a projection with a date value.

Equivalent code:

Hour

Retrieves the hour of a specified date/time value.

Example:

.Where(Linq['IssueDate'].Year = 2013)

.Where(Linq.Eq(TProjections.Year('IssueDate'), 2013))

.Where(Linq['IssueDate'].Month = 11)

.Where(Linq.Eq(TProjections.Month('IssueDate'), 11))

.Where(Linq['IssueDate'].Day = 31)

.Where(Linq.Eq(TProjections.Day('IssueDate'), 31))

TMS Aurelius 5.11 Page 156 of 269

Hour method creates a projection that extracts the hour of a projection with a date/time value.

Equivalent code:

Minute

Retrieves the minute of a specified date/time value.

Example:

Minute method creates a projection that extracts the number of minutes of a projection with a

date/time value. Equivalent code:

Second

Retrieves the second of a specified date/time value.

Example:

Second method creates a projection that extracts the number of seconds of a projection with a

date/time value. Equivalent code:

Upper

Converts a string value to upper case.

Example:

Equivalent code:

Lower

Converts a string value to lower case.

.Where(Linq['AppointmentTime'].Hour > 12)

.Where(Linq.Gt(TProjections.Hour('AppointmentTime'), 12))

.Where(Linq['AppointmentTime'].Minute > 45)

.Where(Linq.Gt(TProjections.Minute('AppointmentTime'), 45))

.Where(Linq['AppointmentTime'].Second > 45)

.Where(Linq.Gt(TProjections.Second('AppointmentTime'), 45))

.Where(Linq['Name'].Upper = 'JACK')

.Where(Linq.Eq(TProjections.Upper('Name'), 'JACK'))

TMS Aurelius 5.11 Page 157 of 269

Example:

Equivalent code:

Concat

Concatenates two strings.

Example:

Equivalent code:

Aurelius does not ensure cross-database consistent when it comes to null handling. Oracle treats

null as empty strings, so if your expression is concatenating a null value, result will be null in all

databases except Oracle, where it will concatenate the two strings normally (considering null as

empty string).

Length

Returns the number of characters in a string.

Example:

Equivalent code:

ByteLength

Returns the number of bytes in a binary property.

Example:

Equivalent code:

.Where(Linq['Name'].Lower = 'jack')

.Where(Linq.Eq(TProjections.Lower('Name'), 'jack'))

.Select(Linq['FirstName'].Concat(' ').Concat(Linq['LastName']))

.Select(Linq.Concat(Linq.Concat(Linq['FirstName'], ' - '), Linq['LastName']))

// Return entities which name has less than 10 characters

.Where(Linq['Name'].Length < 10)

// Return entities which name has less than 10 characters

.Where(Linq.LessThan(TProjections.Length('Name'), 10))

// Return entities which Photo has less than 65536 bytes

.Where(Linq['Photo'].ByteLength < 65536)

TMS Aurelius 5.11 Page 158 of 269

Substring

Returns a substring of the specified string.

Example:

First parameter is the start index of substring, 1-based. Thus, 1 represents the first character of

the string, 2 the second, etc. Second parameter is the length of substring to be returned.

Equivalent code which passes the projection/property name as the first parameter:

Position

Returns the index value of the first character in a specified substring that occurs in a given string.

Example:

The parameter is the substring to be searched for. The result is the index of the first occurrence

of the string, 1-based. In other words, if the substring occurs in the first character, the result is 1.

If the substring is not found, result is 0.

Equivalent code which passes the projection/property name as the first parameter:

SqlFunction

Calls a custom SQL function. Aurelius provides many cross-database projection functions like

Year, Upper, Concat, etc. But in case you want to call an specific database function, or create your

own, you can use SqlFunction to call it.

For example, if you want to use PostgreSQL's Unaccent function:

// Return entities which Photo has less than 65536 bytes

.Where(Linq.LessThan(TProjections.ByteLength('Photo'), 65536))

// Return the first 5 characters of the name

.Select(Linq['Name'].Substring(1, 5))

// Return the first 5 characters of the name

.Select(TProjections.Substring('Name', 1, 5))

// Return entities only if the position of "@" character

// in the EMailAddress property is higher than 5

.Where(Linq['EmailAddress'].Position('@') > 5)

// Return entities only if the position of "@" character

// in the EMailAddress property is higher than 5

.Where(Linq.GreaterThan(TProjections.Position('@', 'EmailAddress'), 5)))

TMS Aurelius 5.11 Page 159 of 269

First parameter is the name of the function.

Second parameter is the value type (PTypeInfo) returned by the function. If the type of function

result is the same of the type of the parameter, you can simply pass nil. In this example, Name is

a string field, and unaccent also returns a string value, so you can just use nil.

If the function is not registered by default in Aurelius system (which is the case for Unaccent

function), Aurelius will raise an error when trying to execute the query, informing that function

could not be found. You need to register the function in the specific Dialect using

RegisterFunction:

Polymorphism
Since Aurelius supports inheritance using different inheritance strategies, queries are also

polymorphic. It means that if you query over a specified class, you might receive objects of that

class, or even descendants of that class.

For example, suppose you have a class hierarchy this way:

When you perform a query like this:

You are asking for all mammals which Name begins with "T". This means all mammals, dogs and

cats. So in the resulted object list, you might receive instances of TMammal, TDog or TCat

classes. Aurelius does it automatically for you, regardless on the inheritance strategy, i.e. if all

classes are being saved in the same table or each class is being saved in a different table.

Aurelius will be sure to filter out records representing animals and birds, and retrieve only the

mammals (including dogs and cats).

.Where(Linq.ILike(

 Linq.SqlFunction('unaccent', nil, Linq['Name']),

 Linq.SqlFunction('unaccent', nil, Linq.Value<string>(SomeValue))

))

uses

 {...}, Aurelius.Sql.Interfaces, Aurelius.Sql.Register, Aurelius.Sql.Functions;

TSQLGeneratorRegister.GetInstance.GetGenerator('POSTGRESQL')

 .RegisterFunction('unaccent', TSimpleSQLFunction.Create('unaccent'));

TAnimal = class

TBird = class(TAnimal);

TMammal = class(TAnimal);

TDog = class(TMammal);

TCat = class(TMammal);

Results := Manager.Find<TMammal>

 .Add(Linq['Name'].Like('T%'))

 .List;

TMS Aurelius 5.11 Page 160 of 269

You can safely rely on polymorphism with Aurelius in every query, and also of course, when

saving and updating objects.

Paging Results
Aurelius provides methods the allows you to limit query results at server level. It's the equivalent

of "SELECT TOP" or "SELECT..LIMIT" that some databases use (note this is just an analogy, TMS

Aurelius will make sure to build the proper SQL statement for each database according to the

supported syntax).

You can limit the number of objects retrieved by using the Take method of TCriteria object:

The previous code will retrieve the first 50 TCustomer objects, ordered by name. Using Take(0)

will return an empty result. Using Take(-1) is equivalent to not using Take method at all, meaning

all records will be returned. Values below -2 (including) are not allowed and might cause errors.

You can skip the first N objects retrieved by using Skip method:

The previous code will retrieve customers ordered by name, but will omit the first 10 customers

from the list. Using Skip(0) is equivalent to not using Skip method at all, since it means skipping

no records. Negative values are not allowed and might cause errors.

Although you can use Skip and Take methods without specifying an order, it often doesn't make

sense.

Skip and Take methods are often used for paging results, i.e., returning objects belonging to an

specific page. The following code exemplifies how to return objects belonging to the page

PageIdx, with PageSize objects in each page:

Removing Duplicated Objects
Sometimes a query might result in duplicated objects. The following query is an example of such

queries:

Results := Manager.Find<TCustomer>

 .OrderBy('Name')

 .Take(50)

 .List;

Results := Manager.Find<TCustomer>

 .OrderBy('Name')

 .Skip(10)

 .List;

Results := Manager.Find<TCustomer>

 .OrderBy('Name')

 .Skip(PageIdx * PageSize)

 .Take(PageSize)

 .List;

TMS Aurelius 5.11 Page 161 of 269

The above criteria will look for all invoices which have any item with price equals to 20. Just like

in SQL, this query is doing a "join" between the invoice and invoice items. This means that if an

invoice has two or more items with price equals to 20, the same TInvoice object will be returned

more than once in the result list.

If that's not what you want, and you just list all invoices matching the specified criteria, without

duplicates, just use RemoveDuplicatedEntities to your criteria:

And this will bring distinct invoices. This feature is usually useful when you want to filter objects

by a criteria applied to many-valued associations, like in the example above, which might return

duplicated results.

Please note that the removal of duplicated objects is done at client level by Aurelius framework,

not at database level, so performance might be not good with queries that result too many

records.

Cloning a Criteria
Aurelius TCriteria object also has a Clone method you can use to clone the criteria. This might

useful when you want to reuse the criteria multiple times and maybe slightly change from the

base criteria:

Refreshing Results
When performing a query, Aurelius will keep exisiting entities in the cache. For example, if your

query returns two TCustomer objects with ID's 10 and 15, if there are already instances of those

objects in the manager, they will be kept in the cache with existing properties and will not be

updated.

Results := Manager.Find<TInvoice>

 .CreateAlias('Items', 'i')

 .Add(Linq['i.Price'] = 20)

 .OrderBy('InvoiceNo')

 .List;

Results := Manager.Find<TInvoice>

 .CreateAlias('Items', 'i')

 .Add(Linq['i.Price'] = 20)

 .OrderBy('InvoiceNo')

 .RemovingDuplicatedEntities

 .List;

MyCriteria := Manager.Find<TCustomer>

 .Where(Linq['Name'] = 'Mia');

ClonedCriteria := MyCriteria.Clone;

ClonedCriteria.OrderBy('Id');

MyResults := MyCriteria.List<TCustomer>;

ClonedResults := ClonedCriteria.List<TCustomer>;

TMS Aurelius 5.11 Page 162 of 269

Alternatively, you can use Refreshing method when building the criteria to tell Aurelius that you

want existing objects to be objects with current database values.

The query below will bring all TCustomer objects which year of birthday is 1999. If any of those

customers are already in the manager, their properties will still be updated with values retrieved

from the database:

Note that when refreshing an object that has lazy-loaded associations, the proxy is updated and

not immediately loaded. When the associated object (or list) is then read, Aurelius will try to load

the objects and if they are in the cache, they will not be updated. This means if you have lazy-

loaded association, specially lists, and you want the list objects to be refreshed themselves, you

should iterate through the list and call Refresh for each item manually.

MyCriteria := Manager.Find<TCustomer>

 .Where(Linq['Birthday'].Year = 1999)

 .Refreshing

 .List;

TMS Aurelius 5.11 Page 163 of 269

Dictionary
Aurelius dictionary is intended to be used in Aurelius queries. The idea is that instead of using

strings to reference entity properties, you use the dictionary directly. For example, a usual

Aurelius query is like this:

But the above approach is error prone, the 'Name' string can be wrong, it can be wrongly typed,

or the name might be modified. You will only find the errors at runtime. With the dictionary, you

can write the query like this:

With the code above you have full code completion when you are coding, so you don't have to

remember the property names, and you get errors at compile-time.

WARNING

Aurelius dictionary should only be used from Delphi XE6 and later versions. Older Delphi

versions have RTTI issues that cause the dictionary to not work correctly in some situations,

especially the dictionary validator.

Dictionary generation
To be used, the dictionary has to be generated from the existing mapped classes or the

database. "Generate" means creating a Delphi unit .pas file with source code containing the

dictionary classes. You can then add such unit to the uses clause and use the dictionary in

queries. There are three ways you can generate the dictionary.

Generate from application

The dictionary can be generated directly from your entity classes. It has to be generated from an

existing Delphi application so that Aurelius retrieve information via RTTI and generate the source

code unit for you. This is very convenient if you use a code-first approach, when you create your

entity classes and ask Aurelius to create the database for you.

To generate the dictionary, you should use the TDictionaryGenerator class declared in unit

Aurelius.Dictionary.Generator . It can be as simple as this. Use the unit:

And then use this line of code anywhere in your application:

Results := Manager.Find<TCustomer>

 .Where(Linq['Name'].Like('M%'))

 .List;

Results := Manager.Find<TCustomer>

 .Where(Dic.Customer.Name.Like('M%'))

 .List;

uses Aurelius.Dictionary.Generator;

TMS Aurelius 5.11 Page 164 of 269

The above line is enough to generate the unit in the specified file location.

TDictionaryGenerator provides several options you can configure, in case you want to have

more control over the generated dictionary. Here is a more advanced use of it:

 TDictionaryGenerator.GenerateFile('C:\SomeFolder\MyDictionary.pas');

var

 Generator: TDictionaryGenerator;

 SourceCode: string;

begin

 // Create the dictionary for the entity classes defined in a specific

 // mapping explorer. In this case, use model "Accounting"

 Generator := TDictionaryGenerator.Create(TMappingExplorer.Get('Accounting'));

 try

 // The DictionaryId is used to build the name of dictionary interface and

class.

 // By default the model name is used, so the default interface and class

names would be

 // IAccountingDictionary and TAccountingDictionary.

 // The change below will make them IMyAccountingDictionary and

TMyAccountingDictionary

 Generator.DictionaryId := 'MyAccounting';

 // The name of the global variable holding the dictionary. By default, the

name will be Dic.

 // With the change below, an eventual dictionary entity

 // will be accessed as D.Customer instead of Dic.Customer

 Generator.GlobalVarName := 'D';

 // The name of the unit to be generated. When you call

TDictionaryGenerator.GenerateFile

 // this is automatically set based on the file name. In this case we have to

set it directly.

 // If you do not set this, the default unit name will be Unit1.

 Generator.OutputUnitName := 'AccountingDictionary';

 // Retrieve the full source code as a string

 SourceCode := Generator.GenerateSource;

 // Save the source to a file

 TFile.WriteAllText('C:\SomeFolder\AccountingDictionary.pas', SourceCode);

 finally

 Generator.Free;

 end;

end;

TMS Aurelius 5.11 Page 165 of 269

Generate from database

In a database-first approach, you create your database tables first, and then generate Aurelius

classes from such database. You can do that using the TMS Data Modeler tool or using the

TAureliusConnection "generate entities" wizard from the IDE.

In both cases, you have an option to also generate the dictionary, in addition to the Aurelius

classes. This is straightforward and the dictionary will be automatically created for you.

Generate from command-line tool

You can also generate the dictionary from a command-line tool called

AureliusDictionaryGenerator. This can be useful if you want to automate the dictionary

generation and for some reason you don't want to do it from your own application.

With the generator tool you need to have a package file (.bpl) compiled with your entities, and

then pass the package file to the it. It will extract the classes from the package and generate the

source code file. The source code of the AureliusDictionaryGenerator tool is available in Aurelius

distribution under the demos folder.

When you launch the tool without passing parameters, you get the help page:

Parameters -g and -m are optional and if omitted the default values are used. The other

parameters are required and their equivalent are described in section Generate from application.

Here is one example that reads Aurelius entity classes from package C:

\MyProject\Bpl\Entities.bpl and generates the dictionary Default in file C:

\MyProject\MyDictionary.pas :

PS> .\AureliusDictionaryGenerator.exe

TMS Aurelius Dictionary Generator version 0.1

Copyright (c) TMS Software. All rights reserved.

OutputFileName - Required parameter was not provided.

AureliusDictionaryGenerator.exe <OutputFileName> [options]

<OutputFileName> - Output file name to be generated

-pvalue, /package:value - The bpl package file to extract the model from

-ivalue, /id:value - Dictionary id

[-gvalue], [/globalvar:value] - Global variable name, default: Dic

[-mvalue], [/model:value] - Name of the model to generate the dictionary

 for, default: Default

AureliusDictionaryGenerator.exe -i:Default -p:"C:\MyProject\Bpl\Entities" "C:

\MyProject\MyDictionary.pas"

TMS Aurelius 5.11 Page 166 of 269

Using the dictionary
Using Aurelius dictionary is very simple. It's intended to be used in Aurelius queries and all you

have to do is to use the dictionary properties and query from them. The dictionary properties

holds a tree structure representing all the entity classes you have in your model, and the

properties and associations for each entity class.

To use the dictionary just add the dictionary unit name (the file you generated) to your unit uses

clause, and it's available via the Dic global variable (unless you explicitly changed the variable

name when generating the dictionary).

Simple properties as projections

Just reference the entity and the property and compare it to a value. The property in dictionary is

a query projection, which means you can also use all methods available in projections like Sum,

Contains and many others.

You can do simple comparisons like these:

And:

Associations

The dictionary also makes it very easy to query by associated objects. All you need do is just use

the associated properties into a deeper level and do the comparison the same way. For example,

the following query calculates the sum of totals for invoices which country is Germany. It uses

the customer associated with the invoice, and then the country associated with the customer:

To make it easier to read and write the queries, you can also put some associations in specific

variables like this:

 Manager.Find<TCustomer>

 .Where(Dic.Customer.CountryName = 'Germany')

 .Where(Dic.Customer.Name.Contains('Herwig'))

 Manager.Find<TInvoice>

 .Where(

 (Dic.Invoice.IssueDate >= EncodeDate(2020, 10, 10))

 and (Dic.Invoice.IssueDate < EncodeDate(2021, 2, 2)))

 .OrderBy(Dic.Invoice.Code)

 Manager.Find<TInvoice>

 .Select(Dic.Invoice.Total.Sum)

 .Where(Dic.Invoice.Customer.Country.Name = 'Brazil')

TMS Aurelius 5.11 Page 167 of 269

Dictionary validation
Since dictionary must be explicitly generated from existing classes, it's possible that it might get

outdated. You might add new entity classes, or even add, rename or remove properties in

existing entity classes. This might lead, again, to runtime errors. For example, you might have

written the expresison `Dic.Customer.Name = 'John' but later you renamed the Name property

to CompanyName property. You will get an error at runtime indicating that Name property does

not exist.

To avoid such problems Aurelius provides the dictionary validator. It's just a simple check you

add at the beginning of your application (or at any point you want, but obviously before you

execute any code that uses the dictionary). The validator will perform a full check of the

dictionary and make sure its contents matches the real entity classes.

Using the dictionary is very simple and can be accomplished with a single line of code. You need

to first add the Aurelius.Dictionary.Validator unit to your uses clause:

And then use Check method of TDictionaryValidator class. The method can optionally

receive a mapping explorer, this way you can explicitly tell Aurelius the model which the

dictionary should be validated for.

The above code will raise an EDictionaryValidationException exception with detailed

information about the problems (the exception class has an Errors property you can inspect).

var

 Est: IEstimateDictionary;

begin

 Est := Dic.Estimate;

 Manager.Find<TEstimate>

 .Select(TProjections.ProjectionList

 .Add(Est.EstimateNo.Sum)

 .Add(Est.Customer.Name.Group))

 .Where(Est.IssueDate.IsNotNull)

 .Where(

 (Est.EstimateNo.Sum >= 6)

 and (Est.EstimateNo.Sum <= 14))

 .OrderBy(Est.Customer.Name)

uses Aurelius.Dictionary.Validator;

 // Check if the dictionary is valid for the default model

 TDictionaryValidator.Check(Dic);

 // Check if another dictionary in a different unit is valid

 // for model Accounting

 TDictionaryValidator.Check(AccountingDictionary.Dic, TMappingExplorer.Get('Acco

unting'));

TMS Aurelius 5.11 Page 168 of 269

Alternatively, if you prefer a silent validation, you can create a TDictionaryValidator instance

yourself, call the Validate method (which returns a boolean value indicating if the validation

was succesful) and then inspect the Errors property yourself:

 Validator := TDictionaryValidator.Create(TMappingExplorer.Default);

 if not Validator.Validate(Dic) then

 begin

 for ErrorMessage in Validator.Errors do

 LogSomewhere(ErrorMessage);

TMS Aurelius 5.11 Page 169 of 269

Data Validation
Aurelius provides easy and straightforward ways to validate your entities before they are

persisted. By adding specific attributes to your entity, you can easily ensure that the entity is

always saved to the database in a valid state.

In the following example, our mapping specifies that the FName field of the TCustomer class is

required and its length must not exceed 20 characters:

If we then try to save an customer with a name longer than 20 characters:

Aurelius will refuse to save it, raising an EEntityValidationException exception:

NOTE

The validations occur at application level. They are not related to database-level checks. For

example, to set the column length at database level, and more properties like nullability, you

still should use mapping attributes, like the Column attribute.

Built-in Validators
Aurelius provides several built-in validators that you can use by applying attributes to your

mapped class members:

uses {...}, Aurelius.Validation.Attributes;

type

 [Entity, Automapping]

 TCustomer = class

 strict private

 FId: Integer;

 [Required, MaxLength(20)]

 FName: string;

 public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 end;

 var Customer := TCustomer.Create;

 Manager.AddOwnership(Customer);

 Customer.Name := 'Name too long for customer';

 Manager.Save(Customer);

EEntityValidationException: Validation failed for entity of type

"Entities.Customer.TCustomer": Field FName must have no more than 20 character(s)

TMS Aurelius 5.11 Page 170 of 269

Required

Ensures that the class member has a valid value.

Validation of FRate will never fail because even a 0 (zero) value is considered a valid value.

FBirthday will fail if it's null only.

NOTE

The exception is the string value. An empty string is not considered a value and will fail the

Required validation

MaxLength

Specifies the maximum length of a string value.

MinLength

Specifies the minimum length of a string value.

Range

Specifies the range of valid values for numeric values.

In the previous example, FRate value must be between 1 and 10.

EmailAddress

Ensures the string values contains a valid e-mail address.

[Required]

FRate: Integer;

[Required]

FBirthday: Nullable<TDateTime>;

[MaxLength(30)]

FName: string;

[MinLength(5)]

FName: string;

[Range(1, 10)]

FRate: Integer;

[EmailAddress]

FEmail: string;

TMS Aurelius 5.11 Page 171 of 269

RegularExpression

Ensures the string value matches the provided regular expression.

Entity validators
In addition to class members, you can also apply validators at the entity-level. You should use it

the same way: add a validation attribute to the entity class. Of course, the validation attribute

must make sense for the whole entity. None of the current built-in validators can be applied to

the entity, since they check class member values, but you can create custom validators and apply

them to the class.

But the more straightforward way to add entity validators is using the OnValidate attribute. Just

add the attribute to a method you want to be executed when the entity should be validated:

The method must always return an interface of type IValidationResult . The method can

receive a single argument of type IValidationContext , or no parameter at all.

WARNING

By default, Delphi doesn't generate RTTI for non-published methods. That's why you must add

the directive {$RTTI EXPLICIT METHODS([vcPrivate..vcPublished])} to your class. If you

don't do that, Aurelius won't know about the mentioned methods and they will not be invoked

when the validation is performed!

This is a example of implementation:

[RegularExpression('^[0-9]{5}$')]

FZipCode: string;

 {$RTTI EXPLICIT METHODS([vcPrivate..vcPublished])}

 TCustomer = class

 [OnValidate]

 function CheckBirthday: IValidationResult;

 [OnValidate]

 function CheckName(Context: IValidationContext): IValidationResult;

TMS Aurelius 5.11 Page 172 of 269

You can have multiple methods marked with the OnValidate attribute. All methods will be

executed, in the order they are declared in the class.

NOTE

The class member validators are executed first. If and only if there are no errors in class

member validations, the entity validators are executed.

Validation Messages
Each built-in validator has its own error message predefined. If the validation fails, the

predefined error message will be displayed. For example, the following validation:

If failed, it will generate the error message:

You can customize such messages in two ways.

DisplayName

This is not a validator, but it's an attribute you can add to any class member to modify its name

when it's used in validation error messages.

function TCustomer.CheckBirthday: IValidationResult;

begin

 Result := TValidationResult.Create;

 if Birthday.IsNull then Exit;

 if YearOf(Birthday) < 1899 then

 Result.Errors.Add(TValidationError.Create('A person born in XIX century is

not accepted'));

 if (MonthOf(Birthday) = 8) and (DayOf(Birthday) = 13) then

 Result.Errors.Add(TValidationError.Create('A person born on August, 13th is

not accepted'));

end;

function TCustomer.CheckName(Context: IValidationContext): IValidationResult;

begin

 Result := TValidationResult.Create;

 if Name = 'invalid name' then

 Result.Errors.Add(TValidationError.Create('Invalid name'));

end;

[EmailAddress]

FEmail: string;

Field FEmail is not a valid e-mail address

[EmailAddress, DisplayName('e-mail')]

FEmail: string;

TMS Aurelius 5.11 Page 173 of 269

When used with the DisplayName attribute as above, the EmailAddress validator will now

generate the following error message:

One advantage of using DisplayName attribute is that the modified name will be used in all

existing validations set for the class member.

Custom error message

If changing DisplayName is not enough, you can simply provide a full custom error message.

Every built-in validator attribute can receive an additional parameter with the custom error

message to be used:

In case of a failed validation, the following error message will be generated:

Note how the custom error message can be combined with the DisplayName attribute. The

%0:s parameter is valid for all built-in validators and contain the member name. Other

validators can have additional parameters, for example the Range validator provides the

minimum and maximum allowed values in parameters %1:s and %2:s respectively.

Handling Failed Validation
If one or more validation fails, an exception of type EEntityValidationException is raised and

the persistence operation will not complete.

In most cases, you won't have to do anything special to handle it - the exception will propagate

as any other Delphi exception: if you are running a desktop application, the default exception

handler will show a message to the user. If you are running an application server, you should be

already catching and logging the exceptions, so it won't be different in this case.

The EEntityValidationException has some specific properties you can inspect in a

try..except..on block to gather more details about the validation. The Entity property

contains the entity instance which failed to validate. The Results property contains a list of

IManagerValidationResult interfaces with specific information for each validation.

Consider the following mapping and validations:

Field e-mail is not a valid e-mail address

[DisplayName('e-mail')]

[EmailAddress('You must provide a valid e-mail address for field "%0:s"')]

FEmail: string;

You must provide a valid e-mail address for field "e-mail"

TMS Aurelius 5.11 Page 174 of 269

If we try to save such entity with many wrong properties, many validations will fail:

You can use the following code to catch the validation exception and log detailed information:

type

 [Entity, Automapping]

 TCustomer = class

 strict private

 FId: Integer;

 [Required, MaxLength(20)]

 FName: string;

 [EmailAddress]

 FEmail: string;

 [DisplayName('class rate')]

 [Range(1, 10, 'Values must be %1:d up to %2:d for field %0:s')]

 FRate: Integer;

 public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property Email: string read FEmail write FEmail;

 property Rate: Integer read FRate write FRate;

 end;

procedure SaveWrongCustomer;

var

 Customer: TCustomer;

begin

 Customer := TCustomer.Create;

 Manager.AddOwnership(Customer);

 Customer.Name := 'Too long name for customer';

 Customer.Email := 'foo';

 Manager.Save(Customer);

end;

TMS Aurelius 5.11 Page 175 of 269

Which will generate the following output:

Disabling Validations
Data validation is enabled by default. If you have added validators to your mapping, then they

will already be enforced when you try to save an entity.

In case you want to disable validations (for example, to improve performance), you can set

TObjectManager.ValidationsEnabled property to False:

Custom Validators
In addition to the built-in validators, you can create your own custom validators, including

attributes, that you can apply to your entities.

First, create a new class implementing the IValidator interface:

var

 ValidationResult: IManagerValidationResult;

 Error: IValidationError;

begin

 try

 SaveWrongCustomer;

 except

 on E: EEntityValidationException do

 begin

 WriteLn(Format('Validation failed for entity %s:', [E.Entity.ClassName]));

 for ValidationResult in E.Results do

 for Error in ValidationResult.Errors do

 WriteLn(' ' + Error.ErrorMessage);

 end;

 end;

end;

Validation failed for entity TCustomer:

 Field FName must have no more than 20 character(s)

 Field FEmail is not a valid e-mail address

 Values must be 1 up to 10 for field class rate

 Manager.ValidationsEnabled := False;

 Manager.Save(Customer); // no validation performed

TMS Aurelius 5.11 Page 176 of 269

The interface has a single method Validate that you need to implement, which receives the

Value to be validated and must return an IValidationResult interface:

Then just create your new attribute inheriting from ValidationAttribute and override the

GetValidator method:

After this, all you need is to add the attribute to all cla members you want MyData validation to

be applied:

uses {...}, Aurelius.Validation.Interfaces;

type

 TMyDataValidator = class(TInterfacedObject, IValidator)

 public

 function Validate(const Value: TValue; Context: IValidationContext): IValidat

ionResult;

 end;

function TMyDataValidator.Validate(const Value: TValue;

 Context: IValidationContext): IValidationResult;

begin

 // Add your own logic to check if Value is valid

 if IsValid(Value) then

 Result := TValidationResult.Success

 else

 Result := TValidationResult.Failed(Format(ErrorMessage,

 [Context.DisplayName]))

end;

 MyDataAttribute = class(ValidationAttribute)

 strict private

 FValidator: IValidator;

 public

 constructor Create;

 function GetValidator: IValidator; override;

 end;

{...}

constructor MyDataAttribute.Create;

begin

 inherited Create;

 FValidator := TMyDataValidator.Create;

end;

function MyDataAttribute.GetValidator: IValidator;

begin

 Result := FValidator;

end;

TMS Aurelius 5.11 Page 177 of 269

Manual Validation
Validations are performed automatically before an entity is about to be persisted (if

ValidationsEnabled is false).

But if for any reason you want to validate an entity without persisting it, just call Validate

method of the object manager:

If any validation fails, an exception will be raised and you can handle it as usual.

 [MyData]

 FMyProp: string;

Manager.Validate(MyEntity);

TMS Aurelius 5.11 Page 178 of 269

Global Filters
With Aurelius you can define filters that are applied to several entities at once.

You can specify the filters using the FilterDef attribute once in any entity of your model, then

add a Filter attribute for each entity you want to be filtered. For example:

And finally, enable filters at the TObjectManager level, using EnableFilter method:

Once you do that, the SELECT statement built by Aurelius to retrieve the products will include

the filter condition specified in the attribute. The above code would generate an SQL statement

like this:

This will apply for all entities with the Multitenant filter defined, even if they are associations.

This makes it very easy to build multitenant applications, for example. You don't have to worry

about adding filters to every Aurelius query you build. Just code it with the regular business

logic, and Aurelius global filter will take of adding the filters that apply globally to all entities.

Creating filter definitions
To create a filter definition, use the FilterDef and FilterDefParam attributes:

 [Entity, Automapping]

 [FilterDef('Multitenant', '{TenantId} = :tenantId')]

 [FilterDefParam('Multitenant', 'tenantId', TypeInfo(string))]

 [Filter('Multitenant')]

 TProduct = class

 private

 FId: Integer;

 FName: string;

 FTenantId: string;

 public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property TenantId: string read FTenantId write FTenantId;

 end;

 Manager.EnableFilter('Multitenant')

 .SetParam('tenantId', 'microsoft');

 Products := Manager.Find<TProduct>.OrderBy('Name').List;

SELECT A.NAME, A.ID, A.TENANT_ID

 FROM PRODUCT A

 WHERE A.TENANT_ID = :p0

 ORDER BY A.NAME;

:p0 = 'microsoft'

TMS Aurelius 5.11 Page 179 of 269

The first parameter of FilterDef attribute is the filter name. The second parameter is optional,

and contains the filter condition that will be applied to all entities that don't explicitly add a filter

condition in their Filter attribute.

NOTE

Filter definitions are global to a model. Do not add two or more FilterDef attributes with the

same filter name, even in different entities

Filter conditions and parameters
Filter conditions are SQL condition expressions that are added to the WHERE clause of any

SELECT statement used to retrieve entities. They will also be applied when the entity is being

queried as an associated object.

You should use aliases to refer to database columns, with the class field (or property) name

wrapped by brackets ({ }), in the same you will use aliases in SQL conditions .

Filter conditions can also use parameters, that are defined by prefixing the parameter name with

: (colon). In the following example, tenantId is a parameter.

For each parameter in the filter condition, you must explicitly add a FilterDefParam attribute in

addition to the FilterDef attribute, specifying the Delphi type of the parameter. In this

example, tenantId parameter is of type string :

First argument of FilterDefParam is the filter name, second is the parameter name, third is the

Delphi type of the parameter.

Applying filters to entities
Once a filter is defined, you can specify which entities might have such filter applied. This is as

simple as adding a Filter attribute to any entity you want the filter to be applied, specifying

the filter name as the first argument:

 [FilterDef('Multitenant', '{TenantId} = :tenantId')]

 [FilterDefParam('Multitenant', 'tenantId', TypeInfo(string))]

 TProduct = class

 [FilterDef('Deleted', '{Deleted} = 0')]

 [FilterDef('Multitenant', '{Multitenant} = :tenantId')]

[FilterDefParam('Multitenant', 'tenantId', TypeInfo(string))]

TMS Aurelius 5.11 Page 180 of 269

In the above example, filters Multitenant and Delete will be applied to entity Product when

they are enabled. On the other hand, TCustomer entity will only have filter Multitenant applied

to it. Filter Deleted will have no effect on entity Customer .

WARNING

If you are using an inheritance strategy, you should only apply filters to then entity class which

is the root of the class hierarchy. Do not apply the filter in a descendant class.

If a filter is applied to a descendant class in a class hierarchy, Aurelius might bring wrong results

if such classes as retrieved as associated objects.

You can also override the default filter condition specified in the filter definition, by passing a

new filter condition as the second parameter:

The filter condition must use the same parameters specified in the filter definition.

Enabling filters
Finally, filters are enabled at the TObjectManager level, using EnableFilter method.

Once you enable a filter for a specific object manager, all SQL query statements executed by that

manager will have the filter condition added to the WHERE clause when searching for the

involved entity(ies).

WARNING

Filters are always disabled by default. If you don't call EnableFilter to enable a specific filter,

no conditions are applied to any entity using that filter!

If the filter definition includes a condition that uses parameters, you must set the value of each

parameter of the filter using SetParam method:

 [Filter('Multitenant')]

 [Filter('Deleted')]

 TProduct = class

{...}

 [Filter('Multitenant')]

 TCustomer = class

 [Filter('Multitenant', {AnotherTenantId} = :tenantId)]

 TOtherClass = class

 Manager.EnableFilter('Delete');

 Products := Manager.Find<TProduct>.OrderBy('Name').List;

 Manager.EnableFilter('Multitenant')

 .SetParam('tenantId', 'microsoft');

TMS Aurelius 5.11 Page 181 of 269

You can also disable a filter using DisableFilter method and check if a filter is enabled using

FilterEnabled :

Filter enforcer
When you enable a filter, it "only" applies the SQL WHERE condition to SELECT statements,

making all your data automatically filtered. But it doesn't do anything when you insert, update or

delete a database record.

Fortunately, Aurelius provides mechanism named "filter enforcer" which does that for you: it

makes sure that whenever you modify entity data (create, update, delete), it will be consistent

with the condition specified in the filter.

In other words, considering the Multitenant filter example: if you have enabled the

Multitenant filter to retrieve data when tenantId is equals to microsoft , the filter enforcer

will make sure that you also don't create, update or delete an entity if TenantId property is not

microsoft .

Use the following code to activate the filter enforcer:

You can see that the TFilterEnforcer class constructor receives three parameters: The first is

the filter name (Multitenant), the second is the name of a filter condition parameter, the third

is the name of the class member (field or property) that will be checked against the parameter

value.

Also, when you activate a filter enforcer, you must specify to which mapping explorer (model) it

will be applied. The above example is using the default model.

The enforcer will subscribe to key model events. Whenever an entity is about to be inserted,

updated or deleted, the enforcer will check if:

If the specified filter is active (Multitenant);

If yes, check if the value of specified class member (FTenantId) matches the value of filter

parameter (tenantId).

 if Manager.FilterEnabled('Multitenant') then

 Manager.DisableFilter('Multitenant');

uses {...}, Aurelius.Mapping.FilterEnforcer;

// variable/class field declaration

Enforcer: TFilterEnforcer;

// creating and activating filter enforcer

Enforcer := TFilterEnforcer.Create('Multitenant', 'TenantId', 'FTenantId');

Enforcer.Activate(TMappingExplorer.Default);

// deactivating and destroying filter enforcer

Enforcer.Deactivate(TMappingExplorer.Default);

Enforcer.Free;

1.

2.

TMS Aurelius 5.11 Page 182 of 269

If the condition 2 above is tested and fails, an exception will be raised. Optionally you can ask the

enforcer to auto comply to the value in either insert and/or update operations:

When the two properties above are enabled, the enforcer will check if the class member

(FTenantId) is empty. If it is, then instead of raising an error when the filter is enabled, it will

automatically set the member value using the parameter value. In other words: if a Multitenant

filter is active with tenantId parameter set to microsoft , if you try to insert or update a record

without specifying the TenantId property, the enforce will automatically fill it with the

microsoft value for you.

Enforcer.AutoComplyOnInsert := True;

Enforcer.AutoComplyOnUpdate := True;

TMS Aurelius 5.11 Page 183 of 269

Data Binding - TAureliusDataset
TMS Aurelius allows you to bind your entity objects to data-aware controls by using a

TAureliusDataset component. By using this component you can for example display a list of

objects in a TDBGrid, or edit an object property directly through a TDBEdit or a TDBComboBox.

TAureliusDataset is declared in unit Aurelius.Bind.Dataset :

Basic usage is done by these steps:

Set the source of data to be associated with the dataset, using SetSourceList method, or a

single object, using SetSourceObject.

Optionally, create a TField for each property/association/sub-property you want to

display/edit. If you do not, default fields will be used.

Optionally, specifiy a TObjectManager using the Manager property. If you do not, you must

manually persist objects to database.

TAureliusDataset is a TDataset descendant, thus it's compatible with all data-aware controls

provided by VCL, the Firemonkey live bindings framework and any 3rd-party control/tool that

works with TDataset descendants. It also provides most of TDataset functionality, like calculated

fields, locate, lookup, filtering, master-detail using nested datasets, among others.

The topics below cover all TAureliusDataset features.

Providing Objects
To use TAureliusDataset, you must provide to it the objects you want to display/edit. The objects

will become the source of data in the dataset.

The following topics describe several different methods you can use to provide objects to the

dataset.

Providing an Object List

A very straightforward way to provide objects to the dataset is specifying an external object list

where the objects will be retrieved from (and added to).

You do that by using SetSourceList method:

uses

 {...}, Aurelius.Bind.Dataset;

1.

2.

3.

var

 People: TList<TPerson>;

begin

 People := Manager.Find<TPerson>.List;

 AureliusDataset1.SetSourceList(People);

TMS Aurelius 5.11 Page 184 of 269

You can provide any type of generic list to it. When you insert/delete records in the dataset,

objects will be added/removed to the list.

By default, TAureliusDataset doesn't own the passed list object, meaning you are responsible for

destroying the list object itself, TAureliusDataset will not destroy it. You can change this behavior

passing a second boolean parameter to SetSourceList indicating you want the dataset to

destroy it:

With the code above, you don't have to worry about destroying People list.

NOTE

When the source list is owned, Aurelius dataset will destroy it when it's closed. If you want to

close and reopen the dataset in this case, you must provide a new list object, since the

previous one was destroyed.

Providing a Single Object

Instead of providing multiple objects, you can alternatively specify a single object.

It's a straightforward way if you intend to use the dataset to just edit a single object.

You must use SetSourceObject method for that:

Be aware that TAureliusDataset always works with lists. When you call SetSourceObject, the

internal object list is cleared and the specified object is added to it. The internal list then is used

as the source list of dataset. This means that even if you use SetSourceObject method, objects

might be added to or removed from the internal list, if you call methods like Insert, Append or

Delete.

Using Fetch-On-Demand Cursor

You can provide objects to TAureliusDataset by using a query object cursor. This approach is

especially useful when returning a large amount of data, since you don't need to load the whole

object list first and then provide the whole list to the dataset.

Only needed objects are fetched (for example, the objects being displayed in a TDBGrid that is

linked to the dataset). Additional objects will only be fetched when needed, i.e, when you scroll

down a TDBGrid, or call TDataset.Next method to retrieve the next record.

Note that the advantage of this approach is that it keeps an active connection and an active

query to the database until all records are fetched (or dataset is closed).

To use a cursor to provide objects, just call SetSourceCursor method and pass the ICriteriaCursor

interface you have obtained when opening a query using a cursor:

 // Passing True will not require you destroy People list

 AureliusDataset1.SetSourceList(People, True);

Customer := Manager.Find<TCustomer>(1);

AureliusDataset1.SetSourceObject(Customer);

TMS Aurelius 5.11 Page 185 of 269

You don't have to destroy the cursor, since it's an interface and is destroyed by reference

counting. When the cursor is not needed anymore, dataset will destroy it.

When you call SetSourceCursor, the internal object list is cleared. When new objects are fetched,

they are added to the internal list. So, the internal list will increase over time, as you navigate

forward in the dataset fetching more records.

Using Criteria for Offline Fetch-On-Demand

Another way to provide objects to TAureliusDataset is providing a TCriteria object to it. Just

create a query and pass the TCriteria object using SetSourceCriteria method.

In the code above, Aurelius will just execute the query specified by the TCriteria and fill the

internal object list with the retrieved objects.

This approach is actually not very different than providing an object list to the dataset. The real

advantage of it is when you use an overloaded version of SetSourceCriteria that allows paging.

Offline fetch-on-demand using paging

SetSourceCriteria method has an overloaded signature that received an integer parameter

specifying a page size:

It means that the dataset will fetch records on demand, but without needing to keep an active

database connection.

When you open a dataset after specifying a page size of 50 as illustrated in the code above, only

the first 50 TPerson objects will be fetched from the database, and query will be closed.

Internally, TAureliusDataset uses the paging mechanism provided by Take and Skip methods. If

var

 Cursor: ICriteriaCursor;

begin

 Cursor := Manager.Find<TPerson>.Open;

 AureliusDataset1.SetSourceCursor(Cursor);

 // Or just this single line version:

 AureliusDataset1.SetSourceCursor(Manager.Find<TPerson>.Open);

var

 Criteria: TCriteria;

begin

 Criteria := Manager.Find<TPerson>;

 AureliusDataset1.SetSourceCriteria(Criteria);

 // Or just this single line version:

 AureliusDataset1.SetSourceCriteria(Manager.Find<TPerson>);

AureliusDataset1.SetSourceCriteria(Manager.Find<TPerson>, 50);

TMS Aurelius 5.11 Page 186 of 269

more records are needed (a TDBGrid is scrolled down, or you call TDataset.Next method multiple

times, for example), then the dataset will perform another query in the database to retrieve the

next 50 TPerson objects in the query.

So, in summary, it's a fetch-on-demand mode where the records are fetched in batches and a

new query is executed every time a new batch is needed. The advantage of this approach is that

it doesn't retrieve all objects from the database at once, so it's fast to open and navigate,

especially with visual controls. Another advantage (when comparing with using cursors, for

example) is that it works offline - it doesn't keep an open connection to the database. One

disadvantage is that it requires multiple queries to be executed on the server to retrieve all

objects.

You don't have to destroy the TCriteria object. The dataset uses it internally to re-execute the

query and retrieve a new set of objects. When all records are fetched or the dataset is closed, the

TCriteria object is automatically destroyed.

Internal Object List
TAureliusDataset keeps an internal object list that is sometimes used to hold the objects

associated with the dataset records. When you provide an external object list, the internal list is

ignored. However, when you use other methods for providing objects, like using cursor

(SetSourceCursor), paged TCriteria (SetSourceCriteria), or even a single object (SetSourceObject),

then the internal list is used to keep the objects.

When the internal list is used, when new records are inserted or deleted, they are added to and

removed from the internal list. When fetch-on-demand modes are used (cursor and criteria),

fetched objects are incrementally added to the list. Thus, when you open the dataset you might

have 20 objects in the list, when you move the cursor to the end of dataset, you might end up

with 100 objects in the list.

So, there might be situations where you need to access such list. TAureliusDataset provides a

property InternalList for that. This property is declared as following:

The list is accessible through a IReadOnlyObjectList, so you can't modify it (unless, of course,

indirectly by using the TDataset itself). The IReadOnlyObjectList has the following methods:

Count method returns the current number of objects in the list.

Item method returns the object in the position I of the list (0-based).

IndexOf method returns the position of the object Obj in the list (also 0-based).

property InternalList: IReadOnlyObjectList;

IReadOnlyObjectList = interface

 function Count: integer;

 function Item(I: integer): TObject;

 function IndexOf(Obj: TObject): integer;

end;

TMS Aurelius 5.11 Page 187 of 269

Using Fields
In TAureliusDataset, each field represents a property in an object. So, for example, if you have a

class declared like this:

when providing an object of class TCustomer to the dataset, you will be able to read or write its

properties this way:

As with any TDataset descendant, TAureliusDataset will automatically create default fields, or you

can optionally create TField components manually in the dataset, either at runtime or design-

time. Creating persistent fields might be useful when you need to access a field that is not

automatically present in the default fields, like a sub-property field or when working with

inheritance.

The following topics explain fields usage in more details.

Default Fields and Base Class

When you open the dataset, default fields are automatically created if no persistent fields are

defined. TAureliusDataset will create a field for each property in the "base class", either regular

fields, or fields representing associations or many-valued associations like entity fields and

dataset fields. The "base class" mentioned is retrieved automatically by the dataset given the way

you provided the objects:

If you provide objects by passing a generic list to SetSourceList method, Aurelius will

consider the base class as the generic type in the list. For example, if the list type it

TList<TCustomer>, then the base class will be TCustomer.

If you provide an object by using SetSourceObject, the base class will just be the class of

object passed to that method.

You can alternatively manually specify the base class, by using the ObjectClass property.

Note that this must be done after calling SetSourceList or SetSourceObject, because these

two methods update the ObjectClass property internally. Example:

TCustomer = class

// <snip>

public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property Birthday: Nullable<TDate> read FBirthday write FBirthday;

end;

CustomerName := AureliusDataset1.FieldByName('Name').AsString;

if AureliusDataset1.FieldByName('Birthday').IsNull then

 AureliusDataset1.FieldByName('Birthday').AsDateTime := EncodeDate(1980, 1, 1);

1.

2.

3.

AureliusDataset1.SetSourceList(SongList);

AureliusDataset1.ObjectClass := TMediaFile;

TMS Aurelius 5.11 Page 188 of 269

Self Field

One special field that is created by default or you can add manually in persistent fields is a field

named "Self". It is an entity field representing the object associated with the current record. It's

useful for lookup fields.

In the following code, both lines are equivalent (if there is a current record):

Sub-Property Fields

You can access properties of associated objects (sub-properties) through TAureliusDataset.

Suppose you have a class like this:

You can access properties of Country object using dots:

As you might have noticed, sub-property fields can not only be read, but also written to. There is

not a limit for level access, which means you can have fields like this:

It's important to note that sub-property fields are not created by default when using default

fields. In the example of TCustomer class above, only field "Country" will be created by default,

but not "Country.Name" or any of its sub-properties. To use a sub-property field, you must

manually add the field to the dataset before opening it. Just like any other TDataset, you do that

at design-time, or at runtime:

Customer1 := AureliusDataset1.Current<TCustomer>;

Customer2 := AureliusDataset1.EntityFieldByName('Self').AsEntity<TCustomer>;

// Customer1 = Customer2

TCustomer = class

// <snip>

public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property Country: TCountry read FCountry write FCountry;

end;

AureliusDataset1.FieldByName('Country.Name').AsString := 'Germany';

CountryName := AureliusDataset1.FieldByName('Invoice.Customer.Country.Name').AsSt

ring;

with TStringField.Create(Self) do

begin

 FieldName := 'Country.Name';

 Dataset := AureliusDataset1;

end;

TMS Aurelius 5.11 Page 189 of 269

Entity Fields (Associations)

Entity Fields are fields that maps to an object property in a container object. In other words,

entity fields represent associations in the object. Consider the following class:

By default, TAureliusDataset will create fields "Id" and "Name" (scalar fields) and "Country" (entity

field). An entity field is just a field of type TAureliusEntityField that holds a reference to the object

itself. Since Delphi DB library doesn't provide a field representing an object pointer (which makes

sense), this new field type is provided by TMS Aurelius framework for you to manipulate the

object reference.

The TAureliusEntityField is just a TVariantField descendant with an additional AsObject property,

and an addition generic AsEntity<T> function that you can use to better manipulate the field

content. To access such properties, you can just cast the field to TAureliusEntityField, or use

TAureliusDataset.EntityFieldByName method.

Please note that the entity field just represents an object reference. It's useful for lookup fields

and to programatically change the object reference in the property, but it's not useful (and

should not be used) for visual binding, like a TDBGrid or to be edited in a TDBEdit, since its

content is just a pointer to the object. To visual bind properties of associated objects, use sub-

property fields.

The following code snippets are examples of how to use the entity field.

Following code shows how to retrieve the value of an association property using the dataset

field:

Dataset Fields (Many-Valued Associations)

Dataset fields represent collections in a container object. In other words, dataset fields represent

many-valued associations in the object. Consider the following class:

TCustomer = class

// <snip>

public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property Country: TCountry read FCountry write FCountry;

end;

// following lines are equivalent and illustrates how to set an association

through the dataset

AureliusDataset1.EntityFieldByName('Country').AsObject := TCountry.Create;

(AureliusDataset1.FieldByName('Country') as TAureliusEntityField).AsObject := TCo

untry.Create;

Country := AureliusDataset1.EntityFieldByName('Country').AsEntity<TCountry>;

TMS Aurelius 5.11 Page 190 of 269

The field "Items" is expected to be a TDatasetField, and represents all objects (records) in the

Items collection. Different from entity fields, you don't access a reference to the list itself, using

the dataset field.

In short, you can use the TDatasetField to build master-detail relationships. You can have, for

example, a TDBGrid linked to a dataset representing a list of TInvoice objects, and a second

TDBGrid linked to a dataset representing a list of TInvoiceItem objects. To link the second dataset

(invoice items) to the first (invoices) you just need to set the DatasetField property of the second

dataset. This will link the detail dataset to the collection of items in the first dataset. You can do it

at runtime or design-time.

The following code snippet illustrates better how to link two datasets using the dataset field. It's

worth to note that these dataset fields work as a regular TDatasetField. For a better

understanding of how a TDatasetField works, please refer to Delphi documentation.

Note that by default there is no need to set the Manager property of nested datasets. There is a

TAureliusDataset.ParentManager property which defaults to true, that indicates that the Manager

of the dataset will be same as the Manager of the parent dataset (which is the dataset of the

linked DatasetField). In this case, whenever you Post or Delete a record in the detail dataset, the

detail object will be immediately persisted in the database.

In case you don't want this behavior (for example, you want the details dataset to save objects in

memory and only when the master object is saved you have details being saved at once), you

can explicitly set the Manager property of the details dataset to nil. This will automatically set the

ParentManager property to false:

As with any master-detail relationship, you can add or remove records from the detail/nested

dataset, and it will add/remove items from the collection:

TInvoice = class

// <snip>

public

 property Id: Integer read FId write FId;

 property Items: TList<TInvoiceItem> read GetItems;

end;

InvoiceDataset.SetSourceList(List);

InvoiceDataset.Manager := Manager1;

InvoiceDataset.Open;

ItemsDataset.DatasetField := InvoiceDataset.FieldByName('Items') as

TDatasetField;

ItemsDataset.Open;

InvoiceDataset.SetSourceList(List);

InvoiceDataset.Manager := Manager1;

// Set Manager to nil so only save items when InvoiceDataset is posted.

// ItemsDataset.ParentManager will become false

ItemsDataset.Manager := nil;

InvoiceDataset.Open;

TMS Aurelius 5.11 Page 191 of 269

Heterogeneous Lists (Inheritance)

When providing objects to the dataset, the list provided might have objects instances of

different classes. This happens for example when you perform a polymorphic query.

Suppose you have a class hierarchy which base class is TAnimal, and descendant classes are

TDog, TMammal, TBird, etc.. When you perform a query like this:

You might end up with a list of objects of different classes like TDog or TBird. Suppose for

example TDog class has a DogBreed property, but TBird does not. Still, you need to create a field

named "DogBreed" so you can display it in a grid or edit that property in a form.

TAureliusDataset allows you to create fields mapped to properties that might not exist in the

object. Thus, you can create a persistent field named "DogBreed", or you can change the base

class of the dataset to TDog so that the default fields will include a field named "DogBreed".

To allow this feature to work well, when such a field value is requested and the property does not

exist in the object, TAureliusDataset will not raise any error. Instead, the field value will be null.

Thus, if you are listing the objects in a DBGrid, for example, a column associated with field

"DogBreed" will display the property value for objects of class TDog, but will be empty for

objects of class TBird, for example. Please note that this behavior only happens when reading the

field value. If you try to set the field value and the property does not exist, an error will be raised

when the record is posted. If you don't change the field value, it will be ignored.

Also note that the base class is used to create a new object instance when inserting new records

(creating objects). The following code illustrates how to use a dataset associated with a

TList<TAnimal> and still creating two different object types:

ItemsDataset.Append;

ItemsDataset.FieldByName('ProductName').AsString := 'A';

ItemsDataset.FieldByName('Price').AsCurrency := 1;

ItemsDataset.Post;

ItemsDataset.Append;

ItemsDataset.FieldByName('ProductName').AsString := 'B';

ItemsDataset.FieldByName('Price').AsCurrency := 1;

ItemsDataset.Post;

Animals := Manager.Find<TAnimal>.List;

TMS Aurelius 5.11 Page 192 of 269

Enumeration Fields

Fields that relate to an enumerated type are integer fields that hold the ordinal value of the

enumeration. Example:

Alternatively, you can use the sufix ".EnumName" after the property name so you can read and

write the values in string format (string fields):

Fields for Projection Values

When using projections in queries, the result objects might be objects of type TCriteriaResult.

Such object has the content of projections available in the Values property. TAureliusDataset

treats such values as fields, so you can define a field for each projection value. Since

TAureliusDataset cannot tell in advance what are the available fields, to use such scenario you

must previously define the persistent fields for each aliased projection.

The following code snippet illustrates how you can use projection values in TAureliusDataset.

Animals := Manager.FindAll<TAnimal>;

DS.SetSourceList(Animals); // base class is TAnimal

DS.ObjectClass := TDog; // now base is class is TDog

DS.Open;

DS.Append;

DS.FieldByName('Name').AsString := 'Snoopy';

DS.FieldByName('DogBreed').AsString := 'Beagle';

DS.Post; // Create a new TDog instance

DS.Append;

DS.ObjectClass := TBird; // change base class to TBird

DS.FieldByName('Name').AsString := 'Tweetie';

DS.Post; // Create a new TBird instance. DogBreed field is ignored

type TSex = (tsMale, tsFemale);

TheSex := TSex(DS.FieldByName('Sex').AsInteger);

DS.FieldByName('Sex').AsInteger := Ord(tsFemale);

SexName := DS.FieldByName('Sex.EnumName').AsString;

DS.FieldByName('Sex.EnumName').AsString := 'tsFemale';

TMS Aurelius 5.11 Page 193 of 269

NOTE

The TCriteriaResult objects provided to the dataset might be automatically destroyed when the

dataset closes, depending on how you provide objects to the dataset. If you use

SetSourceCursor or SetSourceCriteria, they are automatically destroyed. This is because since

the objects are fetched automatically by the dataset, it manages it's life-cycle. When you use

SetSourceList or SetSourceObject, they are not destroyed and you need to do it yourself.

Modifying Data
Modifying data with TAureliusDataset is just as easy as with any TDataset component. Call Edit,

Insert, Append methods, and then call Post to confirm or Cancel to rollback changes.

It's worth note that TAureliusDataset load and save data from and to the objects in memory. It

means when a record is posted, the underlying associated object has its properties updated

according to field values. However the object is not necessarily persisted to the database. It

depends on if the Manager property is set, or if you have set event handlers for object

persistence, as illustrated in code below.

with TStringField.Create(Self) do

begin

 FieldName := 'CountryName';

 Dataset := AureliusDataset1;

 Size := 50;

end;

with TIntegerField.Create(Self) do

begin

 FieldName := 'Total';

 Dataset := AureliusDataset1;

end;

// Retrieve number of customers grouped by country

AureliusDataset1.SetSourceCriteria(

 Manager.Find<TCustomer>

 .Select(TProjections.ProjectionList

 .Add(TProjections.Group('Country').As_('CountryName'))

 .Add(TProjections.Count('Id').As_('Total'))

)

 .AddOrder(TOrder.Asc('Total'))

);

// Retrieve values for the first record: country name and number of customers

FirstCountry := AureliusDataset1.FieldByName('CountryName').AsString;

FirstTotal := AureliusDataset1.FieldByName('Total').AsInteger;

TMS Aurelius 5.11 Page 194 of 269

The following topics explain some more details about modifying data with TAureliusDataset.

New Objects When Inserting Records

When you insert new records, TAureliusDataset will create new object instances and add them to

the underlying object list provided to the dataset.

The object might be created when the record enters insert state (default) or only when you post

the record (if you set TAureliusDataset.CreateObjectOnPost property to true). The class of object

being created is specified by the base class (either retrieved from the list of objects or manually

using ObjectClass property). See Default Fields and Base Class topic for more details.

In the following code, a new TCustomer object will be created when Append is called (if you call

Cancel the object will be automatically destroyed):

If you set CreateObjectOnPost to true, the object will only be created on Post.

Setting the base class manually is also important if you are using heterogeneous lists and want

to create instances of different classes when posting records, depending on an specific situation.

Alternatively, you can set OnCreateObject event handler. This event is called when the dataset

needs to create the object, and the event type declaration is below:

// Change Customer1.Name property

DS.Close;

DS.SetSourceObject(Customer1);

DS.Open;

DS.Edit;

DS.FieldByName('Name').AsString := 'John';

DS.Post;

// Customer1.Name property is updated to "John".

// Saving on database depends on setting Manager property

// or setting OnObjectUpdate event handler

Customers := TObjectList<TCustomer>.Create;

DS.SetSourceList(Customer); // base class is TCustomer

DS.Open;

DS.Append; // Create a new TCustomer instance

DS.FieldByName('Name').AsString := 'Jack';

DS.Post;

// Destroy Customers list later!

Customers := TObjectList<TCustomer>.Create;

DS.SetSourceList(Customer); // base class is TCustomer

DS.Open;

DS.Append;

DS.FieldByName('Name').AsString := 'Jack';

DS.Post; // Create a new TCustomer instance

// Destroy Customers list later!

TMS Aurelius 5.11 Page 195 of 269

If the event handler sets a valid object into NewObject parameter, the dataset will not create the

object. If NewObject is unchanged (remaining nil), then a new object of the class specified by the

base class is created internally.

Here is an example of how to use it:

NOTE

After Post, objects created by TAureliusDataset are not destroyed anymore. See Objects

Lifetime Management for more information.

Manager Property

When posting records, object properties are updated, but are not persisted to the database,

unless you manually set events for persistence, or set Manager property. If you set the Manager

property to a valid TObjectManager object, then when records are posted or deleted,

TAureliusDataset will use the specified manager to persist the objects to the database, either

saving, updating or removing the objects.

type

 TDatasetCreateObjectEvent = procedure(Dataset: TDataset; var NewObject:

TObject) of object;

 //<snip>

 property OnCreateObject: TDatasetCreateObjectEvent;

procedure TForm1.AureliusDataset1CreateObject(Dataset: TDataset; var NewObject: T

Object);

begin

 NewObject := TBird.Create;

end;

//<snip>

AureliusDataset1.OnCreateObject := AureliusDataset1CreateObject;

AureliusDataset1.Append; // a TBird object named "Tweetie" will be created here

AureliusDataset1.FieldByName('Name').AsString := 'Tweetie';

AureliusDatase1.Post;

TMS Aurelius 5.11 Page 196 of 269

In summary: if you want to manipulate objects only in memory, do not set Manager property. If

you want dataset changes to be reflected in database, set Manager property or use events for

manual persistence.

Please refer to the topic using Dataset Fields to learn how the Manager property is propagated

to datasets which are linked to dataset fields.

Objects Lifetime Management

TAureliusDataset usually does not manage any object it holds, either the entity objects itself, the

list of objects that you pass in SetSourceList when providing objects to it, or the objects it created

automatically when inserting new records. So you must be sure to destroy all of them when

needed! The only two exceptions are described at the end of this topic.

Even when deleting records, the object is not destroyed (if no Manager is attached). The

following code causes a memory leak:

Customers := TAureliusDataset.Create(Self);

CustomerList := TList<TCustomer>.Create;

Manager := TObjectManager.Create(MyConnection);

try

 Customers.SetSourceList(CustomerList);

 Customers.Open;

 Customers.Append;

 Customers.FieldbyName('Name').AsString := 'Jack';

 // On post, a new TCustomer object named "Jack" is created, but not saved to

database

 Customers.Post;

 // Now set the manager

 Customers.Manager := Manager;

 Customers.Append;

 Customers.FieldbyName('Name').AsString := 'John';

 // From now on, any save/delete operation on dataset will be reflected on

database

 // A new TCustomer object named "John" will be created, and Manager.Save

 // will be called to persist object in database

 Customers.Post;

 // Record is deleted from dataset and object is removed from database

 Customers.Delete;

finally

 Manager.Free;

 Customers.Free;

 CustomerList.Free;

end;

TMS Aurelius 5.11 Page 197 of 269

In code above, a new object is created in the Post, but when record is deleted, object is not

destroyed, although it's removed from the list.

But, be aware that the TObjectManager object itself manages the objects. If you set the Manager

property of the dataset, then records being saved will cause objects to be saved or updated by

the manager, meaning they will be managed by it. It works just as any object manager. So

usually you would not need to destroy objects if you are using a TObjectManager associated with

the dataset (but you would still need to destroy the TList object holding the objects). But just

know that they are being managed by the TObjectManager object, not by the TAureliusDataset

component itself.

Exceptions

There are only two exceptions when objects are destroyed by the dataset:

A record in Insert state is not Posted.

When you Append a record in the dataset, an object is created (unless

CreateObjectsOnPost property is set to true). If you then Cancel the inserting of this

record, the dataset will silently destroy that object.

When objects of type TCriteriaResult are passed using SetSourceCursor or

SetSourceCriteria.

In this case the objects are destroyed by the dataset.

Manual Persistence Using Events

To properly persist objects to the database and manage them by properly destroying when

needed, you would usually use the Manager property and associate a TObjectManager object to

the dataset.

Customers := TAureliusDataset.Create(Self);

CustomerList := TList<TCustomer>.Create;

try

 Customers.SetSourceList(CustomerList);

 Customers.Open;

 Customers.Append;

 Customers.FieldbyName('Name').AsString := 'Jack';

 // On post, a new TCustomer object named "Jack" is created, but not saved to

database

 Customers.Post;

 // Record is deleted from dataset, but object is NOT DESTROYED

 Customers.Delete;

finally

 Manager.Free;

 Customers.Free;

 CustomerList.Free;

end;

1.

2.

TMS Aurelius 5.11 Page 198 of 269

Alternatively, you can also use events for manual persistence and management. Maybe you just

want to keep objects in memory but need to destroy them when records are deleted, so you can

use OnObjectRemove event. Or maybe you just want to hook a handler for the time when an

object is updated and perform additional operations.

The following events for handling objects persistence are available in TAureliusDataset, and all of

them are of type TDatasetObjectEvent:

OnObjectInsert event is called when a record is posted after an Insert or Append operation,

right after the object instance is created.

OnObjectUpdate event is called when a record is posted after an Edit operation.

OnObjectRemove event is called when a record is deleted.

In all events, the AObject parameter related to the object associated with the current record.

NOTE

If one of those event handlers are set, the object manager specified in Manager property will

be ignored and not used. So if for example you set an event handler for OnObjectUpdate

event, be sure to persist it to the database if you want to, because Manager.Update will not be

called even if Manager property is set.

Locating Records
TAureliusDataset supports usage of Locate method to locate records in the dataset. Use it just as

with any regular TDataset descendant:

You can perform locate on entity fields. Just note that since entity fields hold a reference to the

object itself, you just need to pass a reference in the locate method. Since objects cannot be

converted to variants, you must typecast the reference to an Integer or IntPtr (Delphi XE2 and

up).

type

 TDatasetObjectEvent = procedure(Dataset: TDataset; AObject: TObject) of object;

 //<snip>

 property OnObjectInsert: TDatasetObjectEvent;

 property OnObjectUpdate: TDatasetObjectEvent;

 property OnObjectRemove: TDatasetObjectEvent;

Found := AureliusDataset1.Locate('Name', 'mi', [loCaseInsensitive,

loPartialKey]);

{$IFDEF DELPHIXE2}

Invoices.Locate('Customer', IntPtr(Customer), []);

{$ELSE}

Invoices.Locate('Customer', Integer(Customer), []);

{$ENDIF}

TMS Aurelius 5.11 Page 199 of 269

The Customer object must be the same. Even if customer object has the same Id as the object in

the dataset, if the object references are not the same, Locate will fail. Alternatively, you can also

search on sub-property fields:

In this case, the record will be located if the customer name matches the specified value,

regardless if object references are the same or not.

You can also search on calculated and lookup fields.

Calculated Fields
You can use calculated fields in TAureliusDataset the same way with any other dataset. Note that

when calculating fields, you can use regular Dataset.FieldByName approach, or you can use

Current<T> property and access the object properties directly.

Lookup Fields
You can use lookup fields with TAureliusDataset, either at design-time or runtime. Usage is not

different from any TDataset.

One thing it's worth note, though, is how to use lookup field for entity fields (associations), which

is probably the most common usage. Suppose you have a TInvoice class with a property

Customer that is an association to a TCustomer class. You can have two datasets with TInvoice

and TCustomer data, and you want to create a lookup field in Invoices dataset to lookup for a

value in Customers dataset, based on the value of Customer property.

Since "Customer" is an entity field in Invoices dataset, you need to lookup for its value in the

Customers dataset using the "Self" field, which represents a reference to the TCustomer object in

Customers dataset. The following code illustrates how to create a lookup field in Invoices dataset

to lookup for the customer name based on "Customer" field:

Found := Invoices.Locate('Customer.Name', Customer.Name, []);

procedure TForm1.AureliusDataset1CalcFields(Dataset: TDataset);

begin

 if AureliusDataset1.FieldByName('Birthday').IsNull then

 AureliusDataset1.FieldByName('BirthdayText').AsString := 'not specified'

 else

 AureliusDataset1.FieldByName('BirthdayText').AsString :=

 DateToStr(AureliusDataset1.FieldByName('Birthday').AsDateTime);

 case AureliusDataset1.Current<TCustomer>.Sex of

 tsMale:

 AureliusDataset1.FieldByName('SexDescription').AsString := 'male';

 tsFemale:

 AureliusDataset1.FieldByName('SexDescription').AsString := 'female';

 end;

end;

TMS Aurelius 5.11 Page 200 of 269

Being a regular lookup field, this approach also works with componentes like

TDBLookupComboBox and TDBGrid. It would display a combo with a list of customer names, and

will allow you to change the customer of TInvoice object by choosing the item in combo (the

field "Customer" in Invoices dataset will be updated with the value of field "Self" in Customers

dataset).

Filtering
TAureliusDataset supports filtering of records by using regular TDataset.Filtered property and

TDataset.OnFilterRecord event. It works just as any TDataset descendant. Note that when filtering

records, you can use regular Dataset.FieldByName approach, or you can use Current<T>

property and access the object properties directly.

// Invoices is a dataset which data is a list of TInvoice objects

// Customers is dataset which data is a list of TCustomer objects

// Create the lookup field in Invoices dataset

LookupField := TStringField.Create(Invoices.Owner);

LookupField.FieldName := 'CustomerName';

LookupField.FieldKind := fkLookup;

LookupField.Dataset := Invoices;

LookupField.LookupDataset := Customers;

LookupField.LookupKeyFields := 'Self';

LookupField.LookupResultField := 'Name';

LookupField.KeyFields := 'Customer';

procedure TForm1.DatasetFilterRecord(Dataset: TDataset; var Accept: boolean);

begin

 Accept :=

 (Dataset.FieldByName('Name').AsString = 'Toby')

 or

 (TAureliusDataset(Dataset).Current<TAnimal> is TMammal);

end;

//<snip>

begin

 AureliusDataset1.SetSourceList(Animals);

 AureliusDataset1.Open;

 AureliusDataset1.OnFilterRecord := DatasetFilterRecord;

 AureliusDataset1.Filtered := True;

end;

TMS Aurelius 5.11 Page 201 of 269

Design-time Support
TAureliusDataset is installed in Delphi component palette and can be used at design-time and as

any TDataset component you can set its fields using fields editor, specify master-detail

relationships by setting DatasetField property to a dataset field, create lookup fields, among

other common TDataset tasks.

However, creating fields manually might be a boring task, especially if you have a class with

many properties and need to create many fields manually. So TAureliusDataset provides a

design-time menu option named "Load Field Definitions..." (right-click on the component), which

allows you to load a class from a package and create the field definitions from that class.

A dialog appears allowing you to choose a class to import the definitions from. Note that the

classes are retrieving from available packages. By default, classes from packages installed in the

IDE are retrieved. If you want to use a package that is not installed, you can add it to the

packages list. So, for a better design-time experience with TAureliusDataset, create a package

with all your entity classes, compile it, and load it in this dialog.

The packages in the list are saved in the registry so you can reuse it whenever you need. To

remove the classes of a specified package from the combo box, just uncheck the package. The

package will not keep loaded: when the dialog closes, the package is unloaded from memory.

TMS Aurelius 5.11 Page 202 of 269

Note that the dialog will fill the FieldDefs property, not create field components in the fields

editor. The FieldDefs behaves as if the field definitions are being retrieved from a database. You

would still need to create the field components, but now you can use the FieldDefs to help you,

so you can use "Add All Fields" or "Add Field..." options from the fields editor popup menu. The

FieldDefs property is persisted in the form so you don't need to reload the package in case you

close the form and open it again. That's its only purpose, and they are not used at runtime.

Other Properties And Methods
List of TAureliusDataset methods and properties not coverered by other topics in this chapter.

Methods

Name Description

procedure

FillRecord(Obj:

TObject);

Updates all dataset field values with the respective property values of

Obj object. This is useful to "copy" all values from Obj to the dataset

fields.

procedure

RefreshRecord;

Updates all dataset field values from the existing underlying object. Use

RefreshRecord if you have modified the object properties directly and

want the dataset to reflect such changes.

Properties

Name Description

CreateSelfField: Boolean When True (default), the dataset will include the Self field in the

list of default fieldsdefs. If False, the field will not be created.

DefaultsFromObject:

Boolean

When True, brings field default values with object state. When

inserting a new record in TAureliusDataset, all fields come with

null values by default (DefaultsFromObject is False). By setting

this property to True, default (initial) value of the fields will come

from the property values of the underlying object.

FieldInclusions:

TFieldInclusions

Determines which special "categories" of fields will be created

automatically by the dataset when it's open and no persistent

fields are defined. This is a set of TFieldInclusion enumeration

type which have the following options.

The value of this property by default is [TFieldInclusion.Entity,

TFieldInclusion.Dataset].

TMS Aurelius 5.11 Page 203 of 269

Name Description

IncludeUnmappedObjects:

Boolean

When True, the dataset will also create field definitions for object

(and lists) properties that are not mapped. In other words, you

can view/edit transient object properties. The default is False

which means only Aurelius associations will be visible.

ReadOnly: Boolean If true, puts the dataset in read-only mode, so data cannot be

edited by visual data-aware controls. Default is false.

SubpropsDepth: Integer Allows automatic loading of subproperty fields. When loading

field definitions for TAureliusDataset at design-time, or when

opening the TAureliusDataset without persistent fields, one TField

for each property in object will be created. By increasing

SubpropsDepth to 1 or more, TAureliusDataset will also

automatically include subproperty fields for each property in each

association, up to the level indicated by SubpropsDepth. For

example, if SubpropsDepth is 1, and there is an association field

named "Customer", the dataset will also create fields like

"Customer.Name", "Customer.Birthday", etc.. Default is 0 (zero).

SyncSubProps: Boolean Allows automatic updating of associated fields. When an entity

field (e.g., "Customer") of the TAureliusDataset component is

modified, all the subproperty fields (e.g., "Customer.Name",

"Customer.Birthday") will be automatically updated with new

values if this property is set to True. Default is False.

RecordCountMode:

TRecordCountMode

When using dataset in paged mode using SetSourceCriteria, by

default the total number of records is not known in advance until

all pages are retrieved. RecordCount property returns -1 until all

records are fetched. You can use this property change the dataset

algorithm used to return the RecordCount property value. See

below the valid values.

TFieldInclusions

TFieldInclusion.Entity:

If present, Aurelius dataset will create entity fields for properties that hold object instances

(usually associations). For example, for a class TCustomer with a property Country of type

TCountry, an entity field "Country" will be created.

TFieldInclusion.Dataset:

If present, Aurelius dataset will create dataset fields for properties that hold object lists.

For example, for a class TInvoice with a property Items of type TList<TInvoiceItem>, a

dataset field "Items" will be created.

type

 TFieldInclusion = (Entity, Dataset);

 TFieldInclusions = set of TFieldInclusion;

•

•

TMS Aurelius 5.11 Page 204 of 269

TRecordCountMode

TRecordCountMode.Default:

RecordCount always return -1 if not all records are fetched from the database. No extra

statements are performed.

TRecordCountMode.Retrieve:

An extra statement will performed in database to retrieve the total number of records to

be retrieved. RecordCount property will return the correct value even if not all records are

fetched from the database. This has a small penalty performance since it requires another

statement to be executed. The extra statement will only be executed if RecordCount

property is read.

TRecordCountMode.FetchAll:

All records will be retrieved to properly return the RecordCount value. This is maximum

penalty performance in exchange for always returning the correct value of RecordCount

property.

type

 TRecordCountMode = (Default, Retrieve, FetchAll);

•

•

•

TMS Aurelius 5.11 Page 205 of 269

Distributed Applications
You can build distributed applications using Aurelius. When mapping classes, you can specify any

class ancestor, and you can define which fields and properties will be mapped or not. This gives

you flexibility to use almost any framework for building distributed applications - even if that

framework requires that the classes need to have specific behavior (like inheriting from a specific

base class, for example).

Still, Aurelius provides several mechanisms and classes that make building distributed

applications even easier. The following topics describe features for building distributed

applications using Aurelius.

JSON - JavaScript Object Notation
When building distributed applications, you need to transfer your objects between peers. Usually

to transfer objects you need to convert them (marshal) to a format that you can send through

your communication channel. Currently one of the most popular formats for that is the JSON

format. It's simple, text representation, that can easily be parsed, lightweight, and portable. You

can build your server using Aurelius, retrieve your objects from database, convert them to JSON,

send the objects through any communication channel to client, and from the client, you can

convert the JSON back to an Aurelius object. Since it's a portable format, your client doesn't even

need to be a Delphi application using Aurelius - you can use a JavaScript client, for example, that

fully supports the JSON format, or any other language.

To converting Aurelius objects to JSON you can use one of the available JSON serializers:

To convert a JSON notation back to an Aurelius object, you can use one of the available JSON

deserializers:

The following topics describes in more details how to better use the JSON with Aurelius.

Serializer := TDataSnapJsonSerializer.Create;

try

 JsonValue := Serializer.ToJson(Customer);

finally

 Serializer.Free;

end;

Deserializer := TDataSnapJsonDeserializer.Create;

try

 Customer := Deserializer.FromJson<TCustomer>(JsonValue);

finally

 Deserializer.Free;

end;

TMS Aurelius 5.11 Page 206 of 269

Available Serializers

Aurelius uses an open architecture in JSON support that allows you to use any framework for

parsing and generating the JSON representation. This makes it easy to use your preferred

framework for building distributed applications and use legacy code. For example, if you are

using DataSnap, Aurelius provides the DataSnap serializer that converts the object to a

TJsonValue object which holds the JSON representation structure. You can use the TJsonValue

directly in a DataSnap server to send JSON to the client. Other frameworks use different objects

for JSON representation (or simply string format) so you can use any you want.

The following table lists the currently available JSON serializer/deserializer classes in Aurelius,

what framework they use, and what is the base type that is uses for JSON representation:

Framework Serializer class Deserializer class JSON Class Declared in unit Vendor Site

DataSnap TDataSnapJsonSerializer TDataSnapJsonDeserializer TJsonValue Aurelius.Json.DataSnap Delphi Native

SuperObject TSuperObjectJsonSerializer TSuperObjectJsonDeserializer ISuperObject Aurelius.Json.SuperObject http://code.google.com/p/superobject/

All serializers have a ToJson method that receives an object and returns the type specified by the

JSON Class in the table above.

All deserializers have a generic FromJson method that receives the type specified by JSON class

in the table above and returns the type specified in the generic parameter.

Both serializer and deserializer need a reference to a TMappingExplorer object to work with. You

can pass the object in the Create constructor when creating a serializer/deserializer, or you can

use the method with no parameter to use the default mapping setup.

The following code snippets illustrate different ways of using the serializers.

Serializing/Deserializing an Aurelius object using DataSnap JSON classes and default mapping

setup:

TMS Aurelius 5.11 Page 207 of 269

http://code.google.com/p/superobject/

Serializing/Deserializing an Aurelius object using SuperObject and custom mapping setup:

uses

 {...}, Aurelius.Json.DataSnap;

var

 Serializer: TDataSnapJsonSerializer;

 Deserializer: TDataSnapJsonDeserializer;

 Customer: TCustomer;

 AnotherCustomer: TCustomer;

 JsonValue: TJsonValue;

begin

 {...}

 Serializer := TDataSnapJsonSerializer.Create;

 Deserializer := TDataSnapJsonDeserializer.Create;

 try

 JsonValue := Serializer.ToJson(Customer);

 AnotherCustomer := Deserializer.FromJson<TCustomer>(JsonValue);

 finally

 Serializer.Free;

 Deserializer.Free;

 end;

 {...}

end;

uses

 {...}, Aurelius.Json.SuperObject;

var

 Serializer: TSuperObjectJsonSerializer;

 Deserializer: TSuperObjectJsonDeserializer;

 Customer: TCustomer;

 AnotherCustomer: TCustomer;

 SObj: ISuperObject;

 CustomMappingExplorer: TMappingExplorer;

begin

 {...}

 Serializer := TSuperObjectJsonSerializer.Create(CustomMappingExplorer);

 Deserializer := TSuperObjectJsonDeserializer.Create(CustomMappingExplorer);

 try

 SObj := Serializer.ToJson(Customer);

 AnotherCustomer := Deserializer.FromJson<TCustomer>(SObj);

 finally

 Serializer.Free;

 Deserializer.Free;

 end;

 {...}

end;

TMS Aurelius 5.11 Page 208 of 269

Serialization behavior

Aurelius maps each relevant field/attribute to the JSON representation, so that the JSON holds

all (and only) relevant information to represent an object state. So for example, a class mapped

like this:

will generate the following JSON representation:

Note that fields FId and properties ArtistName and Genre are mapped, and so are the ones that

appear in the JSON format. Aurelius includes extra meta fields (starting with $) for its internal use

that will make it easy to later deserialize the object. Nullable types and dynamic properties are

automatically handled by the serializer/deserializer.

Blob fields

Content of blobs are converted into a base64 string so it can be properly deserialized back to a

binary format (Data field is truncated in example below):

[Entity]

[Table('ARTISTS')]

[Id('FId', TIdGenerator.IdentityOrSequence)]

TArtist = class

private

 [Column('ID', [TColumnProp.Unique, TColumnProp.Required, TColumnProp.NoUpdate])

]

 FId: Integer;

 FArtistName: string;

 FGenre: Nullable<string>;

 function GetArtistName: string;

 procedure SetArtistName(const Value: string);

public

 property Id: integer read FId;

 [Column('ARTIST_NAME', [TColumnProp.Required], 100)]

 property ArtistName: string read GetArtistName write SetArtistName;

 [Column('GENRE', [], 100)]

 property Genre: Nullable<string> read FGenre write FGenre;

end;

{

 "$type": "Artist.TArtist",

 "$id": 1,

 "FId": 2,

 "ArtistName": "Smashing Pumpkins",

 "Genre": "Alternative"

}

TMS Aurelius 5.11 Page 209 of 269

If blobs are set to be lazy and they are not loaded, then they will not be fully sent in JSON

representation, but only a meta information that will allow you to load it later. See more at Lazy-

Loading with JSON.

Associations

If the object being serialized has associations and/or many-valued associations, those objects are

also serialized in the JSON. The following example shows a serialization of a class TSong which

has properties Album, Artist and SongFormat that points to other objects:

If the association is marked as lazy-loading and is not load yet, then they will not be included in

JSON representation, but instead a meta information will be included for later loading the value.

In the example above, FAlbum and FArtist were defined as proxies and were not loaded, so the

{

 "$type": "Images.TImage",

 "$id": 1,

 "FId": 5,

 "ImageName": "Landscape",

 "Data": "TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBi

eSB0aGlz..."

}

{

 "$type": "Song.TSong",

 "$id": 1,

 "FAlbum": {

 "$proxy": "single",

 "key": 2,

 "class": "TMediaFile",

 "member": "FAlbum"

 },

 "MediaName": "Taxman2",

 "Duration": 230,

 "FId": 1,

 "FArtist": {

 "$proxy": "single",

 "key": 1,

 "class": "TMediaFile",

 "member": "FArtist"

 },

 "FileLocation": "",

 "SongFormat": {

 "$type": "SongFormat.TSongFormat",

 "$id": 2,

 "FId": 1,

 "FormatName": "MP3"

 }

}

TMS Aurelius 5.11 Page 210 of 269

object they hold is a proxy meta information. On the other hand, SongFormat property is loaded

and the whole TSongFormat object is serialized in it. For more information on lazy-loading, see

Lazy-Loading with JSON.

Lazy-Loading with JSON

An object being serialized might have associations and many-valued associations defined to be

lazy-loaded. When that is the case and the proxies are not loaded yet, the associated objects are

not serialized, but instead, an object with metadata for that proxy is serialized instead. Take a

look at the following example (irrelevant parts of the real JSON notation were removed):

In that example, TSong has a FAlbum field of type Proxy<TAlbum>. The song being serialized

doesn't have the FAlbum field loaded, so instead of the actual TAlbum object to be serialized, a

proxy object is serialized instead. The proxy object is indicated by the presence of the meta

property "$proxy", which indicates if it's a proxy for a single object or a list.

How does the deserializer handle this? All JSON deserializers have a property ProxyLoader which

points to an interface of type IJsonProxyLoader declared like this:

While the IProxyInfo object is declared like this (in unit Aurelius.Types.Proxy):

When the TSong object in the previous example is deserialized, an internal proxy is set

automatically in the FAlbum field. When the Album property of Song object is read, the proxy

calls the method LoadProxyValue of the IJsonProxyLoader interface. So for the object to be

{

 "$type": "Song.TSong",

 "$id": 1,

 "FId": 1,

 "FAlbum": {

 "$proxy": "single",

 "key": 2,

 "class": "TMediaFile",

 "member": "FAlbum"

 },

 "FileLocation": ""

}

IJsonProxyLoader = interface

 function LoadProxyValue(ProxyInfo: IProxyInfo): TObject;

end;

IProxyInfo = interface

 function ProxyType: TProxyType;

 function ClassName: string;

 function MemberName: string;

 function Key: Variant;

end;

TMS Aurelius 5.11 Page 211 of 269

loaded by the proxy, you must provide a valid IJsonProxyLoader interface in the deserializer so

that you can load the proxy and pass it back to the engine. The easiest way to create an

IJsonProxyLoader interface is using the TJsonProxyLoader interface object provided by Aurelius.

The following code illustrates how to do it:

You can safely destroy the deserializer after the object is loaded, since the reference to the proxy

loader will be in the object itself. It's up to you how to implement the ProxyLoader. In the

example above, we are assuming we have a client object with a RemoteProxyLoad method that

calls a server method passing the ProxyInfo data as JSON format. In the server, you can easily

implement such method just by receiving the proxy info format, converting it back to IProxyInfo

interface and then calling TObjectManager.ProxyLoad method:

Deserializer := TDataSnapJsonDeserializer.Create;

try

 Deserializer.ProxyLoader := TJsonProxyLoader.Create(

 function(ProxyInfo: IProxyInfo): TObject

 var

 Serializer: TDataSnapJsonSerializer;

 Deserializer: TDataSnapJsonDeserializer;

 JsonObject: TJsonValue;

 begin

 Serializer:= TDataSnapJsonSerializer.Create;

 Deserializer := TDataSnapJsonDeserializer.Create;

 try

 JsonObject := DatasnapClient.RemoteProxyLoad(Serializer.ToJson(ProxyInfo)

);

 Result := Deserializer.FromJson(JsonObject, TObject);

 finally

 Deserializer.Free;

 Serializer.Free;

 end;

 end

);

 Song := Deserializer.FromJson<TSong>(JsonValueWithSong);

finally

 Deserializer.Free;

end;

// At this point, Song.Album is not loaded yet.

// When the following line of code is executed (Album property is read)

// then the method specified in the ProxyLoader will be executed and

// Album will be loaded.

Album := Song.Album;

AlbumName := Album.Name;

TMS Aurelius 5.11 Page 212 of 269

Lazy-Loading Blobs

In an analog way, you can lazy-load blobs with JSON. It works exactly the same as loading

associations. The deserializer has a property named BlobLoader which points to an

IJsonBlobLoader interface:

And the IBlobInfo object is declared like this (in unit Aurelius.Types.Blob):

And you can use TObjectManager.BlobLoad method at server side.

Memory Management with JSON

When deserializing a JSON value, objects are created by the deserializer. You must be aware that

not only the main object is created, but also the associated objects, if it has associations. For

example, if you deserialize an object of class TSong, which has a property TSong.Album, the

object TAlbum will be also deserialized. Since you are not using an object manager that manages

memory for you, in theory you would have to destroy those objects:

You might imagine that if your JSON has a complex object tree, you will end up having to

destroy several objects (what about Song.Album.AlbumType.Free , for example). To minimize this

problem, deserializers have a property OwnsEntities that when enabled, destroys every object

created by it (except lists). So your code can be built this way:

// This method assumes that Serializer, Deserializer and ObjectManager

// objects are already created by the server

function TMyServerMethods.RemoteProxyLoad(JsonProxyInfo: TJsonValue): TJsonValue;

var

 ProxyInfo: IProxyInfo;

begin

 ProxyInfo := Deserializer.ProxyInfoFromJson<IProxyInfo>(JsonProxyInfo);

 Result := Serializer.ToJson(ObjectManager.ProxyLoad(ProxyInfo));

end;

IJsonBlobLoader = interface

 function ReadBlob(BlobInfo: IBlobInfo): TArray<byte>;

end;

IBlobInfo = interface

 function ClassName: string;

 function MemberName: string;

 function Key: Variant;

end;

Song := Deserializer.FromJson<TSong>(JsonValue);

{ do something with Song, then destroy it - including associations }

Song.Album.Free;

Song.Free;

TMS Aurelius 5.11 Page 213 of 269

Alternatively, if you still want to manage objects by yourself, but want to know which objects

were created by the deserializer, you can use OnEntityCreated event:

In addition to OnEntityCreated event, the deserializer also provides Entities property which

contains all objects created by it:

Note about JSON classes created by serializer

You must also be careful when converting objects to JSON. It's up to you to destroy the class

created by the serializer, if needed. For example:

In the previous example, JsonValue is a TJsonValue object and it must be destroyed. Usually you

will use DataSnap deserializer in a DataSnap application and in most cases where you use

TJsonValue objects in DataSnap, the framework will destroy the object automatically.

Nevertheless you must pay attention to situations where you need to destroy it.

Deserializer := TDataSnapJsonDeserializer.Create;

Deserializer.OwnsEntities := true;

Song := Deserializer.FromJson<TSong>(JsonValue);

{ do something with Song, then destroy it - including associations }

Deserializer.Free;

// After the above line, Song and any other associated object

// created by the deserializer are destroyed

Deserializer.OnEntityCreated := EntityCreated;

procedure TMyClass.EntityCreated(Sender: TObject; AObject: TObject);

begin

 // Add created object to a list for later destruction

 FMyObjects.Add(AObject);

end;

property Entities: TEnumerable<TObject>;

var

 JsonValue: TJsonValue;

begin

 JsonValue := DataSnapDeserializer.ToJson(Customer);

 // JsonValue must be destroyed later

TMS Aurelius 5.11 Page 214 of 269

Events
Aurelius provides an event system which you can use to receive callback notifications when some

events occur, for example, an entity update or a item is included in a collection. This chapter

explains how to use this event system and what events are available.

Using Events

Subscribing from code

Events in Aurelius are available in the Events property of the TMappingExplorer object. Such

property refers to a TManagerEvents (declared in unit Aurelius.Events.Manager) object with

several subproperties, each to them related to an event. For example, to access the OnInserted

event of the default TMappingExplorer:

In a less direct way, using method reference instead of anonymous method:

uses {...}, Aurelius.Mapping.Explorer, Aurelius.Events.Manager;

TMappingExplorer.Default.Events.OnInserted.Subscribe(

 procedure(Args: TInsertedArgs)

 begin

 // Use Args.Entity to retrieve the inserted entity

 end

);

TMappingExplorer.Default.Events.OnUpdated.Subscribe(

 procedure(Args: TUpdatedArgs)

 begin

 // Use Args.Entity to retrieve the updated entity

 end

);

TMS Aurelius 5.11 Page 215 of 269

The events are available in the TMappingExplorer object so the listeners will receive notifications

about any event fired by any TObjectManager created that references the specified

TMappingExplorer object. In other words, the events are "global" for that mapping explorer.

Listeners are method references that receive a single object as a parameter. Such object has

several properties containing relevant information about the event, and differ for each event

type. Names of event properties, method reference type and arguments follow a standard. The

event property is named "On<event>", method reference type is "T<event>Proc" and parameter

object is "T<event>Args". For example, for the "Deleted" event, the respective names will be

"OnDeleted", "TDeletedProc" and "TDeletedArgs".

All events in Aurelius are multicast events, which means you can add several events handlers

(listeners) to the same event. When an event occurs, all listeners will be notified. This allows you

to add a listener in a safe way, without worrying if it will replace an existing listener that might

have been set by other part of the application. You should use Subscribe and Unsubscribe

methods to add and remove listeners, respectively. Note that since listeners are method

references, you must sure to unsubscribe the same reference you subscribed to:

Passing just the method name doesn't work:

uses {...}, Aurelius.Mapping.Explorer, Aurelius.Events.Manager;

procedure TSomeClass.MyInsertedProc(Args: TInsertedArgs);

begin

 // Use Args.Entity to retrieve the inserted entity

end;

procedure TSomeClass.MyUpdatedProc(Args: TUpdatedArgs);

begin

 // Use Args.Entity to retrieve the updated entity

end;

procedure TSomeClass.RegisterMyEventListeners;

var

 Events: TManagerEvents;

begin

 Events := TMappingExplorer.Default.Events;

 Events.OnInserted.Subscribe(MyInsertedProc);

 Events.OnUpdated.Subscribe(MyUpdatedProc);

end;

var

 LocalProc: TInsertedProc;

begin

 LocalProc := MyInsertedProc;

 Events.OnInserted.Subscribe(LocalProc);

 {...}

 Events.OnInserted.Unsubscribe(LocalProc);

end;

TMS Aurelius 5.11 Page 216 of 269

TAureliusModelEvents Component

An alternative, more RAD way to use events is the TAureliusModelEvents component. Just drop

the component in the form and double click the desired event in the object inspector to create

an event handler.

The events available are exactly the same ones that you can set from code, like OnInserting,

OnSqlExecuting, etc. See all the available events in this chapter.

Key properties

Name Description

ModelName:

string

The name(s) of the model(s) to be used by the manager. You can leave it blank,

if you do it will use the default model. Two or more model names should be

separated by comma. From the model names it will get the property

TMappingExplorer component that will be passed to the TDatabaseManager

constructor to create the instance that will be encapsulated.

Note the events are "cumulative", the same way you do it from code. It means that if you add

two or more TAureliusModelEvents in your application and set an event handler for the same

event in all of them, all the handlers will be fired. That's very convenient to event handler code

that is specific to each context in your app.

Using Attributes

A third and even more straightforward way to respond to events is to use attributes. You can

simply add an attribute to a method of an entity class, and that method will be invoked when the

event is triggered. Consider the following example:

When TCustomer entity is about to be inserted in the database, the OnInserting method will

be invoked. After the record is inserted, the method OnInserted is invoked.

Events.OnInserted.Subscribe(MyInsertedProc);

{...}

// this will NOT unsubscribe the previous subscription:

Events.OnInserted.Unsubcribe(MyInsertedProc);

type

 {$RTTI EXPLICIT METHODS([vcPrivate..vcPublished])}

 TCustomer = class

 strict private

 [OnInserting] procedure OnInserting(Args: TInsertingArgs);

 [OnInserted] procedure OnInserted;

 [OnUpdated, OnInserted] procedure AfterModification;

 {...}

 end;

TMS Aurelius 5.11 Page 217 of 269

WARNING

By default, Delphi doesn't generate RTTI for non-published methods. That's why you must add

the directive {$RTTI EXPLICIT METHODS([vcPrivate..vcPublished])} to your class. If you

don't do that, Aurelius won't know about the mentioned methods and they will not be invoked

when the events are triggered!

Note that you can use the same method to handle more than one event. The method

AfterModification will be invoked when event OnUpdated is fired, and also when OnInserted

is fired.

Finally, you can use two different signatures for the methods: the method can receive a single

Args parameters of the type of the event (see the available events below).

Alternatively, you can declare the method without specifying any parameter. This is useful if you

don't need any information from event arguments and you want to keep your class as clean as

possible (no dependency on a specific event type).

Available events

OnInserting Event

Occurs right before an entity is inserted (create) in the database. Note that the event is fired for

every entity that is about to be inserted. For example, a single Manager.Save call might cause

several entities to be inserted, due to cascades defined in the associations. In this case the event

will be fired multiple times, one for each saved entity, even when the developer only called Save

once.

Example:

TInsertingArgs Properties

Name Description

Manager:

TBaseObjectManager

The TObjectManager object which fired the event.

Entity: TObject The entity about to be inserted.

TMappingExplorer.Default.Events.OnInserting.Subscribe(

 procedure(Args: TInsertingArgs)

 begin

 // code here

 end

);

TMS Aurelius 5.11 Page 218 of 269

Name Description

Master:

TMasterObjectValue

The parent object of the object being inserted. This property comes

with a value in the case of list items (ManyValuedAssociation) that

don't have a reference back to parent (unidirectional).

TMasterObjectValue has two relevant properties: "MasterObject" which

is the instance of parent object, and "MasterAssocMember" which is the

name of the list property the item being inserted belongs to (for

example, "InvoiceItems").

OnInserted Event

Occurs right after an entity is inserted (create) in the database. Note that the event is fired for

every entity inserted. For example, a single Manager.Save call might cause several entities to be

inserted, due to cascades defined in the associations. In this case the event will be fired multiple

times, one for each saved entity, even when the developer only called Save once.

Example:

TInsertedArgs Properties

Name Description

Manager:

TBaseObjectManager

The TObjectManager object which fired the event.

Entity: TObject The entity that was inserted.

Master:

TMasterObjectValue

The parent object of the object being inserted. This property comes

with a value in the case of list items (ManyValuedAssociation) that

don't have a reference back to parent (unidirectional).

TMasterObjectValue has two relevant properties: "MasterObject" which

is the instance of parent object, and "MasterAssocMember" which is the

name of the list property the item being inserted belongs to (for

example, "InvoiceItems").

OnUpdating Event

Occurs right before an entity is about to be updated in the database.

Example:

TMappingExplorer.Default.Events.OnInserted.Subscribe(

 procedure(Args: TInsertedArgs)

 begin

 // code here

 end

);

TMS Aurelius 5.11 Page 219 of 269

TUpdatingArgs Properties

Name Description

Manager:

TBaseObjectManager

The TObjectManager object which fired the event.

Entity: TObject The entity that is going to be updated.

OldColumnValues:

TDictionary<string,

Variant>

Represents the old object state using column name/value pairs.

Don't confuse it with property names/values. For example, if the

object has a property named "Name" that is mapped to a column

database "CUSTOMER_NAME", the dictionary will contain

"CUSTOMER_NAME" in the string key, and the respective value.

Thus, associations are also represented by the foreign key column

names/values.

NewColumnValues:

TDictionary<string,

Variant>

Same as OldColumnValues, but contains the new state values.

Comparing what has changed between NewColumnValues and

OldColumnValues will give you the names of the columns that will

be updated in the database.

ChangedColumnNames:

TList<string>

Contains a list of names of all columns that will be updated in the

UPDATE statement.

RecalculateState: Boolean If you have changed any property value of the entity that is about

to be updated, you need to set RecalculateState to True to force

Aurelius to recalculate the columns that were modified and

update the object state in the manager cache. For better

performance, leave it false if you haven't modified any property.

OnUpdated Event

Occurs right after an entity is updated in the database.

Example:

TUpdatedArgs Properties

TMappingExplorer.Default.Events.OnUpdating.Subscribe(

 procedure(Args: TUpdatingArgs)

 begin

 // code here

 end

);

TMappingExplorer.Default.Events.OnUpdated.Subscribe(

 procedure(Args: TUpdatedArgs)

 begin

 // code here

 end

);

TMS Aurelius 5.11 Page 220 of 269

Name Description

Manager:

TBaseObjectManager

The TObjectManager object which fired the event.

Entity: TObject The entity that was updated.

OldColumnValues:

TDictionary<string,

Variant>

Represents the old object state using column name/value pairs.

Don't confuse it with property names/values. For example, if the

object has a property named "Name" that is mapped to a column

database "CUSTOMER_NAME", the dictionary will contain

"CUSTOMER_NAME" in the string key, and the respective value.

Thus, associations are also represented by the foreign key column

names/values.

NewColumnValues:

TDictionary<string,

Variant>

Same as OldColumnValues, but contains the new state values.

Comparing what has changed between NewColumnValues and

OldColumnValues will give you the names of the columns that will

be updated in the database.

ChangedColumnNames:

TList<string>

Contains a list of names of all columns that were updated in the

UPDATE statement.

OnDeleting Event

Occurs right before an entity is about to be deleted from the database. Note that the event is

fired for every entity deleted. For example, a single Manager.Remove call might cause several

entities to be deleted, due to cascades defined in the associations. In this case the event will be

fired multiple times, one for each deleted entity, even when the developer only called Remove

once.

Example:

TDeletingArgs Properties

Name Description

Manager: TBaseObjectManager The TObjectManager object which fired the event.

Entity: TObject The entity about to be deleted.

TMappingExplorer.Default.Events.OnDeleting.Subscribe(

 procedure(Args: TDeletingArgs)

 begin

 // code here

 end

);

TMS Aurelius 5.11 Page 221 of 269

OnDeleted Event

Occurs right after an entity is deleted from the database. Note that the event is fired for every

entity deleted. For example, a single Manager.Remove call might cause several entities to be

deleted, due to cascades defined in the associations. In this case the event will be fired multiple

times, one for each deleted entity, even when the developer only called Remove once.

When the event is fired, the entity object is still a valid reference, but will be destroyed right after

the event listener returns.

Example:

TDeletedArgs Properties

Name Description

Manager: TBaseObjectManager The TObjectManager object which fired the event.

Entity: TObject The deleted entity.

OnCollectionItemAdded Event

Occurs when an item is added to a collection, at database level. In other words, when the foreign

key of an item entity is set to point to the parent entity.

Example:

TCollectionItemAddedArgs Properties

Name Description

Manager:

TBaseObjectManager

The TObjectManager object which fired the event.

Parent: TObject The parent entity which contains the collection where the item

was added to.

Item: TObject The item entity added to the collection.

TMappingExplorer.Default.Events.OnDeleted.Subscribe(

 procedure(Args: TDeletedArgs)

 begin

 // code here

 end

);

TMappingExplorer.Default.Events.OnCollectionItemAdded.Subscribe(

 procedure(Args: TCollectionItemAddedArgs)

 begin

 // code here

 end

);

TMS Aurelius 5.11 Page 222 of 269

Name Description

MemberName: string The member name (field or property) of the parent entity that

holds the collection.

OnCollectionItemRemoved Event

Occurs when an item is removed from a collection, at database level. In other words, when the

foreign key of an item entity is set to null (or to a different parent entity).

Example:

TCollectionItemRemovedArgs Properties

Name Description

Manager:

TBaseObjectManager

The TObjectManager object which fired the event.

Parent: TObject The parent entity which contains the collection where the item

was removed from.

Item: TObject The item entity removed from the collection.

MemberName: string The member name (field or property) of the parent entity that

holds the collection.

OnSqlExecuting Event

Occurs right before an SQL statement is executed.

Example:

TSQLExecutingArgs Properties

Name Description

SQL: string The SQL statement that will be executed.

TMappingExplorer.Default.Events.OnCollectionItemRemoved.Subscribe(

 procedure(Args: TCollectionItemRemovedArgs)

 begin

 // code here

 end

);

TMappingExplorer.Default.Events.OnSqlExecuting.Subscribe(

 procedure(Args: TSQLExecutingArgs)

 begin

 // code here

 end

);

TMS Aurelius 5.11 Page 223 of 269

Name Description

Params:

TEnumerable<TDBParam>

A list of TDBParam objects used for the SQL statement

execution. The TDBParam object has the properties ParamName,

ParamType and ParamValue.

TMS Aurelius 5.11 Page 224 of 269

Advanced Topics
Here we present some advanced topics about TMS Aurelius.

Global Configuration
TMS Aurelius has a single global class that has some properties for setting global configuration.

This class is declared in unit Aurelius.Global.Config , and to access the global configuration

object, use TGlobalConfigs.GetInstance:

The following properties are available in the TGlobalConfigs object:

SimuleStatements: Boolean

If true, all statements are not executed on the DBMS, but appear in the listeners.

MaxEagerFetchDepth: Integer

Indicates the maximum depth to load objects in eager loading associations. Beyond this depth,

the objects still load in lazy mode.

AutoSearchMappedClasses: Boolean

If true, all classes declared in your application with [Entity] attribute are automatically added to

the framework's MappedClasses. Removed in version 2.0: Use TMappingSetup.MappedClasses

property instead.

TightStringEnumLength: Boolean

If true, in enumerations mapped to string columns with no length specified in the Column

attribute will generate the column length equal to the largest possible value of the enumeration.

Otherwise, the length is DefaultStringColWidth by default (when not specified in Column

attribute).

AutoMappingMode: TAutomappingMode

Defines the automapping mode. Valid values are:

Off: No automatic mapping. Only elements with attributes are mapped.

ByClass: Automapping is done for classes marked with Automapping attribute.

Full: Full automapping over every registered class and Enumerations.

AutoMappingDefaultCascade: TCascadeTypes

AutoMappingDefaultCascadeManyValued: TCascadeTypes

If AutoMapping is enabled, defines the default cascade type for all automapped associations

(AutoMappingDefaultCascade) and many-valued associations

(AutoMappingDefaultCascadeManyValued).

Default values are:

uses

 Aurelius.Global.Config;

...

Configs := TGlobalConfigs.GetInstance;

•

•

•

TMS Aurelius 5.11 Page 225 of 269

DefaultStringColWidth: Integer

Defines the width for string (usually varchar) columns when the width was not particularly

specified in Column attribute.

UseTransactionsInManager: Boolean

Defines the default value for the TObjectManager.UseTransactions. Default is true, meaning all

internal manager operations will be performed with transactions. If you want to disable this

(mostly for backward compatibility) for the whole application instead of setting the property for

each manager, you can set this property to false.

UseTransactionsInDBManager: boolean

Defines the default value for the TDatabaseManager.UseTransactions. Default is false, meaning

no transactions will be used to execute SQL statements for creating/updating tables, columns,

foreign keys, etc. If you want to enable this for the whole application instead of setting the

property for each database manager, you can set this property to true.

Object Factory
In several conditions, Aurelius needs to create entity instances. For example, when retrieving

entities from the database, Aurelius needs to create instances of those entities. To do that,

Aurelius uses an internal object factory. By default, this factory just creates entities by calling a

parameter-less constructor named "Create".

Such mechanism works in most cases. But in the case you want to create your entities yourself

(for example all your entities have a Create constructor that need to receive a parameter), you

can change the object factory and implement it yourself.

To do that, all you need is to implement an IObjectFactory interface (declared in unit

Bcl.Rtti.ObjectFactory):

It has a single method CreateInstance which receives the TClass and must return a TObject which

is a new instance of that class.

Once you have created such instance, you can replace the default one used by Aurelius. You can

do it at the TMappingExplorer level, thus changing the factory for everything in Aurelius that is

related to that explorer:

Or you can change it for a TObjectManager object specifically. This gives you more fine-grained

control, for example in case your entities need to be created under a specific context:

AutoMappingDefaultCascade := CascadeTypeAll - [TCascadeType.Remove];

AutoMappingDefaultCascadeManyValued := CascadeTypeAll;

IObjectFactory = interface

 function CreateInstance(AClass: TClass): TObject;

end;

TMappingExplorer.Default.ObjectFactory := MyObjectFactory;

Manager.ObjectFactory := MyObjectFactory;

TMS Aurelius 5.11 Page 226 of 269

TMS Aurelius 5.11 Page 227 of 269

About
This documentation is for TMS Aurelius.

In this section:

What's New

Copyright Notice

Getting Support

Breaking Changes

Online Resources

TMS Aurelius 5.11 Page 228 of 269

What's New in TMS Aurelius

Version 5.11 (September-2022)
New: Associations now can be used in abstract entities.

Improved: Design-time components were greyed out in component palette if current

platform was different than Win32.

Version 5.10 (August-2022)
Fixed: Access Violation when using SubCriteria in Aurelius queries (regression). See

https://support.tmssoftware.com/t/exception-with-latest-version/18897

Version 5.9 (July-2022)
New: You can now use property projections when retrieving regular entities. This will

allow you to optimize the queries by limiting the properties to be retrieved for the

entities.

New: Automapping attribute now can receive an engine class that allows

customizing automatic naming.

Fixed: TFetchMode.Eager now forces eager loading of many-valued associations as well.

Fixed: Typo in design-time TAureliusConnection dialog.

Version 5.8 (March-2022)
Improved: BREAKING CHANGE: Range and MinLength validators don't fail anymore if

value is empty.

•

•

•

•

 Estimates := Manager.Find<TEstimate>

 .Select(TProjections.ProjectionList

 .Add(Linq['EstimateNo'])

 .Add(Linq['Customer'])

 .Add(Linq['Customer.Name'])

 .Add(Linq['Customer.Sex'])

 .Add(Linq['Customer.Country'])

 .Add(Linq['Customer.Country.Id'])

)

 .FetchEager('Customer')

 .FetchEager('Customer.Country')

 .List

•

•

•

•

TMS Aurelius 5.11 Page 229 of 269

https://support.tmssoftware.com/t/exception-with-latest-version/18897

Version 5.7 (February-2022)
Improved: Now a custom id generator can be defined for composite ids.

Improved: When an entity is deleted using Manager.Remove, its cascaded many-valued

association lists are also cleared.

Improved: Better error message when trying to use an entity with no Id attribute

configured.

Improved: Most database drivers now implement IDBResultSet3 interface, which

provides the FieldCount method.

Improved: Better error message when trying to use associated entities not belonging to

the model.

Improved: Better error messages for mapping errors, it's now informing the offending

entity class.

Fixed: MaxLength validator failing for null string values.

Fixed: Unique key names were being generated in Delphi 11 with different values then

previous Delphi versions.

Fixed: Still range check errors (Integer overflow) was being raised in TAureliusDataset in

some situations when the dataset had a high number of fields.

Breaking change: TEvent<T> type moved to unit Bcl.Types .

Version 5.6 (October-2021)
New: Aurelius dictionary allows you to write queries in a much easier and safe way, even

with associated objects:

New: Aurelius dictionary now can be generated in many ways: from existing databases,

from existing entity classes in your application, or even from external command-line tool.

New: Aurelius dictionary validator makes sure your dictionary is never out of sync with the

real entity classes, ensuring that you safely write queries that won't crash at runtime.

New: Auto alias mechanism allows querying by associated objects without the need to use

CreateAlias :

Improved: Using global filter in a descendant entity class (using an inheritance strategy) is

not supported and now an exception is raised if you try to use it.

Fixed: Integer overflow when opening TAureliusDataset with too many fields.

•

•

•

•

•

•

•

•

•

•

•

 Manager.Find<TInvoice>

 .Select(Dic.Invoice.Total.Sum)

 .Where(Dic.Invoice.Customer.Country.Name = 'Brazil')

•

•

•

 Manager.Find<TEstimate>

 .Where(Linq['Customer.Country.Name'] = 'United States')

•

•

TMS Aurelius 5.11 Page 230 of 269

Fixed: Very specific error happening when a global filter was applied to an associated

object, and such object is a descendant class in a joined-table hierarchy. For example,

suppose you are querying for TInvoice entities. Such TInvoice entity has an association

Customer of type TSpecificCustomer . Such TSpecificCustomer is part of a joined-table

hierarchy and is not the root class, but a descendant one. The bug would happen if there

is a global filter declared specifically in TSpecificCustomer class, and such filter is

enabled. Aurelius would generate an invalid SQL statement.

Version 5.5 (September-2021)
New: Delphi 11 support.

Version 5.4 (July-2021)
Fixed: Wrong data retrieved in the following corner case: a criteria loading an associated

entity that is part of a joined-table inheritance, and such class has a global filter. Also,

ElevateDB, NexusDB and AbsoluteDB won't support such construction. This required a

significant refactor in the SQL building mechanism and changed the final generated SQL.

Please pay attention to any possible issues, specially when dealing with entities in a

joined-table hierarchy.

Fixed: Automapping in abstract entities was requiring Id attribute to be present. Now it's

optional (Id can be defined in concrete entity classes).

Fixed: TCriteria<E>.FetchEager was incorrectly returning a TCriteria class instead of

TCriteria<E> .

Fixed: Issue when OnUpdating event had two subscribers. If the first subscribers modifies

data, the second subscriber won't get the correct value in NewColumnValues parameter.

Version 5.3 (Jun-2021)
New: TCriteria.FetchEager method allows defining a specific lazy association to be

loaded eagerly in a specific query.

Improved: Nullable type Nullable<T> is now in unit Bcl.Types.Nullable . Old unit

Aurelius.Types.Nullable still exist but we recommend gradually moving the reference

to the new unit.

Fixed: TAureliusDataset.BeforeScroll/AfterScroll events not firing in detail dataset

when the parent record was changed.

Fixed: Database update failing to create non-unique indexes when the index name had

spaces and other non-id characters.

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 231 of 269

Version 5.2 (Apr-2021)
New: Abstract entities. You can now add mapping attributes to a class tagged with

the [AbstractEntity] attribute, create entities inheriting from such class and having the

mapping be inherited from abstract to concrete entity.

Improved: Additional checks when unloading SQLite native library to avoid AV in very

specific situations (units finalizing in a different order).

Fixed: Calling FieldDefs.Update from TAureliusDataset would cause the dataset to be

open with no data, if objects were previously provided using method SetSourceCriteria ,

SetSourceCursor or SetSourceList (with an owned list).

Version 5.1 (Mar-2021)
New: TObjectManager.Validate method to force an entity validation without saving.

Improved: MusicLibrary demo is now multitenant and includes examples for global

filters, data validation and attributed-based events.

Improved: Native MSSQL Driver now supports query parameters of type TBcd (FmtBCD).

Improved: TAureliusDataset now supports TByteField (ftByte) and TLongWordField

(ftLongWord).

Fixed: Global filters not working with entity classes using joined tables hierarchy.

Fixed: Execution of batch statements causing Access Violation when Assertions

compiler option was set to off.

Fixed: Access Violation when enabling filters in managers using the default mapping

explorer.

Fixed: Error message "Filter definition not found" when enabling a global filter

before the mapping explorer was used for the first time.

•

 [AbstractEntity, Automapping]

 TBaseEntity = class

 strict private

 FCreatedAt: TDateTime;

 FUpdatedAt: Nullable<TDateTime>;

 public

 property CreatedAt: TDateTime read FCreatedAt write FCreatedAt;

 property UpdatedAt: Nullable<TDateTime> read FUpdatedAt write FUpdatedAt;

 end;

 [Entity, Automapping]

 TCustomer = class(TBaseEntity)

 {...}

 end;

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 232 of 269

Fixed: AutoComplyOnInsert option in global filters not working, sometimes, when used in

an entity class with single table inheritance.

Fixed: Several methods in TMappingExplorer were incorrectly flagged as deprecated.

Version 5.0 (Mar-2021)
New: Data validation system provides a way to add validation rules to entities that

make sure your entities will be always persisted in a valid state. Now you can add

rules via attributes, create custom validation, and more:

New: Global filters mechanism allows applying query filters to all entities at once.

Among other things, it's a very handy feature for single-database multitenant applications.

New: It's now possible to handle events directly from the entity class, using event-

handling attributes. This way you can organize better your business logic letting the

entity class itself handle many of logic when persistence events happen.

•

•

•

 [Entity, Automapping]

 TCustomer = class

 strict private

 FId: Integer;

 [Required, MaxLength(20)]

 FName: string;

 [EmailAddress]

 FEmail: string;

 [DisplayName('class rate')]

 [Range(1, 10, 'Values must be %1:d up to %2:d for field %0:s')]

 FRate: Integer;

•

 [FilterDef('Multitenant', '{TenantId} = :tenantId')]

 [FilterDefParam('Multitenant', 'tenantId', TypeInfo(string))]

 [Filter('Multitenant')]

 TProduct = class

{...}

 Manager.EnableFilter('Multitenant')

 .SetParam('tenantId', 'microsoft');

 Products := Manager.Find<TProduct>.OrderBy('Name').List;

•

TMS Aurelius 5.11 Page 233 of 269

New: Filter enforcer mechanism uses global filter definitions to make sure any data

modification complies with the active filter. In multitenant applications, for example, it

ensures that no data is saved, updated or deleted if the record belongs to a tenant

different than the one specified by the current tenantId parameter.

New: Entity-level validation via OnValidate attribute. Add the OnValidate to any

method of your entity class that you want to be called before an entity validation:

New: TObjectManager.AddOwnership method makes sure Aurelius object manager will

always destroy the passed object, no matter if the persistence operations

New: TAureliusDataset methods RefreshRecord and FillRecord. It's useful when you

have modified the object properties directly and want the dataset to reflect such changes.

New: TAureliusDataset now can optionally own the source list, destroying it when it

closes. Now the SetSourceList method of Aurelius dataset can receive an optional

boolean parameter that, if true, will cause the list to be automatically destroyed when the

dataset is closed. You won't have to worry about destroying the list in this case.

New: TMappingSetup.ModelName property allows automatically loading entities from

a different model when using mapping setups.

Improved: More performance improvements.

Improved: ILIKE operator now working on all databases (using UPPER when the

database doesn't natively support ILIKE syntax).

Fixed: Access Violation when MappedBy parameter of a ManyValuedAssociation attribute

referenced an invalid class member.

type

 {$RTTI EXPLICIT METHODS([vcPrivate..vcPublished])}

 TCustomer = class

 strict private

 [OnInserting] procedure OnInserting(Args: TInsertingArgs);

 [OnInserted] procedure OnInserted;

 [OnUpdated, OnInserted] procedure AfterModification;

 {...}

 end;

•

•

 TCustomer = class

 [OnValidate]

 function CheckBirthday: IValidationResult;

 [OnValidate]

 function CheckName(Context: IValidationContext): IValidationResult;

•

 Customer := TCustomer.Create;

 Manager.AddOwnership(Customer);

 Manager.Save(Customer);

 // no need to destroy Customer

 // even if Save fails

•

•

•

•

•

•

TMS Aurelius 5.11 Page 234 of 269

Fixed: Internal method TMappingExplorer.GetAssociations causing Access Violation

when the passed class was not an Aurelius entity (regression).

Fixed: INSERT statement was being generated with a wrong field name when such name

needed special treatment due to not being a valid identifier.

Fixed: Memory leak when an EPropertyNotFound exception was raised from using a

wrong CreateAlias call in Aurelius criteria. For example, in code

Find<TMyObject>.CreateAlias('WrongPropertyName', 'p') , an expected exception will

be raise because WrongPropertyName property doesn't exist. However, this was causing a

memory leak.

Version 4.18 (Sep-2020)
Improved: Overall performance increase, with Aurelius now being up twice faster,

specially in insert and update operations.

Improved: Better handling of transactions when using UIB components. Now UIB driver

automatically opens a transaction to perform SQL statements, if no transaction is active.

Improved: AnyDAC support is deprecated. AnyDAC was the predecessor of FireDAC, and

we considered it doesn't make sense anymore to keep supporting it.

Improved: Support for Boolean fields in ElevateDB databases.

Breaking change: The way to use internal classes TInsertCommand and

TUpdateCommand has been modified.

Fixed: TAureliusDataset now returns correct value when reading OldValue property of

dataset fields.

Fixed: AbsoluteDB boolean literal regression. Value projections of type boolean, like

"Linq.Value<Boolean>(False)" was broken.

Fixed: Access Violation (instead of a better error message) when the Id mapping attribute

makes a reference to a class member that doesn't exist.

Fixed: Direct Oracle Access driver now works fine with Unicode memo fields (NCLOB).

Version 4.17 (Aug-2020)
New: TRecordCountMode.FetchAll option in TAureliusDataset. Allows you to force

dataset to load (fetch) all records to retrieve the correct value for RecordCount property.

Improved: Several internal classes were refactored, bringing an average 10-20%

performance increase in database operations (retrieve and update data).

Fixed: Regression bug - wrong behavior when the MappedBy parameter of a

ManyValuedAssociation attribute references an association which is part of the id of the

associated class. For example, in the declaration [ManyValuedAssociation([], [], 'FParent')],

the FParent is part of the Id of TChild class. Fixed in 4.17.2, regression introduced in 4.17.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 235 of 269

Version 4.16 (Jun-2020)
Improved: Native SQL Server driver (MSSQL) performance increase when executing data

modification statements.

Improved: Internal changes allows updating of entities that have mapping fields/

properties to database fields with special names (like "name[0]").

Fixed: Native MSSQL driver saving null even when the parameter was an empty string.

Fixed: Native MSSQL driver error "Cannot insert explicit value for identity column in table

<table> when IDENTITY_INSERT is set to OFF" even after an SQL statement was executed

to set IDENTITY_INSERT to ON.

Fixed: "Invalid referenced column name defined in join column" error in a very specific

situation. Conditions: a) bidirectional association using a non-id column as reference. b)

The non-id column is declared after the many-valued association field in parent class.

Version 4.15 (Jun-2020)
Fixed: Batch updates using SQLite native driver was not updating field values when

parameter was null.

Version 4.14 (May-2020)
New: Batch Updates mechanism allows inserting, updating or deleting an arbitrary

number of database records using a single SQL statement, improving peformance in

such cases. TObjectManager now introduces a BatchSize property, which is used in

conjunction with cached updates mechanism. When BatchSize is greater than 1, several

similar cached actions are merged together in a single SQL statement, improving

performance by reducing communication with the database.

New: TObjectManager.CachedCount property. Provides information about how many

actions are cached to be applied when ApplyUpdates is called.

New: Support for Delphi 10.4 Sydney.

Version 4.13 (Apr-2020)
Fixed: Sporadic Assert failure in MSSQL native driver.

Version 4.12 (Apr-2020)
New: Cached updates mechanism in TObjectManager. You can now defer all SQL

statements executed in the database by setting TObjectManager.CachedUpdates to true.

In this mode, you can call manager methods like Save, Flush, Remove to manipulate

objects, and the database will not be hit until you call TObjectManager.ApplyUpdates.

New: "Cached Updates" demo shows how to use new feature cached udpdates

feature.

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 236 of 269

Improved: Avoided some Access Violations in Object Manager when the entities

contained associate lists with nil entities in the list. This was not considered a bug because

it's up to the developer to make sure there are no nil entities in lists. The behavior is

unpredictable if this happens and those nil pointers should be avoided. But now the code

will at least not raise Access Violations.

Fixed: Adding/removing records in the detail dataset was not flagging the master record

(parent) as modified.

Fixed: SQL boolean literal in MSSQL dialect wrong when UseBoolean is true.

Fixed: When retrieving entities having associations that are restricted by Where attribute,

the entity was not being retrieved if the association didn't exist in database. For example,

suppose an entity TInvoice with an associated TCustomer entity. Such TCustomer entity

has a Where attribute restricting its usage. When retrieving a TInvoice entity, if the

associated customer in the database was null, the TInvoice object will not be returned,

instead the result will be nil (as if the invoice didn't exist in the database).

Fixed: Regression with saving widememo data using FireDAC. Error was introduced in

4.11. Current error now is like [FireDAC][Phys][ODBC]-345. Data too large for variable

[A_KOMUNIKAT]. Max len = [4000], actual len = [23608] Hint: set the TFDParam.Size to a

greater value.

Fixed: Memory leak when an exception was raised while loading properties of an entity.

Version 4.11 (Mar-2020)
Fixed: Native MSSQL driver causing "Function Sequence Error" in some situations (when

an IDBConnection interface is only released at the end of the application).

Fixed: Native MSSQL native driver raising an error "Invalid precision value" when updating

a Memo/WideMemo with null/empty string value.

Fixed: Importing Firebird database schema fails when the database have indexes only with

"computed by" columns.

Fixed: Error "-19. Data type conversion is not supported" when saving Unicode blobs

using FireDac in MySQL databases.

Fixed: Rare Invalid Pointer in Win64 platform when using TAureliusDataset.

Fixed: Legacy serializer/deserializer (DataSnap) raising error when serializing proxied

associations with composite keys.

Version 4.10 (Nov-2019)
New: Support for Android 64-bit platform (Delphi 10.3.3 Rio).

Fixed: Setting TAureliusDataset.RecNo had no effect in some situations (not correctly

changing the current record).

Fixed: Still an extra fix for the AV/Invalid Pointer Operation issue described in version 4.9.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 237 of 269

Fixed: Using Literal projection with date time values in some databases (like SQL Server)

failed in Finish systems and any other language that set the time separator to a character

different than ":".

Version 4.9 (Oct-2019)
New: "Driver" parameter in MSSQL native driver allows to explicitly define which

driver to use to connect. By default the most recent installed driver is automatically used,

but this feaure is useful for testing purposes, or if you have a specific technical reason to

use a specific driver, or an older version.

Improved: In TAureliusDataset import field definition dialog you can now order the

list of available by unit name. Just click the column name in the list view and the list will

be ordered, either by unit name or class name.

Fixed: Sporadic Access Violation or Invalid Pointer Operation when using object manager

to retrieve entities that inherit from TInterfacedObject or any other class that implement

interface reference counting. The error was more likely to happen when compiling for

Win64 platforms. This issue was introduced in TMS Aurelius 4.5. If you are using any

version from 4.5 until 4.8 and if your have any Aurelius entity that inherits from

TInterfacedObject (or any other class that implement automatic reference counting), it's

strongly recommended that you update to 4.9 version or above.

Version 4.8 (Sep-2019)
New: TAureliusManager component for persisting objects using a RAD approach.

TAureliusManager component allows an even easier way to persist Aurelius entities. It

encapsulates TObjectManager in a RAD way: just drop the component in the form,

associate with a TAureliusConnection component and you are ready to go.

New: TAureliusDBSchema component for updating database schema using a RAD

approach. It's now easier than ever to create or update your database structure (tables

and fields). Just drop a TAureliusDBSchema component in the form, associate it with a

TAureliusConnection component and use one of this methods, like UpdateDatabase. It

automatically instantiates and encapsulates the TDatabaseManager class that creates and

validates database structure.

New: TAureliusModelEvents component for setting mapping events using a RAD

approach. Using events in Aurelius is now easier by using TAureliusModelEvents

component. Simply drop it in a form and set the desired event handler(s) using the object

inspector. It's as simple as that.

New: Where attribute allows custom filtering when retrieving entities and many-

valued associations. You can now add a Where attribute to an entity class that provides

an additional SQL expression to be added to the WHERE clause of SELECT statement used

to retrieve the entities. One use case for this is soft delete: you can add an SQL clause like

"{Deleted} = 'T", for example. This will prevent such entities to be retrieved if the Deleted

field in the database is "T". The Where attribute can also be used in a many-valued

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 238 of 269

association to filter records retrieved in the list. You could have, for example, two TAddress

lists, one for valid addresses and another for invalid ones, properly filtering those using

the Where attribute.

New: TAureliusDataset.ReadOnly property. You can set ReadOnly property of

TAureliusDataset to true to easily put the dataset in read-only mode with a single line. This

prevent data for being edited in data-aware controls.

Improved: Design-time field loader form now persists its size and position. When

using TAureliusDataset at design-time you can right-click and choose "Load field

definitions..." to open a dialog form that allows you to choose a BPL package and load

fields from entities. If you position or resize that dialog form, its size and position will be

persisted: if you close and reopen the dialog at later time, last size and position will be

restored.

Fixed: SQL error when mapping fields to expressions like field arrays

"fieldname[index]". For example, you can now map to Postgres array fields, using a

mapping like "[Column('fieldname[1]', [])]".

Version 4.7 (Jun-2019)
New (4.7.1.1 July-2019): macOS 64 support in Delphi Rio 10.3.2.

Fixed: TAureliusDataset.RecNo property not properly working with filtered dataset.

Fixed: TAureliusDataset displaying incorrect data when dataset is filtered and some data

modification is performed (like record insert or delete).

Fixed: Error when inserting entities belonging to a joined-table inheritance hierarchy,

when the Id in the ancestor class was declared with TColumnProp.NoInsert.

Fixed (4.7.1): SQL error in some situations when using Take or Skip criteria methods in

Oracle databases.

Version 4.6 (May-2019)
Fixed: TAureliusDataset.RecNo property not properly working with filtered dataset.

Fixed: Error when inserting entities part of a joined-table inheritance, when the Id in the

ancestor class was declared with TColumnProp.NoInsert.

Version 4.5 (Mar-2019)
New: TSQLGenerator.UseBoolean is now avaiable for all SQL dialects.

Fixed: Unexpected wrong behavior with boolean (BIT) fields using native Aurelius MSSQL

driver.

Fixed: Error "cannot find datatype Computed (Identity)" when generating entities from

Delphi Rio IDE.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 239 of 269

Fixed: Nullable.Create overloaded constructor which received an initial value was still

keeping the nullable with HasValue flag set to True.

Version 4.4 (Jan-2019)
New: Support for SAP SQL Anywhere database - former Sybase SQL Anywhere,

Adaptative SQL Anywhere (ASA).

New: Support for NativeDB components (adapter for TASASession).

New: TDatabaseManager.UseTransactions property allows automatically start/commit

of transactions when executing DDL statements.

New: TGlobalConfigs.GetInstance.UseTransactionsInDBManager property provides a

global way to control the UseTransactions property in TDatabaseManager.

Improved: OldColumnValues in OnUpdating/OnUpdated events now includes column

values for proxies even when they were not yet loaded.

Fixed: Entity generator not working with "INTERBASE" dialect.

Fixed: Entity generator raising an error when trying to extract schema information from

PostgreSQL 11.

Fixed: Workaround a bug in Delphi Rio causing error in deserialization using

TDataSnapJsonDeserializer.

Fixed: TAureliusConnection and UniDac adapter causing "one of the connections in the

transaction is not active" error.

Fixed: It's now possible to have two Aurelius entity class with same name in the same

model (e.g, TCity in Unit1 and TCity in Unit2).

Version 4.3 (Dec-2018)
Fixed: Entity generation from databases using TAureliusConnection failing on MySQL 8

with error "table 'mysql.proc' doesnt exist".

Fixed: TAureliusConnection failing to create a cloned connection for ElevateDB

connections.

Version 4.2 (Nov-2018)
New: Support for Delphi 10.3 Rio.

Improved: AllButRemove is default option for association cascade type when generating

entities from database.

Fixed: DBIndexes not being created together when a new table was created.

Fixed: TDatabaseManager.ValidateDatabase reporting wrong data type for wide memo

fields in DB2.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 240 of 269

Version 4.1 (Oct-2018)
New: TObjectManager.HasChanges allows checking if an specific or all objects in

manager have been modified.

New: MSSQL driver LoginTimeout parameter.

Improved: TAureliusDataset.ForceWideTypes forces dataset to create wide string types

(widestring, widememo, widefixedchar) for text-based fields.

Improved: TCriteriaResult objects are now editable from the TAureliusDataset.

Improved: Better error message when trying to use unsupported field/property types in

mapped classes.

Improved: TAureliusConnection design-time settings dialog now responds to Enter and

Esc keys.

Fixed: Better handling of memo fields in TAureliusDataset - TBlob unicode memo raw data

is now converted to ANSI data if field type is ftMemo.

Fixed: TAureliusDataset now creates memo/widememo fields when the TBlob property is

flagged with DBTypeMemo/DBTypeWideMemo attributes (previously it was blob).

Fixed: Entity generator now adds DBTypeWideMemo for field types in database that are

explicit unicode memo fields (NText, NVarchar(max), etc.).

Fixed: Blob fields not marked as "loaded" when read from AureliusDataset, causing a

single lazy blob to be retrieved multiple times when navigating through the dataset.

Fixed: Rare Int64 convert error when importing entities from a MySQL database using a

LONGBLOB data type.

Fixed: JwtAuthDemo memory leak when canceling the insertion of a new record.

Fixed (4.1.1): Error when importing Firebird3 boolean fields even using FIREBIRD3 dialect,

when using TAureliusConnection "Generate database entities" design-time option.

Version 4.0 (Sep-2018)
New: TAureliusConnection component. This component makes it even easier to connect

to a database using TMS Aurelius. It provides design-time configuration and test of

database connection, using a connection dialog to visually configure the parameters.

Besides supporting the existing component adapters, it also supports the new database

native drivers.

New: Native database drivers for direct database connection. Native Microsoft SQL

Server connection (TMSSQLConnection) is now supported in addition to the existing

SQLite driver (with a new TSQLiteConnection). You can now connect directly to SQL Server

without the need for a 3rd party component (FireDAC, dbExpress, ADO, etc.), with

increased performance (at least 20% from initial tests).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 241 of 269

New: Generate TMS Aurelius entities from existing database directly from the IDE.

Thanks to the new TAureliusConnection component, it's now possible to import an

existing database structure and generate source code with TMS Aurelius classes mapped

to the existing database, with a few clicks.

Improved: Aurelius connection wizard updated to allow choosing the new native drivers.

Improved: Dropped Delphi 2010 and XE support. TMS Aurelius and BCL now supports

Delphi XE2 and up.

Fixed: Icon in IDE splash screen not appearing.

Version 3.13 (Jul-2018)
New: TAureliusDataset.FieldInclusions property. This provides more control on what

types of fields will be automatically created by Aurelius Dataset. You can choose not to

automatically create lists (dataset fields) or objects (entity fields), for example.

New: TObjectManager.DeferDestruction property. Such property prevents immediate

destruction of entities removed with Remove method, deferring their destruction to the

moment when object manager is destroyed.

Improved: Aurelius DBConnection Wizard using FireDAC now adds FireDac.DApt unit

automatically to uses clause.

Improved: TCriteria FindByAlias and FindByPath methods allows finding TSubCriteria

objects created using CreateAlias or SubCriteria methods.

Improved: Proxy type now sets internal proxied value to nil when DestroyValue is called.

Fixed: DiscriminatorColumn attribute now ignores size parameter (when updating

database schema) if discriminator type is not string.

Fixed: DiscriminatorColumn now has default size of 0 (instead of 30) when

DiscriminatorType is dtInteger.

Fixed: Entity classes in a single-table hierarchy without DiscriminatorColumn attribute was

causing errors when loading entities. Now such classes are being ignored by Aurelius.

Fixed: Associations/proxies not loading correctly for inherited classes in a single-table

hierarchy.

Fixed: TAureliusDataset memory leak when a source (criteria, cursor) is specified but the

dataset is never open (3.13.1)

Version 3.12 (May-2018)
Improved: Significant performance improvement in entity retrieval. Up to 50% of

speed gain in some operations, most noticeable when selecting (finding) a high number of

entities with high number of properties and associations.

Conn := TMSSQLConnection.Create(

 'Server=.\SQLEXPRESS;Database=Northwnd;TrustedConnection=True');

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 242 of 269

New: Proxy<T>.Key property. Allows you to get the database value of foreign key

without needing to load the proxy object.

Improved: PostgreSQL generator now supports both Sequence (already supported) and

Identity (serial) identifiers. If the Sequence attribute is not defined in the mapping, then it

will try to retrieve the id generated by the database (if any).

Improved: SQL Server dialect option: WorkaroundInsertTriggers.

Improved: IDBConnectionAdapter interface allows to get the underlying adapted

database-access component (TFDConnection, for example).

Fixed: Access Violation in TAureliusDataset when setting property DatasetField at design-

time.

Fixed: ManyValuedAssociation attribute documentation was wrongly explaining the

option TCascadeType.Lazy.

Version 3.11 (Feb-2018)
New: LINQ SqlFunction and ISQLGenerator.RegisterFunction allows creating custom

SQL functions to be used in LINQ. It's possible to use any database-specific SQL function

when using Aurelius LINQ. For example, you could register UNACCENT function from

PostgreSQL and use it from Criteria API:

New: ILike operator in LINQ. You can now also use ILike operator in Linq expressions. It

will of course only work on databases that support it:

New: TCriteria.Find<T>.Open now can be iterated. ICriteriaCursor now implements

GetEnumerator which allows you to iterate easily through the returned entities of a criteria

this way:

Improved: More detailed info when exception EAssociationReferencesTransientObject is

raised ("Association references a transient object"), indicating now the context: the name

of the association property that caused the issue, the id of the object, etc.

•

•

•

•

•

•

•

TSQLGeneratorRegister.GetInstance.GetGenerator('POSTGRESQL')

 .RegisterFunction('unaccent', TSimpleSQLFunction.Create('unaccent'));

.Where(Linq.ILike(

 Linq.SqlFunction('unaccent', nil, Linq['Name']),

 Linq.SqlFunction('unaccent', nil, Linq.Value<string>(SomeValue))

))

•

.Where(Linq['Sex'].IsNotNull and Linq['Name'].ILike('M%')

•

for Customer in Manager.Find<TCustomer>

 .Where(Linq['City'] = 'London').Open do

 { use Customer object here }

•

TMS Aurelius 5.11 Page 243 of 269

Improved: TAbstractSQLGenerator.EnforceAliasMaxLength allows avoiding issues when

field names in database are at the maximum size and might cause "field not found" errors

when executing LINQ queries. This was more frequent with Firebird databases.

Improved: No more UPDATE SQL statements executed when inserting child (many-valued

association) items. When inserting an object tree with many-valued associations items

(Parent + Child Items), Aurelius was executing INSERT SQL statements for Parent record

and for child records, and then after that UPDATE SQL statements were being executed to

update the foreign-key field from child to parent table. Now this is optimized and the

UPDATE SQL statements are not executed anymore, as the INSERT statements already set

the foreign-key of child records.

Improved: TCriteria<T>.Open now returns ICriteriaCursor<T> instead of

TCriteriaCursor<T>. This is a minor breaking change.

Improved: TAureliusDataset is not "Sequenced" anymore when RecordCount mode is set

to Retrieve. This means that a data control like a grid will show the correct scrollbars (size

and position relative to total of records) even when using fetch-on-demand mode and not

all entities were retrieved.

Fixed: Aurelius Dataset fields not notifying visual controls when subproperties were being

automatically updated due to SyncSubprops behavior.

Version 3.10 (Oct-2017)
Improved: Significant performance

increase when retrieving entities from database. The specific scenario is when an entity

being retrieved from database is already in the manager. Speed gains are more noticeable

when lots of associated entities are retrieved in eager mode and have same id, and when

cached entities have many mapped properties.

New: TAureliusDataset.RecordCountMode property. When using dataset in paged

mode, you can ask dataset to perform an extra statement in the database to grab the total

number of records in advance and return it in RecordCount property, even before all

pages are fetched.

Fixed: SQLite driver refactored to use static library on Android due to Android 7 Nougat

error: "unauthorized access to "libsqlite.so".

Fixed: Design-time wizard icon not showing correctly in Delphi 10.2 Tokyo.

Fixed: TCriteria.Refreshing state was lost when TCriteria was cloned.

•

(TSQLGeneratorRegister.GetInstance.GetGenerator('Firebird') as TAbstractSQLGenera

tor)

 .EnforceAliasMaxLength := True;

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 244 of 269

Version 3.9 (Jul-2017)
New: TCriteria.Refreshing method. Using Refreshing method when creating an Aurelius

query will force entities returned by the query to be refreshed even if they are already

cached in Object Manager.

New: DBIndex attribute. In addition to unique indexes, you can now specify non-unique

index (for optimization purposes) with this attribute and Aurelius will create it

automatically upon database schema update.

New: TAureliusDataset.SyncSubprops property allows automatic update of associated

fields. When an entity field (e.g., "Customer") of the TAureliusDataset component is

modified, all the subproperty fields (e.g., "Customer.Name", "Customer.Birthday") will be

automatically updated with new values if this property is set to True.

New: TAureliusDataset.SubpropsDepth property allows automatic loading of

subproperty fields. When loading field definitions for TAureliusDataset at design-time, or

when opening the TAureliusDataset without persistent fields, one TField for each property

in object will be created. By increasing SubpropsDepth to 1 or more, TAureliusDataset will

also automatically include subproperty fields for each property in each association, up to

the level indicated by SubpropsDepth.

New: TAureliusDataset.DefaultsFromObject property brings field default values with

object state. When inserting a new record in TAureliusDataset, all fields come with null

values by default. By setting this property to True, default (initial) value of the fields will

come from the property values of the underlying object.

New: TObjectManager.FindCached and IsCached methods. Those methods allow

checking if an object of specified class and id is present in the object manager cache,

without hitting the database to load the object.

New: TAureliusDataset popup menu option at design-time for quick reloading field

definitions. At design-time, if you right-click TAureliusDataset component, a new menu

"Reload from <class>" appear for quickly reloading the field definitions for a previously

loaded class.

Improved: Faster lazy-loading of proxied associations in some situations. When the

association has a JoinColumn attribute with a explicity param value for

ReferencedColumnName, the manager was always hitting the database to load associated

proxy. Now if the referenced column is an id column, the manager will first check if

associated object is already in cache.

Improved: TAureliusDataset doesn't automatically call Flush anymore on Insert and Delete

operations, when Manager property is set. Only Save and Remove methods are called,

respectively. This fixes performance and unexpected behaviors in some scenarios, but

might break existing code. It's a breaking change.

Improved: When targeting DB2 databases, TDatabaseManager now retrieves schema of

database objects and updates/creates them accordingly.

Improved: Updating ElevateDB database schema (TDatabaseManager.UpdateDatabase) is

significantly faster now.

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 245 of 269

Fixed: Calling TAureliusDataset.Delete was raising an exception in some specific situations.

Fixed: Argument out of range on specific Merge operations. This error was happening

when merging an object A with a proxied list of B objects. If the B objects happen to have

a reference back to A, then another instance of A would be loaded, the proxied list would

be loaded, and such list would override the list of original object A being merged, causing

this error.

Fixed: Firedac + Oracle on Delphi Tokyo was causing "Data Too Large" error on fixed-sized

parameters.

Fixed: Calling TAureliusDataset.RecordCount on a closed dataset was raising an Access

Violation.

Previous Versions

Version 3.8 (May-2017)

Fixed: Using AureliusDataset, during an insert, if a Post operation failed, an Access

Violation would be raised if user cancels insertion of record.

Fixed: Access Violation when loading a lazy blob in the handler of OnDeleted event.

Version 3.7 (Mar-2017)

New: Linux platform support together with Rad Studio 10.2 Tokyo support.

Fixed: Memory leaks in mobile platforms.

Fixed: Error when loading entities with inheritance where a lazy blob field is declared in an

inherited class.

Fixed: TGlobalConfigs.GetInstance.SimuleStatements not working.

Fixed: Better transactions handling on UIB (Universal Interbase) driver.

Version 3.6 (Feb-2017)

New: Manager events OnInserting, OnUpdating, OnDeleting.

Improved: Not equal (<>) operator support in Linq queries.

Fixed: Firebird schema update was trying to generate sequences even though they already

existed in database (regression).

Fixed: Error inserting records in SQL Server when table name ends with "Values".

Fixed: JSON Deserializer failed when deserializing nullable enumerated values.

Fixed: DB2 dialect was not supporting schemas (regression).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 246 of 269

Version 3.5 (Jan-2017)

New: Firebird3 dialect support.

New: MSSQL dialect UseBoolean property allows using BIT data type for boolean fields in

SQL Server.

Improved: Column names can now be mapped using double quotes.

Improved: Demos rewritten to better show use more recent Aurelius features.

Improved: Better error handling when SQLite DLL is not available.

Fixed: Error with field names containing spaces.

Fixed: Wrong behavior and cast errors in TAureliusDataset when moving dbgrid field

columns linked to the dataset.

Fixed: Cast error in Aurelius Dataset when setting a nullable enumerated field to null.

Fixed: Aurelius Dataset Locate method accepts variant array as search value even when

locating for a single field.

Fixed: IBExpress adapter not working if using the overloaded Create constructor that

receives a TComponent parameter.

Fixed: Memory leaks on nextgen (mobile) platforms when using FireDac (version 3.4.1)

Version 3.4 (Sep-2016)

New: Linq query syntax improved with support for relational operators: Linq['Name'] =

'Mia'. All query examples in this documentation updated to newer syntax.

New: Arithmetic projections Add, Subtract, Multiply and Divide, also supporting

operators: Linq['Total'] + Linq['Additional'].

New: In clause in Linq queries.

New: Linq "type-helper" version all existing functions, like Upper or Year:

(Linq['Name'].Upper = 'MIA') and (Linq['CreatedAt'].Year = 2015).

New: Cross-database Concat function: Linq.Concat(Linq['FirstName'], Linq['LastName']).

New: Linq functions Contains, StartsWith, EndsWidth now support projections:

Linq['Name'].StartsWith(Linq['OtherField']).

New: TDatabaseManager.IgnoreConstraintName property for better control of database

schema update and validation.

Fixed: ZeosLib depending on unnecessary units.

Version 3.3 (Aug-2016)

New: TObjectManager.Flush method can now receive an entity as parameter allowing

flushing a single entity.

New: Support for ZeosLib database-access components.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 247 of 269

New: TCascadeType.Flush cascade type allows control of how associated objects will be

flushed when flushing a single entity.

Improved: When retrieving Int64 values from database, it now tries to handle the value

even when the underlying db access component provides the value as float.

Fixed: TAureliusDataset.RecNo returning wrong value when in insert mode.

Fixed: When using bidirectional associations, in some rare situations the many-to-one side

of association was being cleared.

Fixed: TAureliusDataset displaying wrong records when using Filter in a detail dataset

(DatasetField pointing to another dataset).

Version 3.2 (Jul-2016)

New: TCriteria.Clone method allows cloning an existing Aurelius criteria.

New: TAureliusDataset.IncludeUnmappedObjects property to allow object and list fields

even if they are not mapped in class.

New: TManagerEvents.OnSQLExecuting event that is fired for every SQL statement

executed in database.

Improved: Mapping table and field names with spaces is now allowed, without needing to

quote the names in quotes in mapping.

Improved: Online Resources updated with links for new videos and articles.

Fixed: Breaking change: Merging transient objects with proxy collections was ignoring

the collection content. TObjectManager.MergeListLegacyBehavior.

Fixed: Breaking change: Updating/Merging objects with proxied associations that were

not modified was not clearing the value.

Fixed: "Duplicate Field Name" error in Aurelius Dataset when loaded object had properties

that have been redeclared from an ancestor class.

Fixed: Inheritance using discriminator failed in some situations with SQLite due to int32/

int64 type mismatch.

Fixed: DB Connection Wizard failed when using AnyDac connection.

Fixed: TProjections.Count failed for counting GUID fields.

Fixed: TDateTime field values losing time part when using dbGO and ODBC driver.

Version 3.1 (May-2016)

New: Delphi 10.1 Berlin support.

New: Explorer.ObjectFactory and Manager.ObjectFactory properties allows defing a

custom object factory for creating entity classes.

Fixed: Database update using table schema now working with PostgreSQL and MS SQL

Server.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 248 of 269

Version 3.0 (Feb-2016)

New: Design-time wizard "New TMS Aurelius Connection" makes it very straightforward to

create Aurelius database connections (IDBConnection).

New: TObjectManager.Replicate method.

Improved: Automapping now sets generator to SmartGuid if field FId is of type TGuid.

Improved: TObjectManager.Find has a new overload that accepts TGuid value for id.

Improved: Saving an object with user-assigned id was calling SQL to retrieve ID without

need.

Improved: TDatabaseManager can receive a TArray<TMappingExplorer>, allowing to

create the database structure for all of them at once.

Fixed: Merging an object with a lazy-loaded list wouldn't delete removed items on Flush if

the object being merged was not loaded from TObjectManager.

Fixed: After Mapping Explorer raised an error about wrong mapping when retrieving

columns for a class, it could later not raise that error anymore.

Fixed: Wrong error message (AV) when opening a cursor and SQL dialect is not registered.

Fixed: Sporadic AV when destroying TAureliusDataset without closing it.

Version 2.9 (Oct-2015)

New: Optimistic versioned concurrency control of entities using Version attribute.

New: TObjectManager.UseTransactions property allows control whether manager uses

transactions to perform internal operations. This is a breaking change.

Improved: More detailed error message when loading a proxy fails due to duplicated

records.

Version 2.8.1 (Sep-2015)

New: Delphi 10 Seattle support.

Version 2.8 (Aug-2015)

New: Cross-database, high-level projection functions in Aurelius queries. Date/time

functions added: Year, Month, Day, Hour, Minute, Second. String functions added: Upper,

Lower, Substring, Position, Length, ByteLength.

New: Additional TLinq conditions for string comparison: Contains, StartsWith, EndsWith.

New: OnInserted event parameters now include Master that hold the parent instance in

case of unidirectional items being inserted.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 249 of 269

Version 2.7.1 (May-2015)

Fixed: AV when using Update event listener for objects in manager without previous state

(using Update method).

Version 2.7 (Apr-2015)

New: Events system allows subscribing listeners to respond to several events (e.g, when an

entity is inserted, updated, etc.).

Improved: When deserializing objects from JSON, properties unknown to the entity will

now be ignored, instead of raising an error.

Improved: Music Library demo includes an audit log viewer that illustrates usage of the

events system.

Fixed: FireDAC driver not compiling on XE8.

Version 2.6.3 (Apr-2015)

New: Delphi XE8 support.

Version 2.6.2 (Mar-2015)

Improved: TBlob handling of data (especially using AsBytes property) improved for better

performance.

Improved: TBlob.Data property removed. Breaking change.

Fixed: Flush not updating properties modified if lazy proxy/blob is loaded after properties

were modified.

Fixed: Setting a lazy TBlob content that was not yet loaded didn't change blob content.

Fixed: TAureliusDataset now retrieves correct value for RecordCount when dataset is

filtered.

Fixed: Rare Access Violation when reloading associated object lists that exist in object

manager.

Version 2.6.1 (Feb-2015)

Improved: TAureliusDataset design-time dialog now makes it much easier to find a class

by providing a search box.

Improved: TAureliusDataset makes it easy to reload fields from classes at design-time by

remembering the last class used to load fields.

Fixed: TObjectManager.Merge was not updating collections when none of parent object

properties was changed.

Fixed: AV when loading a proxy value after an object refresh.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 250 of 269

Fixed: Error when inserting records with identity Id on tables with INSERT triggers in MS

SQL Server.

Fixed: Access Violation when destroying entity objects before destroying a

TAureliusDataset component.

Fixed: Rare error when inserting records in MS SQL Server, using SQL-Direct and native

SQL Server client.

Version 2.6 (Dec-2014)

New: TObjectManager.Evict method allows removing an object instance from the manager

without destroying it.

New: TFetchMode option in CreateAlias allows per-query setting for eager-loading

associations to improve performance.

New: TAureliusDataset.Current now returns an object even in insert state.

New: TAureliusDataset.ParentManager allows fine-grained control over the manager used

in detail datasets.

New: TCriteria.OrderBy provides an easier, alternative way to TCriteria.AddOrder to specify

criteria order.

Improved: Automatic destruction of TCriteriaResult objects in TAureliusDataset when using

SetSourceCriteria or SetSourceCursor.

Improved: Removed an extra final SQL being executed in paged queries using

TAureliusDataset.

Fixed: Design-time error using TAureliusDataset when recompiling packages with entities.

Fixed: TAureliusDataset.BookmarkValid was wrongly returning true after the bookmarked

record was deleted.

Fixed: Blobs and associations being loaded in lazy mode were causing objects to be

updated on flush.

Fixed: Json serialization using SuperObject was providing wrong boolean value.

Fixed: Saving child objects using unidirectional ManyValuedAssociation when parent has

composite key.

Version 2.5 (Oct-2014)

New: Multi-model design architecture allows different mapping models in a single

application with a few lines of code, just by using attributes.

New: SmartGuid generator allows using identifiers with sequential GUID for better

database performance.

New: OrderBy attribute allows defining a default order for many-valued associations.

New: Model attribute to specify the model where the class belongs to.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 251 of 269

New: RegisterEntity procedure helps registering a mapped class avoiding linker

optimization to remove it from application.

New: Proxy<T>.Available property.

Improved: More detailed manager error messages when trying to save objects that are

already persistent.

Fixed: Identity conflict when using MS SQL Server with multiple simultaneous sessions

inserting in the same table.

Fixed: Trailing semi-comma from some PostgreSQL commands were causing errors when

using FireDac with automatic record count.

Fixed: Wrong data for fields OldValue property when dataset is empty.

Fixed: Incompatibility between TAureliusDataset and FastReport design-time editor.

Version 2.4.1 (Sep-2014)

New: Delphi XE7 support.

Version 2.4 (Jul-2014)

New: TObjectManager.Refresh method allows refreshing object state from database.

New: ForeignKey attribute to define the name of foreign keys in the database.

New: TCascadeType.RemoveOrphans allow automatic deletion/removal of child entities on

Flush if they are removed from a parent collection.

New: TCustomJsonDeserializer.Entities property allows retrieving the list of objects created

by the JSON deserializer.

New: TDriverConnectionAdapter<T>.Connection property allows referencing the original

database component used for the connection.

New: TBlob.Available property.

New: TFirebirdSQLGenerator.WideStringCharSet property allows defining specific column

character set for WideString properties in Firebird.

Improved: Merge now can receive objects with no id. This will automatically create a copy

of the object and save it. This is a breaking change.

Improved: Better performance and memory consumption using unidirectional datasets to

fetch data with some specific component adapters.

Fixed: Error when updating objects with composite id in SQLite and one of id values is null.

Fixed: Error when serializing a newly created entity (not loaded with manager) with a TBlob

property that has not been initialized.

Fixed: ElevateDB driver compile error when using latest ElevateDB versions.

Fixed: Error when deserializing empty dynamic array properties.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 252 of 269

Version 2.3.1 (Apr-2014)

New: Delphi XE6 Support.

Improved: MappedClasses.RegisterClass now checks if the class being registered is a valid

entity ([Entity] attribute present).

Improved: CascadeTypeAllButRemove constant makes easier to define association cascade

with all options except TCascadeType.Remove.

Fixed: Using [Automapping] attribute with classes that inherit from non-entity classes was

causing "Id attribute not found" error.

Fixed: Wrong TAureliusDataset behavior with db visual controls that rely on

CompareBookmarks method.

Version 2.3 (Feb-2014)

New: Support for Android platform.

New: Support for FireDac components.

New: Overloaded constructor for connection component adapters allows easier memory

management when using data modules.

Improved: Property TIBObjectsConnectionAdapter.Transaction allows you to change the

default transaction in an IBObjects connection adapter.

Fixed: TAureliusDataset.Current method was returning an invalid value when it was in

insert state.

Fixed: "Duplicates not allowed" when retrieving objects in a inheritance tree where

different descendant classes had associations with same name.

Fixed: TAureliusDataset missing the current record position in some situations.

Fixed: Memory leak when trying to save unmapped objects.

Version 2.2 (Oct-2013)

New: Increased querying capabilities with new TExpression/TLinq methods that allow

comparing a projection to any other projection (in addition to comparing to values only).

New: Support for Rad Studio XE5.

New: Connection driver for XData RemoteDB.

New: TCriteria.AutoDestroy property allows keeping TCriteria in memory after objects are

retrieved.

Changed: Packages structure. See breaking changes.

Fixed: Error when deserializing a Json array representing an existing object list, when class

member was a proxy.

Fixed: Exception not being raised when calling TClassHierarchyExplorer.GetAllSubClasses.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 253 of 269

Fixed: Wrong default values when inserting a record in XE4 with TAureliusDataset.

Fixed: IBObjects driver now correctly performing statements using IB_Session object

specified in the TIBODatabase.

Version 2.1 (May-2013)

New: Full iOS support, including native access to SQLite database.

New: Support for Rad Studio XE4.

Fixed: Not possible to create unique keys referencing columns declared using

ForeignJoinColumn attributes.

Fixed: Merge cascades not being applied correctly.

Fixed: Access violation when loading package multiple times in TAureliusDataset design-

time editor.

Fixed: Wrong example in documentation about lazy-loading associations in distributed

applications (proxy loader).

Fixed: Schema validation example code in manual.

Fixed: Error using transactions with IBExpress, IBObjects and DirectOracleAccess

components.

Changed: Live bindings disabled by default.

Version 2.0 (Apr-2013)

New: Update Database Schema feature (TDatabaseManager.UpdateDatabase method).

New: Database Schema validation feature (TDatabaseManager.ValidateDatabase method).

New: Detailed Database Schema analysis when updating/validating/creating

(TDatabaseManager properties: Actions, Warnings, Errors).

New: TMappingSetup.MappedClasses property allows defining different class entities for

different setups (and thus databases/connections).

New: TDatabaseManager.SQLExecutionEnabled property allows generating scripts to

update/create/drop database schema without effectively execute statements.

New: TSQLiteNativeConnectionAdapter.EnableForeignKeys and DisableForeignKeys

methods allow control when foreign keys are enforced in SQLite connections.

Improved: TGlobalConfig.AutoSearchMappedClasses property removed.

Fixed: Conversion error in TAureliusDataset entity fields when using live bindings.

Version 1.9 (Feb-2013)

New: Support for Unified Interbase (UIB) components.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 254 of 269

Improved: Statements to generate MS SQL Server database structure now explicitly

declare NULL constraint when creating fields.

Improved: Auto mapping now automatically includes TColumnProp.NoUpdate in ID

column properties.

Improved: Retrieving objects (Find) with null id in database now raises an exception

instead of just returning a nil instance.

Fixed: Error when flushing objects with many-valued-association declared before id fields

and which foreign key field had same name as id field.

Fixed: Cascade not being applied when flushing objects with single-valued associations

pointing to unmanaged (transient) instances.

Fixed: Exception when setting TAureliusDataset.Filtered := true when dataset is active.

Fixed: Specific conversion issue when retrieving TGuid value from UNIQUEIDENTIFIER

fields, using SQL-Direct with server type set to stSQLServer.

Fixed: Error when deserializing Nullable<double> types using JSON deserializer.

Fixed: Uses clause in Direct Oracle Access driver included a wrong unit name.

Version 1.8 (Jan-2013)

New: Support for Direct Oracle Access components.

Improved: Updated source code to work correctly When recompiling with Assertions off.

Fixed: Error using TAureliusDataset.Locate with nullable string fields when there were null

fields in dataset.

Fixed: Rare memory leak when using some specific compiler settings (Optimizations=On).

Fixed: Memory leak in "Getting Started" demo.

Version 1.7 (Dec-2012)

New: Full JSON support makes it easy to build distributed applications.

New: Enumeration field as string now possible in TAureliusDataset by using field name

sufix ".EnumName".

Improved: IdEq method in TLinq.

Improved: TGlobalConfigs.AutoMappingDefaultCascade now split in two different

properties for Association and ManyValuedAssociation (breaking change).

Fixed: TGuid properties and fields were causing occasional errors in Flush method calls.

Version 1.6 (Sep-2012)

New: Delphi XE3 support.

New: Support for FIBPlus components.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 255 of 269

New: TCriteria.RemovingDuplicatedEntities allows removing duplicated objects from result

list.

New: Properties Count and PropNames in TCriteriaResult object provides additional info

about retrieved projections.

Improved: Better support for other date types (string and julian) in SQLite database.

Improved: Possibility to use descendants of TList<T>/TObjectList<T> for many-valued

associations.

Improved: Non-generic TObjectManager.Find method overload accepting a class type as

parameter.

Fixed: Memory leak when creating a default TMappingExplorer.

Fixed: Error when saving collection items belonging to a joined-tables class hierarchy.

Fixed: Cascade removal was not removing lazy-loaded associations if the associations were

not loaded.

Version 1.5 (Jun-2012)

New: Guid, Uuid38, Uuid36 and Uuid32 identifier generators allow client-side automatic

generation of GUID and/or string identifiers.

New: TExpression.Sql and TProjections.Sql methods for adding custom SQL syntax to a

query, increasing flexibility in query construction.

New: Support for properties/fields of type TGuid, which are now mapped to database

Guid/Uniqueidentifier fields (if supported by database) or database string fields.

New: Support for Absolute Database.

Version 1.4 (May-2012)

New: Dynamic properties allows mapping to database columns at runtime.

Improved: TCriteriaResult object can retrieved projected values by projection alias.

Improved: TCriteriaResult objects supported in TAureliusDataset.

Improved: Better validation of MappedBy parameter in ManyValuedAssociation attribute.

Improved: TAureliusDataset.Post method now saves object if it's not persisted, even in edit

mode.

Fixed: Issue with association as part of composite id when multiple associations are used

in cascaded objects.

Fixed: Manual Quick Start example updated with correct code.

Fixed: Automapping was not correctly defining table name in some situations with

inherited classes.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 256 of 269

Version 1.3 (Mar-2012)

New: Paged fetch-on-demand using TAureliusDataset.SetSourceCriteria allows fetching

TDataset records on demand without keeping an open database connection.

New: Fetch-on-demand support on TAureliusDataset, by using SetSourceCursor method.

New: Support for ElevateDB database server.

New: Paging query results now supported by using new TCriteria methods Skip and Take.

New: TCriteria.Open method allows returning a cursor for fetching objects on demand.

New: TBlob.LoadFromStream and SaveToStream methods for improved blob manipulation.

New: "Not" operator supported in TLinq expressions and "Not_" method in TExpression.

New: TAureliusDataset.InternalList property allows access to the internal object list.

Improved: TObjectManager.Find<T> method introduced as an alias for CreateCriteria<T>

method for query creation.

Improved: TCriteria.UniqueResult now returns nil if no objects are returned.

Improved: TCriteria.UniqueResult returns the unique object even if the object is returned in

more than one row (duplicated rows of same object).

Improved: NexusDB through UniDac components now supported.

Version 1.2 (Mar-2012)

New: Fully documented TAureliusDataset component for visual binding objects to data-

aware controls.

New: Support for UniDac components.

Improved: Better error handling with more detailed and typed exceptions being raised at

key points, especially value conversion routines.

Improved: IBObjects adapter now can adapt any TIB_Connection component, not only

TIBODatabase ones.

Improved: Better exception messages for convert error when load entity property values

from database.

Fixed: Issue with SQL statement when using more than 26 eager-loading associations.

Fixed: Issue when selecting objects with non-required associations and required sub-

associations.

Fixed: Issue with lazy-loaded proxies using non-id columns as foreign keys.

Fixed: Adding Automapping attribute was not requiring Entity attribute to be declared.

Fixed: Automapping in a subclass in a single-table hierarchy caused issues when creating

database schema.

Fixed: Memory leak in MusicLibrary demo.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 257 of 269

Version 1.1 (Feb-2012)

New: TObjectDataset preview (for registered users only).

New: Support for IBObjects components.

Improved: MusicLibrary demo refactored to use best-designed controllers.

Improved: Access Violation replaced by descriptive error message when SQL dialect was

not found for connection.

Fixed: Registered version installer sometimes not correctly detecting XE/XE2 installation.

Fixed: Memory leak is some specific situations with automapped associations.

Fixed: Default value of OwnsObjects property in TObjectManager changed from false to

true (as stated by documentation).

Fixed: Memory leak in MusicLibrary demo.

Fixed: Component adapter was ignoring explicitly specified SQL dialect.

Fixed: Issue with automapping self-referenced associations.

Version 1.0 (Jan-2012)

First public release.

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 258 of 269

Licensing and Copyright Notice

Licensing Information
Trial version of this product is free for use in non-commercial applications, that is any software

that is not being sold in one or another way or that does not generate income in any way by the

use/distribution of the application.

For registered version of this proudct, three types of licenses apply:

Single Developer License

Small Team License

Site License

Main Copyright
Unless in the parts specifically mentioned below, all files in this distribution are copyright (c)

Wagner Landgraf and licensed under the terms detailed in Licensing Information section above.

The product cannot be distributed in any other way except through TMS Software web site. Any

other way of distribution must have written authorization of the author.

Third Party Copyrights
This distribution might also contain the following licensed code:

File Bcl.Collections: Hash Set data structure.

Copyright (c) 2017 by Grijjy, Inc.

Those parts are licensed under the following terms:

•

•

•

TMS Aurelius 5.11 Page 259 of 269

https://www.tmssoftware.com/site/lic_single.asp
https://www.tmssoftware.com/site/lic_smallteam.asp
https://www.tmssoftware.com/site/lic_site.asp

Copyright (c) 2017 by Grijjy, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TMS Aurelius 5.11 Page 260 of 269

Getting Support

General notes
Before contacting support:

Make sure to read this whole manual and any readme.txt or install.txt files in component

distributions, if available.

Search TMS support forum and TMS newsgroups to see if you question hasn't been

already answer.

Make sure you have the latest version of the component(s).

When contacting support:

Specify with which component is causing the problem.

Specify which Delphi or C++Builder version you're using and preferably also on which OS.

For registered users, use the special priority support email address (mentioned in

registration email) & provide your registration email & code. This will guarantee the

fastest route to a solution.

Send email from an email account that

allows to receive replies sent from our server.

allows to receive ZIP file attachments;

has a properly specified & working reply address.

Getting support
For general information: info@tmssoftware.com

Fax: +32-56-359696

For all questions, comments, problems and feature request for VCL components:

help@tmssoftware.com

IMPORTANT

All topics covered by this manual are officially supported and it's unlikely that future versions

will break backward compatibility. If this ever happens, all breaking changes will be covered in

this manual and guidelines to update to a new version will be described. However, it's

important to note that parts of TMS Aurelius code that are undocumented are not officially

supported and are subject to change, which includes breaking backward compatibility. In

case you are using an unsupported/undocumented feature we will not provide support for

upgrading and will not officially support it.

•

•

•

•

•

•

1.

2.

3.

TMS Aurelius 5.11 Page 261 of 269

mailto:info@tmssoftware.com
mailto:help@tmssoftware.com

TMS Aurelius 5.11 Page 262 of 269

Breaking Changes
List of changes in each version that breaks backward compatibility from a previous version.

Version 4.18
If you use undocumented internal classes TInsertCommand or TUpdateCommand, be aware that

the type of the insert and update fields have changed. You now have to create a TInsertSQLField

and TUpdateSQLField respectively, and you must define a value for the ParamName property.

Old behavior:

New behavior:

The same applies for TUpdateCommand and TSQLUpdateField.

Version 3.11
TCriteria.Open<T> now returns ICriteriaCursor<T>.

This is a change that should not affect any existing code. But in any case you have a type

mismatch error when retrieving a cursor with Open and saving the reference to a variable, just

change the type of the variable and everything should work as expected.

Version 3.2
Merging transient objects with proxy collections was ignoring the collection content

(TObjectManager.MergeListLegacyBehavior).

Updating/Merging objects with proxied associations that were not modified was not

clearing the value.

More info here.

Version 2.9
Object manager now uses transactions by default. More info here.

Command := TInsertCommand.Create;

Command.InsertFields.Add(TSQLField.Create(SQLTable, 'Name'));

Command := TInsertCommand.Create;

Command.InsertFields.Add(TSQLInsertField.Create(SQLTable, 'Name', 'ParamName'));

•

•

•

TMS Aurelius 5.11 Page 263 of 269

Version 2.4
The process of merging objects (Merge method) has improved, but this created a breaking

change. In previous versions, if you tried to merge an object without id, an exception would be

raised. But if you tried to merge an object which had an association that pointed to an object

with no id, nothing would happen and that association property would remain unchanged. It was

an inconsistent behavior but no exception was raised. Starting from version 2.4, if you try to

merge an object with no id, a copy of that instance will be saved. If it's an association, the

instance will be replaced. This is a breaking change.

For example, consider the following code:

Customer has an id but Country has not. Customer will be merged and a different instance will be

returned and put in MergedCustomer variable. Previous to version 2.4, MergedCustomer.Country

will point to the same instance pointed by Country variable, and nothing would happen in

database. From version 2.4 and on, a copy of Country object will be saved in database, and

MergedCustomer.Country will point to that new instance, which is different from the instanced

referenced by Country variable. You should destroy the Country instance.

Version 2.2
Packages were restructured to use LIBSUFIX, which means DCP (Delphi Compiled Package) files

won't have the a suffix indicating Delphi version. For example, in previous versions, the compiled

package file for Delphi XE3 would be aureliusxe3.dcp . From version 2.2 and on, file name will

be simply aurelius.dcp . Your application might be affected by this if you have packages that

requires Aurelius packages. You will have you update your package files to require package

"aurelius" instead of requiring package "aureliusxe3" (or whatever Delphi version you use). BPL

files are unchanged, still keeping delphi version suffix (aureliusxe3.bpl).

Version 3.2 - Breaking Changes
Merging transient objects with proxy collections was ignoring the collection content.

This versions fixes a bug that might break existing code that was relying on such bug to work.

Suppose you have a list with a property using lazy-loaded association (using Proxy):

Customer := TCustomer.Create;

Customer.Id := 1;

Country := TCountry.Create;

Country.Name := 'New Country';

Customer.Country := Country;

MergedCustomer := Manager.Merge<TCustomer>(Customer);

TCustomer = class

{...}

 FAddresses: Proxy<List<TAddress>>;

TMS Aurelius 5.11 Page 264 of 269

If you initialize such class and Merge it using an existing customer Id:

Expected behavior would be that all the existing Addresses associated with Customer which Id=5

would be disassociated from it (or deleted if the association cascade included RemoveOrphan

type.

However, for versions below 3.2, the property was being ignored when merging and the

addresses were kept. So you must be sure that your code doesn't rely on such behavior,

otherwise you might get some changes in data.

If you want to keep the old behavior, you can set a specific property in the object manager:

This will keep the old (and wrong) behavior.

Updating/Merging objects with proxied associations that were not modified was not

clearing the value.

On the other hand, suppose you have the same situation but with a single entity association:

If you create a new instance and update (or merge) it, leaving Country blank:

Expected behavior would be that Country of customer with id = 5 in the database would be

cleared.

However, for versions below 3.2, the value was being ignored and Country property was left

unchanged. So be careful with the update because after updating existing code might behave

differently (even though it was relying on a bug).

Customer := TCustomer.Create;

Customer.Id := 5;

Manager.Merge<TCustomer>(Customer);

Manager.Flush;

Manager.MergeListLegacyBehavior := True;

TCustomer = class

{...}

 FCountry: Proxy<TCountry>;

Customer := TCustomer.Create;

Customer.Id := 5;

Manager.Update(Customer); // or Manager.Merge<TCustomer>(Customer);

Manager.Flush;

TMS Aurelius 5.11 Page 265 of 269

Version 2.9 -
TObjectManager.UseTransactions
As of version 2.9, TObjectManager includes a property UseTransactions. This property is true by

default, meaning the behavior is different from previous versions. When true, the manager will

create transactions for its internal operations (for example, when you call Save or Remove). This is

to make sure that all SQL performed by the internal operations are executed successfully or all is

reverted in case of error at any point.

In our (huge) test suite, we didn't detect any problem with backward compatibility, no

regressions. But in any case you find an issue with version 2.9, please be aware of this change

and consider if that can be the cause of the problem.

You can switch to previous behavior by setting that property to false, or globally using the global

configuration.

TMS Aurelius 5.11 Page 266 of 269

Online Resources
This topic lists some links to internet resources - videos, articles, blog posts - about TMS

Aurelius.

Official Online Documentation

Intensive Delphi video series

(Portuguese Audio, English Subtitles)

Introduction to TMS Software products: TMS Business, Aurelius, XData, Scripter

TMS Aurelius ORM for Delphi: Basic Demo Showcase

TMS Aurelius ORM for Delphi: Music Library Demo Showcase

TMS Data Modeler Database Modeling integrated with TMS Aurelius Delphi ORM

TMS XData Showcase: REST/JSON server for Delphi from scratch

TMS XData for Delphi: Features of Rest/JSON Server, filter, orderby, PUT, POST

TMS Scripter: Add scripting capabilities to your Delphi application with full IDE/debugging

support

Rest/Json Server On Linux with TMS XData and Delphi - video series

(English Subtitles)

Part 1: Installing Ubuntu Linx

Part 2: Installing PAServer

Part 3: WebBroker Apache Module

Part 4: TMS Sparkle with Apache

Part 5: TMS XData/Aurelius Server

"My Top 10 Aurelius Features" blog post and video series

(videos have both English and Portuguese subtitles)

Introduction (05-Dec-2016)

#10 - Automapping (video link) (05-Dec-2016)

#9 - Plain Old Delphi Objects (video link) (12-Dec-2016)

#8 - Lazy Loading (video link) (22-Dec-2017)

#7 - Schema Update (video link) (03-Jan-2017)

#6 - Legacy Databases (video link) (12-Jan-2017)

#5 - LINQ Expressions and Paging (video link) (30-Jan-2017)

#4 - Aurelius Dataset (video link) (09-Feb-2017)

#3 - Inheritance (video link) (21-02-2017)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 267 of 269

https://download.tmssoftware.com/business/aurelius/doc/web
https://youtu.be/iHYsViBroFo
https://youtu.be/_0M_7d8TBfM
https://youtu.be/xrWr16I_P74
https://youtu.be/lHI5sEJwjOU
https://youtu.be/e31Co9Fv3YY
https://youtu.be/QvgS8pjpfkk
https://youtu.be/YHsS9SGmeRk
https://youtu.be/YHsS9SGmeRk
https://youtu.be/KtGWVFlBFIQ
https://youtu.be/zXBg20Xhs2k
https://youtu.be/kolOvymSNWk
https://youtu.be/91RQ0I3CMfs
https://youtu.be/09Wa5wX9NtU
https://www.tmssoftware.com/site/blog.asp?post=369
http://www.tmssoftware.com/site/blog.asp?post=370
https://www.youtube.com/watch?v=DphQU80tRD4
http://www.tmssoftware.com/site/blog.asp?post=372
https://www.youtube.com/watch?v=6UZIg0Hg20E
http://www.tmssoftware.com/site/blog.asp?post=374
https://youtu.be/XNrfWw9W_j4
http://www.tmssoftware.com/site/blog.asp?post=380
https://youtu.be/tp3DfmA53-A
http://www.tmssoftware.com/site/blog.asp?post=382
https://youtu.be/AlKLfTAbxHA
http://www.tmssoftware.com/site/blog.asp?post=385
https://youtu.be/ZSXAtr8qFvU
http://www.tmssoftware.com/site/blog.asp?post=390
https://youtu.be/yxzNoxhLXzk
http://www.tmssoftware.com/site/blog.asp?post=392
https://youtu.be/F77zxwpjTMU

#2 - LINQ Projections (video link) (06-03-2017)

#1 - Maturity (video link) (19-03-2017)

Malcolm Groves' series of articles "Storing your Objects in a Database" about TMS Aurelius

(include videos)

Introduction (16-Jun-2016)

Getting Started (16-Jun-2016)

Extending the Model (11-Jul-2016)

Aurelius Crash Course (blog posts)

Getting Started

AnyDAC or dbExpress

Associations (Foreign Keys)

Using Blobs

Inheritance and Polymorphism

Visual Data Binding using TAureliusDataset

Conference/Webinar Videos

TMS Aurelius Free Edition - An Overview (CodeRage XI Session) (21-Nov-2016)

TMS Aurelius session at CodeRage 8 (download source code used in video)

Introducing TMS Aurelius, a Delphi ORM - Vendor Showcase

Portuguese Resources - Links em português

Vídeos em português

TMS Aurelius - Usando TAureliusDataset

TMS Aurelius - Criando uma Aplicação

Grupo DCORM - reunião sobre TMS Aurelius/XData

TMS Aurelius e TMS XData - DCORM group meeting - 2014 (português) (download source

code)

TMS Aurelius e TMS XData - Embarcadero Conference 2013 (português) (download source

code)

Curso Rápido TMS Aurelius (português)

Primeiros Passos

FireDac ou dbExpress?

Associações (Chaves Estrangeiras)

Artigos em Revistas

Artigo revista DevMedia - Mapeamento ORM com TMS Aurelius

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Aurelius 5.11 Page 268 of 269

http://www.tmssoftware.com/site/blog.asp?post=393
https://youtu.be/SqIMoOtrjH8
http://www.tmssoftware.com/site/blog.asp?post=402
https://youtu.be/F6bUBitXQTM
https://www.code-partners.com/storing-your-objects-in-a-database-introduction/
https://www.code-partners.com/storing-your-objects-in-a-database-getting-started/
https://www.code-partners.com/storing-your-objects-in-a-database-extending-the-model/
http://www.tmssoftware.com/site/blog.asp?post=245
http://www.tmssoftware.com/site/blog.asp?post=246
http://www.tmssoftware.com/site/blog.asp?post=247
http://www.tmssoftware.com/site/blog.asp?post=254
http://www.tmssoftware.com/site/blog.asp?post=256
http://www.tmssoftware.com/site/blog.asp?post=258
https://www.youtube.com/watch?v=fIOntD73S8k
https://www.youtube.com/watch?v=YZFYrDIGLW4
http://tmssoftware.com/business/resources/coderage2013/source.zip?
https://www.youtube.com/watch?v=aGxOzvRh1EM
https://www.youtube.com/watch?v=_gvgYCsEkHU
https://www.youtube.com/watch?v=K_C2P9VqqyE
https://www.youtube.com/watch?v=t-OsfagKND0
https://www.youtube.com/watch?v=t-OsfagKND0
http://www.tmssoftware.com/business/resources/aurelius_xdata_video_nov_2014.zip
http://www.tmssoftware.com/business/resources/aurelius_xdata_video_nov_2014.zip
https://www.youtube.com/watch?v=LKUQYZnQqAM
http://tmssoftware.com/business/resources/brconference2013/source.zip
http://tmssoftware.com/business/resources/brconference2013/source.zip
http://tmssoftware.com/site/blog.asp?post=252
http://www.tmssoftware.com/site/blog.asp?post=255
http://www.tmssoftware.com/site/blog.asp?post=257
http://www.devmedia.com.br/mapeamento-orm-com-o-tms-aurelius-revista-clubedelphi-magazine-151/28233

TMS Aurelius 5.11 Page 269 of 269

	Overview
	Getting Started
	Quick Start
	1. Create the class model
	2. Define and map persistent entity class
	Note

	3. Obtain an IDBConnection interface
	Note

	4. Specify the SQL dialect
	5. Create the database
	Note

	6. Instantiate and save objects
	7. Retrieve and update objects
	8. Perform queries
	Note

	9. What's Next?

	Database Connectivity
	Using the Connection Wizard
	IDBConnection Interface
	TAureliusConnection Component
	Configuring the connection using Connection Editor
	Configuring the connection using properties
	Using the connection

	Generate Entities From Existing Database
	Naming options
	Dictionary
	Defaults
	Options

	Component Adapters
	Creating the adapter
	Overloaded constructors
	Memory Management
	Referencing original component
	Native SQLite Adapter
	dbGo (ADO) Adapter

	Native Database Drivers
	Creating a connection
	SQLite Driver
	MSSQL Driver (Microsoft SQL Server)

	SQL Dialects
	Configuring SQL Dialects
	Properties
	MSSQL (Microsoft SQL Server)
	Properties

	Firebird3 (Firebird 3.x)
	Properties

	Schema Importers
	Note

	Components and Databases Homologation
	Database Manager - Creating/Updating Schema
	TAureliusDBSchema Component
	Key properties
	Usage
	Memory management

	Creating New Schema
	Updating Existing Schema
	Note

	Dropping Existing Schema
	Schema Validation
	Note
	Actions
	Warnings
	Errors
	Schema comparison options

	Generating SQL Script
	Other Properties and Methods

	Mapping
	Attributes
	Entity
	AbstractEntity
	Id
	Note

	Table
	Column
	Model
	Association
	Note

	JoinColumn
	Note

	ManyValuedAssociation
	Note

	ForeignJoinColumn
	OrderBy
	Where
	Inheritance
	DiscriminatorColumn
	DiscriminatorValue
	PrimaryJoinColumn
	Sequence
	UniqueKey
	DBIndex
	ForeignKey
	Enumeration
	Automapping
	Transient
	Version
	Description

	Automapping Feature
	Table mapping
	Column mapping
	Associations
	Identifier
	Enumerations
	Sequences
	Inheritance
	Customizing automapping

	Nullable Type
	Binary Large Objects (Blobs)
	Lazy-Loading Blobs
	TBlob Type
	Usage
	Implicit conversion to TBytes
	Explicitly using AsBytes property
	Use AsUnicodeString property to read/set the blob content as string
	Raw access to the data using Data and Size properties
	Using streams to save/load the blob
	IsNull property
	Clearing the blob
	Loaded and Available properties

	Associations and Lazy-Loading
	Eager Loading
	Lazy Loading
	Lazy loading lists
	Proxy<T> Available property
	Proxy<T> Key property

	Inheritance Strategies
	Single Table Strategy
	Joined Tables Strategy

	Composite Id
	Mapping Examples
	Basic Mapping
	Single-Table Inheritance and Associations
	Joined-Tables Inheritance

	Registering Entity Classes

	Multi-Model Design
	Multi-Model Step-By-Step
	Using Model attribute
	TMappingExplorer
	Retrieving a TMappingExplorer instance
	Creating a TMappingExplorer explicitly
	Note

	Mapping Setup
	Note
	Defining a Mapping Setup
	Default Mapping Setup Behavior
	Mapped Classes
	Defining mapped classes
	Default behavior
	Methods and properties

	Dynamic Properties
	Preparing Class for Dynamic Properties
	Registering Dynamic Properties
	Note

	Using Dynamic Properties
	Dynamic Properties in Queries and Datasets

	Manipulating Objects
	Object Manager
	Creating a new object manager
	Save method
	Update method
	SaveOrUpdate method
	Flush method
	Flush method for single entity

	Merge method
	Replicate method
	Find method
	Remove method
	Find<T> method
	CreateCriteria<T> method
	Evict method
	IsAttached method
	FindCached<T> method
	IsCached<T> method
	HasChanges method
	OwnsObjects property
	ProxyLoad and BlobLoad methods
	UseTransactions property
	DeferDestruction property

	TAureliusManager Component
	Key properties
	Usage
	TObjectManager memory management

	Memory Management
	Concept of object state
	Object lists
	Unique instances
	Manually adding ownership
	Examples
	Using unmanaged objects

	Saving Objects
	Updating Objects - Flush
	Merging
	Flushing a single object

	Merging/Replicating Objects
	Removing Objects
	Finding Objects
	Refreshing Objects
	Evicting Objects
	Transaction Usage
	Concurrency Control
	Changed fields
	Entity Versioning

	Cached Updates
	Exceptions
	Cached actions

	Batch (Bulk) Updates
	Batch algorithm
	Driver-dependent behavior

	Queries
	Creating Queries
	Create a new query (TCriteria instance)
	Memory management

	Fluent Interface
	Retrieving Results
	Retrieving an Object List
	Unique Result
	Fetching Objects Using Cursor
	Results with Projections

	Filtering Results
	Creating Expressions Using Linq
	Equals
	Greater Than
	Greater Than or Equals To
	Less Than
	Less Than Or Equals To
	Like
	ILike
	IsNull
	IsNotNull
	Identifier Equals
	Sql Expression
	Aliases
	Parameters

	Starts With
	Ends With
	Contains
	In
	Comparing Projections

	Associations
	Auto alias
	Using aliases
	Using SubCriteria
	Mixing SubCriteria and aliases
	Specifying Eager fetching for associations loaded as lazy by default

	Ordering Results
	Projections
	Projections Overview
	Creating Projections Using TProjections
	Aggregated Functions
	Prop
	Limiting the selected properties
	Warning

	Group
	Add
	Subtract
	Multiply
	Divide
	Condition
	Literal<T>
	Value<T>
	ProjectionList
	Alias
	Sql Projection
	Year
	Month
	Day
	Hour
	Minute
	Second
	Upper
	Lower
	Concat
	Length
	ByteLength
	Substring
	Position
	SqlFunction

	Polymorphism
	Paging Results
	Removing Duplicated Objects
	Cloning a Criteria
	Refreshing Results

	Dictionary
	Warning
	Dictionary generation
	Generate from application
	Generate from database
	Generate from command-line tool

	Using the dictionary
	Simple properties as projections
	Associations

	Dictionary validation

	Data Validation
	Note
	Built-in Validators
	Required
	Note

	MaxLength
	MinLength
	Range
	EmailAddress
	RegularExpression

	Entity validators
	Warning
	Note

	Validation Messages
	DisplayName
	Custom error message

	Handling Failed Validation
	Disabling Validations
	Custom Validators
	Manual Validation

	Global Filters
	Creating filter definitions
	Note

	Filter conditions and parameters
	Applying filters to entities
	Warning

	Enabling filters
	Warning

	Filter enforcer

	Data Binding - TAureliusDataset
	Providing Objects
	Providing an Object List
	Note

	Providing a Single Object
	Using Fetch-On-Demand Cursor
	Using Criteria for Offline Fetch-On-Demand
	Offline fetch-on-demand using paging

	Internal Object List
	Using Fields
	Default Fields and Base Class
	Self Field
	Sub-Property Fields
	Entity Fields (Associations)
	Dataset Fields (Many-Valued Associations)
	Heterogeneous Lists (Inheritance)
	Enumeration Fields
	Fields for Projection Values
	Note

	Modifying Data
	New Objects When Inserting Records
	Note

	Manager Property
	Objects Lifetime Management
	Manual Persistence Using Events
	Note

	Locating Records
	Calculated Fields
	Lookup Fields
	Filtering
	Design-time Support
	Other Properties And Methods
	Methods
	Properties
	TFieldInclusions
	TRecordCountMode

	Distributed Applications
	JSON - JavaScript Object Notation
	Available Serializers
	Serialization behavior
	Blob fields
	Associations

	Lazy-Loading with JSON
	Lazy-Loading Blobs

	Memory Management with JSON

	Events
	Using Events
	Subscribing from code
	TAureliusModelEvents Component
	Using Attributes
	Warning

	Available events
	OnInserting Event
	OnInserted Event
	OnUpdating Event
	OnUpdated Event
	OnDeleting Event
	OnDeleted Event
	OnCollectionItemAdded Event
	OnCollectionItemRemoved Event
	OnSqlExecuting Event

	Advanced Topics
	Global Configuration
	Object Factory

	About
	What's New in TMS Aurelius
	Version 5.11 (September-2022)
	Version 5.10 (August-2022)
	Version 5.9 (July-2022)
	Version 5.8 (March-2022)
	Version 5.7 (February-2022)
	Version 5.6 (October-2021)
	Version 5.5 (September-2021)
	Version 5.4 (July-2021)
	Version 5.3 (Jun-2021)
	Version 5.2 (Apr-2021)
	Version 5.1 (Mar-2021)
	Version 5.0 (Mar-2021)
	Version 4.18 (Sep-2020)
	Version 4.17 (Aug-2020)
	Version 4.16 (Jun-2020)
	Version 4.15 (Jun-2020)
	Version 4.14 (May-2020)
	Version 4.13 (Apr-2020)
	Version 4.12 (Apr-2020)
	Version 4.11 (Mar-2020)
	Version 4.10 (Nov-2019)
	Version 4.9 (Oct-2019)
	Version 4.8 (Sep-2019)
	Version 4.7 (Jun-2019)
	Version 4.6 (May-2019)
	Version 4.5 (Mar-2019)
	Version 4.4 (Jan-2019)
	Version 4.3 (Dec-2018)
	Version 4.2 (Nov-2018)
	Version 4.1 (Oct-2018)
	Version 4.0 (Sep-2018)
	Version 3.13 (Jul-2018)
	Version 3.12 (May-2018)
	Version 3.11 (Feb-2018)
	Version 3.10 (Oct-2017)
	Version 3.9 (Jul-2017)
	Previous Versions
	Version 3.8 (May-2017)
	Version 3.7 (Mar-2017)
	Version 3.6 (Feb-2017)
	Version 3.5 (Jan-2017)
	Version 3.4 (Sep-2016)
	Version 3.3 (Aug-2016)
	Version 3.2 (Jul-2016)
	Version 3.1 (May-2016)
	Version 3.0 (Feb-2016)
	Version 2.9 (Oct-2015)
	Version 2.8.1 (Sep-2015)
	Version 2.8 (Aug-2015)
	Version 2.7.1 (May-2015)
	Version 2.7 (Apr-2015)
	Version 2.6.3 (Apr-2015)
	Version 2.6.2 (Mar-2015)
	Version 2.6.1 (Feb-2015)
	Version 2.6 (Dec-2014)
	Version 2.5 (Oct-2014)
	Version 2.4.1 (Sep-2014)
	Version 2.4 (Jul-2014)
	Version 2.3.1 (Apr-2014)
	Version 2.3 (Feb-2014)
	Version 2.2 (Oct-2013)
	Version 2.1 (May-2013)
	Version 2.0 (Apr-2013)
	Version 1.9 (Feb-2013)
	Version 1.8 (Jan-2013)
	Version 1.7 (Dec-2012)
	Version 1.6 (Sep-2012)
	Version 1.5 (Jun-2012)
	Version 1.4 (May-2012)
	Version 1.3 (Mar-2012)
	Version 1.2 (Mar-2012)
	Version 1.1 (Feb-2012)
	Version 1.0 (Jan-2012)

	Licensing and Copyright Notice
	Licensing Information
	Main Copyright
	Third Party Copyrights

	Getting Support
	General notes
	Getting support
	Important

	Breaking Changes
	Version 4.18
	Version 3.11
	Version 3.2
	Version 2.9
	Version 2.4
	Version 2.2
	Version 3.2 - Breaking Changes
	Version 2.9 - TObjectManager.UseTransactions

	Online Resources
	Portuguese Resources - Links em português

