
Overview
TMS Logging is a cross platform logging framework offering informative log output to a flexible

number of targets with a minimum amount of code. It's part of TMS Business product line. TMS

Logging is available for XE7 update 1 or newer releases and supports VCL and FMX.

TMS Logging product page: https://www.tmssoftware.com/site/tmslogging.asp

TMS Software site: https://www.tmssoftware.com

Feature overview

Log to one or more output handlers such as the Console, HTML, Text file, CSV file, TCP/IP,

Browser, Windows Event Log, ...

Heavily RTTI based for comprehensive type and class logging with simple log statements

Cross platform: supports VCL Win32/Win64 apps and FMX Win32/Win64/Mac OS-X/iOS/

Android apps

Class & property attribute based log output control & log output validation

Extensive & extensible data formatting capabilities

Multi-thread enabled & thread-safe

Includes options for time & delta time measurements

Runtime configurable log level

Log configuration persistence to file or registry

Helper methods to quickly setup custom output handlers and retrieve important

information on the machine, device and application

Value validations to control logging based on attributes with a set of pre-defined

validations such as value-range, date/time range, string length, regular expressions, ...

Easily extensible and customizable with custom output handlers

Separate TCP/IP Client included for viewing logger outputs remotely

IDE Plugin for adding missing units, inserting output handler registration code and

toggling comments

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Logging 2.13.0.1 Page 1 of 44

https://www.tmssoftware.com/site/bipack.asp
https://www.tmssoftware.com/site/tmslogging.asp
https://www.tmssoftware.com

In this section:

Using TMSLogger

TMSLogger: getting started, features and capabilities.

Output Handlers

How to output log to different targets and formats.

Miscelaneous

Some additional features.

TMS Logging 2.13.0.1 Page 2 of 44

Using TMSLogger
Add the unit VCL.TMSLogging or FMX.TMSLogging to the uses list depending on the kind of

framework you are creating an application for. Additionally, the units TMSLoggingCore and

TMSLoggingUtils are only neccessary, for example when setting the Outputs or Filters property.

The TMSLoggingCore and TMSLoggingUtils are shared between VCL and FMX. The IDE Plugin

that is available after installation can help you add the missing units in case the application does

not compile after adding code related to TMS Logging. More information can be found in the

IDE Plugin chapter.

The function TMSLogger returns a singleton logger instance that can be used throughout the

application. By default the logger is active, but can easily be deactivated by using the following

code:

As already mentioned in the overview topic, the logger makes use of log levels to output values /

objects. Each call is a combination of the log level, an optional format and the values / objects to

log. The logger outputs to the console by default, and already applies a set of outputs

(TMSLogger.Outputs) with a specific format (TMSLogger.OutputFormats). Below is a sample of

different log levels with the default logger configuration.

Result:

The TMSLogger provides several other features and capabilities you can use, as follows.

TMSLogger.Active := False;

procedure TForm1.Button1Click(Sender: TObject);

var

 s: string;

begin

 s := 'Hello World !';

 TMSLogger.Info(s);

 TMSLogger.Error(s);

 TMSLogger.Warning(s);

 TMSLogger.Trace(s);

 TMSLogger.Debug(s);

end;

TMS Logging 2.13.0.1 Page 3 of 44

Formatting

Formatting can be applied in 2 ways: either globally with the TMSLogger.OutputFormats

properties or by using one of the log level overloads. The parsing after applying formatting is a

custom implementation and supports the Delphi SysUtils Format function. A requirement to

successfully execute a log statement with parsing is that the format string contains an opening

and closing brace or curly bracket to form a format tag.

The TMSLogger.OutputFormats property contains a set of predefined formats with their format

tags. Below is an overview of the default values for each output format:

Accompanied with these format properties is the TMSLogger.Outputs property that can

determine which information needs to be logged. Below is a sample that combines these 2

properties to create a completely different log output.

Result will be as following:

TimeStampFormat := '[{%dt}]';

ProcessIDFormat := '[{%s}]';

ThreadIDFormat := '[{%s}]';

LogLevelFormat := '[{%s}]';

ValueFormat := '[Value: {%s}]';

NameFormat := '[Name: {%s}]';

TypeFormat := '[Type: {%s}]';

MemoryUsageFormat := '[Memory usage: {%bt} bytes]';

procedure TForm1.FormCreate(Sender: TObject);

begin

 TMSLogger.Outputs := [loTimeStamp, loLogLevel, loValue];

 TMSLogger.OutputFormats.TimeStampFormat := 'The time is {%"hh:nn:ss"dt}, ';

 TMSLogger.OutputFormats.LogLevelFormat := 'the loglevel is {%s}, ';

 TMSLogger.OutputFormats.ValueFormat := 'and the value is {%s}';

end;

procedure TForm1.Button1Click(Sender: TObject);

var

 s: string;

begin

 s := 'Hello World !';

 TMSLogger.Info(s);

 TMSLogger.Error(s);

 TMSLogger.Warning(s);

 TMSLogger.Trace(s);

 TMSLogger.Debug(s);

end;

TMS Logging 2.13.0.1 Page 4 of 44

Overriding format for a specific log message

While the above method of formatting already provides a certain flexibility, the value formatting

is applied to each log statement. To override this behavior, you can specify a formatting for each

value that will be logged. The following sample overrides the output of the previous sample for

one of the log statements.

Result will be as following:

Format string syntax

Formatting is not limited to strings only, below is an overview of supported formatting tags that

can be used.

Tag Expected value

d Decimal (integer)

e Scientific

f Fixed

g General

m Money

procedure TForm1.FormCreate(Sender: TObject);

begin

 TMSLogger.Outputs := [loTimeStamp, loLogLevel, loValue];

 TMSLogger.OutputFormats.TimeStampFormat := 'The time is {%"hh:nn:ss"dt}, ';

 TMSLogger.OutputFormats.LogLevelFormat := 'the loglevel is {%s}, ';

 TMSLogger.OutputFormats.ValueFormat := '{%s}';

end;

procedure TForm1.Button1Click(Sender: TObject);

var

 s: string;

 fmt: string;

begin

 s := 'Hello World !';

 fmt := 'The value is {%s}';

 TMSLogger.Info(s);

 TMSLogger.Error(s);

 TMSLogger.WarningFormat(fmt, [s]);

 TMSLogger.Trace(s);

 TMSLogger.Debug(s);

end;

TMS Logging 2.13.0.1 Page 5 of 44

Tag Expected value

n Number (floating)

p Pointer

s String

u Unsigned decimal

x Hexadecimal

The general format of each formatting tag is as follows:

where the square brackets refer to optional parameters, and the : . - characters are literals, the

first 2 of which are used to identify two of the optional arguments. Below is an example of

formatting a double value with 2 decimals:

Result will be as following:

More information can be found at the following page: http://www.delphibasics.co.uk/RTL.asp?

Name=Format

As an extension to this, the logger supports a set of additional tags that can be used to format

the value. Below is an overview of the format tags that can be used.

Tag

Optional parameters (between double

quotes)

Expected

value Output

a array outputs the array to a

string that represents the

values

b output as number or as "true" or "false"

string (ex: {%"-1"b})

Boolean outputs the Boolean

value to a string

represented in numbers

or "true" or "false" string

{%[Index:][-][Width][.Precision]Tag}

procedure TForm1.Button1Click(Sender: TObject);

var

 d: Double;

 fmt: string;

begin

 d := 123.456;

 fmt := 'The value is {%.2f}';

 TMSLogger.InfoFormat(fmt, [d]);

end;

TMS Logging 2.13.0.1 Page 6 of 44

http://www.delphibasics.co.uk/RTL.asp?Name=Format
http://www.delphibasics.co.uk/RTL.asp?Name=Format

Tag

Optional parameters (between double

quotes)

Expected

value Output

bin number of decimals (ex: {%"8"bin} TStream

object

outputs the TStream

object as a binary

formatted string

bt output as data size (B, KB, MB, GB, TB) and

optional decimals separated with '#' and

formatted with the FormatFloat function (ex:

'{%"GB#0.00000"bt}'

Ordinal outputs the value as a

data size formatted value

dt datetime format (ex: {%"mm-dd-yyyy"dt) TDateTime outputs the TDateTime

value to a string

hex number of digits (ex: {%"2"hex} TStream

object

outputs the TStream

object as a hex formatted

string

pic object with

image data

outputs image data as a

string that is sent to the

output handlers

pichex object with

image data

outputs image data as a

hex string that is sent to

the output handlers

st TStream

object

outputs the TStream

object as a string

A sample using one of the above tags is demonstrated in the following sample:

Output:

OnCustomFormat event

When the above format tags are not sufficient to output the value, the logger exposes an

OnCustomFormat event that passes the format tag it has received and the value it needs to

parse. The var AResult parameter of this event can be returned based on the custom format tag.

Below is an example which demonstrates this.

procedure TForm1.Button1Click(Sender: TObject);

var

 fmt: string;

begin

 fmt := 'Today is {%"ddd, dd mmm yyyy"dt}';

 TMSLogger.InfoFormat(fmt, [Now]);

end;

TMS Logging 2.13.0.1 Page 7 of 44

Output:

The above sample simply verifies whether the custom tag is used. The AFormat parameter

contains the tag part of the format string that we pass as a parameter to our

TMSLogger.InfoFormat call. The AFormat parameter value is {%CT}. The AValue parameter

contains the Double value and the AResult var parameter is assigned a simple FloatToStr of the

AValue parameter.

Validations

Validations are attributes (based on the Delphi attribute concept) in which a certain comparison

is made and a Boolean is returned whether that condition is met. When the result from this

comparison is true, the log output will be sent to the output handlers. By default, there are no

validations applied, thus the output is always logged.

When monitoring a certain value, be it a string, a Double, an integer, etc. value, and you only

want to output this value when it matches, for example, a string length, a regular expression, or

when the value exceeds a minimum or maximum, you can create a validation attribute and add it

as a parameter of one of the logger calls. The TMSLoggingCore unit already provides a set of

validation classes that are ready to use. Below is an overview of those validation classes and a

short explanation.

TMSLoggerRangeValidation: returns true if the value that needs to be logged exceeds a

certain minimum and maximum.

procedure TForm1.Button1Click(Sender: TObject);

var

 fmt: string;

 d: Double;

begin

 d := 123.456;

 fmt := 'This is a custom tag with value {%CT}';

 TMSLogger.InfoFormat(fmt, [d]);

end;

procedure TForm1.DoCustomFormat(Sender: TObject; AValue: TValue;

 AFormat: string; var AResult: string);

begin

 if AFormat.ToUpper.Contains('CT') and AValue.IsType<Double> then

 AResult := FloatToStr(AValue.AsType<Double>);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

 TMSLogger.OnCustomFormat := DoCustomFormat;

end;

•

TMS Logging 2.13.0.1 Page 8 of 44

TMSLoggerDateTimeValidation: returns true if the value that needs to be logged exceeds a

certain start and end date. The date parameters when creating a

TMSLoggerDateTimeValidation attribute are strings and are converted with the

DateTimeToStr function.

TMSLoggerStringValidation: returns true if the value doesn't match or contain a certain

string.

TMSLoggerStringLengthValidation: returns true if the value doesn't match or exceed a

certain string length.

TMSLoggerRegularExpressionValidation: returns true if the value doesn't match a certain

regular expression.

When the condition is met, the value is logged. Each validation has a set of parameters to further

fine-tune the condition. Two important properties are the ReverseCondition and the Format

properties. When the ReverseCondition property is true, the condition is reversed, for example in

case of the TMSLoggerRangeValidation, the condition returns true if the value is within a certain

minimum and maximum. The format property can be used to apply a certain formatting when

the condition is met and the value is logged. Below is a sample that demonstrates the use of a

validation attribute and the ReverseCondition and Format properties.

Output:

Note that with the above sample, only the values 100 and 140 will be logged, because they

exceed the minimum and maximum values that were set as parameters of the

TMSLoggerRangeValidation attribute. Setting the ReverseCondition to True, will generate a

different output as demonstrated in the following sample.

•

•

•

•

procedure TForm1.Button1Click(Sender: TObject);

var

 fmt: string;

 i: Integer;

 vl: TMSLoggerRangeValidation;

begin

 fmt := 'The value is {%g}';

 vl := TMSLoggerRangeValidation.Create(110, 130);

 vl.Format := fmt;

 i := 100;

 TMSLogger.Info(i, [], [vl]);

 i := 122;

 TMSLogger.Info(i, [], [vl]);

 i := 140;

 TMSLogger.Info(i, [], [vl]);

 i := 110;

 TMSLogger.Info(i, [], [vl]);

 vl.Free;

end;

TMS Logging 2.13.0.1 Page 9 of 44

Output:

In this case, the values 122 and 110 will be logged, because they are within the minimum and

maximum values and the reverse condition flag is set to True. Note that the Format parameter is

set to 'The value is {%g}' which will then output the values with this specific format. The format

string can also be directly passed as a parameter to the InfoFormat call as already demonstrated

in one of the previous samples.

Custom validations

When the default validation attributes are not sufficient, you can create your own validation by

inheriting from the TMSLoggerBaseValidation attribute class and overriding the function

Validate(AValue: TValue): Boolean. Below is a sample that demonstrates this.

procedure TForm1.Button1Click(Sender: TObject);

var

 fmt: string;

 i: Integer;

 vl: TMSLoggerRangeValidation;

begin

 fmt := 'The value is {%g}';

 vl := TMSLoggerRangeValidation.Create(110, 130);

 vl.Format := fmt;

 vl.ReverseCondition := True;

 i := 100;

 TMSLogger.Info(i, [], [vl]);

 i := 122;

 TMSLogger.Info(i, [], [vl]);

 i := 140;

 TMSLogger.Info(i, [], [vl]);

 i := 110;

 TMSLogger.Info(i, [], [vl]);

 vl.Free;

end;

TMS Logging 2.13.0.1 Page 10 of 44

Output:

The sample returns a true if the fractional part of the value is 0 which means that the value 3 is a

valid value and will not be logged. The properties to control formatting and reverse conditions

are not available by default when inheriting from TMSLoggerBaseValidation. When these

properties and functionality need to be available in your custom validation class, you can inherit

from TMSLoggerValidation instead.

Logger output statements are not limited to only one validation. Multiple validation attributes

can be passed as a parameter. The logger calls have an array of TMSLoggerBaseValidation

parameter that can contain multiple values. Only when each validation condition is met, the

value will be logged.

Using declarative attributes

As explained earlier, the validation attributes are based on the Delphi attribute concept which

means that they can also be added to an object's properties. This way, the logger can simply

pass the complete object as a parameter, and the values will be logged when the validation

condition is met. Below is a sample that demonstrates this.

type

 MyValidation = class(TMSLoggerBaseValidation)

 protected

 function Validate(AValue: TValue): Boolean; override;

 end;

implementation

procedure TForm1.Button1Click(Sender: TObject);

var

 d: Double;

 vl: MyValidation;

begin

 vl := MyValidation.Create;

 d := 3;

 TMSLogger.Debug(d, [], [vl]);

 d := 4.5;

 TMSLogger.Debug(d, [], [vl]);

 vl.Free;

end;

{ MyValidation }

function MyValidation.Validate(AValue: TValue): Boolean;

begin

 Result := False;

 if AValue.IsType<Double> then

 Result := Frac(AValue.AsType<Double>) = 0;

end;

TMS Logging 2.13.0.1 Page 11 of 44

Output:

The output of this sample exists of the object itself and the Y property. The X property is not

logged, because the 'Hello' string has a length of 5.

The use of validation attributes require the TMSLoggingCore unit to be added to the uses list. If

the warning below occurs after compilation, then the attribute is not found and will not be

detected by the logger.

Property Filtering

The logger supports filtering based on the visibility of the field or property that is being logged.

The Filters property can be used to determine if public and/or published properties need to be

logged with or without attributes. This way, the logger can analyze and only log the field or

property that match the filter. The filter is set to allow all public and published properties with

attributes by default. Below is a sample that demonstrates the use of the Filter property.

type

 TMyObject = class

 private

 FX: string;

 FY: Double;

 public

 [TMSLoggerStringLengthValidation(5)]

 property X: string read FX write FX;

 [TMSLoggerRangeValidation(10, 20)]

 property Y: Double read FY write FY;

 end;

implementation

procedure TForm1.Button1Click(Sender: TObject);

var

 obj: TMyObject;

begin

 obj := TMyObject.Create;

 obj.X := 'Hello';

 obj.Y := 30;

 TMSLogger.Warning(obj);

 obj.Free;

end;

[dcc32 Warning] UDemo.pas(14): W1025 Unsupported language feature: 'custom

attribute'

TMS Logging 2.13.0.1 Page 12 of 44

Output:

Notice that the output only shows the X and Z properties, because the Filters property is set the

only allow public and published properties without attributes. The Y property has an attribute

and therefore not logged. The attributed validates a range between 0 and 10 and the value of

the Y property is valid, and thus not logged. If the value would exceed the range, the value

would be logged but only if the filters are modified to allow public properties with attributes.

Using attributes

Additionally, filtering can be fine-tuned with attributes. The filter attributes add the same kind of

filtering as on logger level. The logger parses the attributes and determines if the sub properties

/ fields of the class or property that has the attribute applied, are valid for logging. There are 2

kinds of filter attributes, TMSLoggerClassFilter and TMSLoggerPropertyFilter. Below is a sample

that demonstrates this.

type

 TMyObject = class

 private

 FZ: string;

 FX: Double;

 FY: Integer;

 public

 property X: Double read FX write FX;

 [TMSLoggerRangeValidation(0, 10)]

 property Y: Integer read FY write FY;

 published

 property Z: string read FZ write FZ;

 end;

procedure TForm1.Button1Click(Sender: TObject);

var

 obj: TMyObject;

begin

 TMSLogger.Filters := [lfPublic, lfPublished];

 obj := TMyObject.Create;

 obj.X := 3.456;

 obj.Y := 10;

 obj.Z := 'Hello World';

 TMSLogger.Warning(obj);

 obj.Free;

end;

TMS Logging 2.13.0.1 Page 13 of 44

Output:

In this case, only the X and Y properties will be logged, because the TMSLoggerClassFilter

attribute specifies to allow public properties with and without attributes. The value Y is 12 in this

case, exceeds the range validation and is logged. If the value would be set to 10, as in the

previous sample, the Y property would also not be logged.

The use of filter attributes requires the TMSLoggingCore unit to be added to the uses list. If the

warning below occurs after compilation, then the attribute is not found and will not be detected

by the logger.

type

 [TMSLoggerClassFilter([lfPublic, lfPublicWithAttributes])]

 TMyObject = class

 private

 FZ: string;

 FX: Double;

 FY: Integer;

 public

 property X: Double read FX write FX;

 [TMSLoggerRangeValidation(0, 10)]

 property Y: Integer read FY write FY;

 published

 property Z: string read FZ write FZ;

 end;

procedure TForm1.Button1Click(Sender: TObject);

var

 obj: TMyObject;

begin

 obj := TMyObject.Create;

 obj.X := 3.456;

 obj.Y := 12;

 obj.Z := 'Hello World';

 TMSLogger.Warning(obj);

 obj.Free;

end;

[dcc32 Warning] UDemo.pas(14): W1025 Unsupported language feature: 'custom

attribute'

TMS Logging 2.13.0.1 Page 14 of 44

Multi-value Logging

The logger has a set of overloads per log level that can be used to format the output, specify

validation attributes for conditional logging and specify an array of property names when an

object is logged. One of the overloads is designed to quickly log a set of objects in a single call.

Below is a sample that demonstrates this.

Output:

Note that this call does not have a separate format parameter. The formatting is based on the

OutputFormats property.

Timing

By default the logger outputs the current date/time, but has the capability of formatting the

timestamp output as milliseconds, microseconds or ticks depending on the

TimeStampOutputMode property. When using an output mode other than the default value for

this property, you always need to combine the logger calls with a StartTimer / StopTimer.

Microseconds

Example:

procedure TForm1.Button1Click(Sender: TObject);

var

 a: string;

 b: Double;

 c: Boolean;

begin

 a := 'Hello World';

 b := 4.56;

 c := True;

 TMSLogger.DebugValues([a, b, c]);

end;

TMS Logging 2.13.0.1 Page 15 of 44

Output:

Delta Microseconds

Example:

Output:

procedure TForm1.Button1Click(Sender: TObject);

begin

 TMSLogger.TimeStampOutputMode := tsomMicroseconds;

 TMSLogger.StartTimer;

 Sleep(5);

 TMSLogger.Debug(1);

 Sleep(15);

 TMSLogger.Debug(2);

 Sleep(5);

 TMSLogger.Debug(3);

 Sleep(5);

 TMSLogger.Debug(4);

 TMSLogger.StopTimer;

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 TMSLogger.TimeStampOutputMode := tsomMicrosecondsDelta;

 TMSLogger.StartTimer;

 Sleep(5);

 TMSLogger.Debug(1);

 Sleep(15);

 TMSLogger.Debug(2);

 Sleep(5);

 TMSLogger.Debug(3);

 Sleep(5);

 TMSLogger.Debug(4);

 TMSLogger.StopTimer;

end;

TMS Logging 2.13.0.1 Page 16 of 44

Direct timing

Additionally, timing can be done with the StartTimer and StopTimer independent of the

TimeStampOutputMode as demonstrated in the following sample:

Output:

Exceptions

The logger supports automatic handling and logging of exceptions. As an addition to the

standard log levels, an exception log level is added to the set. By default, exception handling is

not enabled. To enable it set ExceptionHandling to true on logger level.

Whenever an exception occurs, it will be automatically logged with an Exception log level, as

demonstrated in the following division by zero exception.

Enabling exception handling will create a TApplicationEvents object in VCL and assign the

Application.OnException event. If your application needs to handle additional code when an

exception occurs the logger exposes an OnHandleException event.

procedure TForm1.Button1Click(Sender: TObject);

begin

 TMSLogger.StartTimer;

 Sleep(500);

 TMSLogger.StopTimer(True, lsmMilliseconds, 'The elapsed time is {%d} ms');

end;

TMSLogger1.ExceptionHandling := True;

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerTCPOutputHandler, [Self]);

TMSLogger.ExceptionHandling := True;

TMSLogger.Outputs := AllOutputs;

procedure TForm1.Button1Click(Sender: TObject);

var

 a, b, c: Integer;

begin

 a := 10;

 b := 0;

 c := a div b;

end;

TMS Logging 2.13.0.1 Page 17 of 44

HTML Support

The Browser Output and HTML Output handlers are both using HTML to display the output

information. To add additional formatting inside the table or plain HTML formatted viewer, HTML

tags can be added to the log statements. Below is a sample that demonstrates this.

Even when specifying HTML tags, the other non-HTML formatted output handlers will still

display the content correct, as they strip HTML when receiving output information from the

logger.

Other TTMSLogger methods

The TMSLogger object has a set of helper methods that can be used to output additional

information to the output handlers. Below is an overview of each method and a short

explanation.

Name Description

Clear Sends a clear instruction to each output

handler and removes the log files / log

data.

GetTimer(const AMode: TTMSLoggerTimerMode =

lsmMilliseconds; const ALogResult: Boolean = False;

const AFormat: string = ''): Int64

Returns an elapsed value in ticks or

milliseconds based on the mode

parameters after a timer has been

started with StartTimer.

Indent Increases the indent for log statements.

IsTimerRunning Returns a Boolean if the timer is still

running after it was started with the

StartTimer call.

LogCurrentDateTime(const AFormat: string = '') Logs the current date / time with an

optional formatting parameter.

LogCurrentLocale(const AFormat: string = ''); Logs the current language identifier.

LogProcessID(const AFormat: string = ''); Logs the process id.

LogScreenShot Logs a screenshot of the main form of

the application.

procedure TForm1.Button3Click(Sender: TObject);

var

 d: Double;

begin

 d := 4.5;

 TMSLogger.DebugFormat('The value is

{%f}', [d]);

end;

TMS Logging 2.13.0.1 Page 18 of 44

Name Description

LogScreenShot(const AControl: TControl) Logs a screenshot of the specified

control.

LogSeparator Logs a separator string.

LogSystemInformation(const AFormat: string = '') Logs the system information of the

operating system.

LogThreadID(const AFormat: string = ''); Logs the thread id.

LogMemoryUsage(const AFormat: string = ''); Logs the memory usage of the

application.

LogMemoryUsageDifference(const ALogResult:

Boolean = True; const AFormat: string = ''): Cardinal

Logs the difference of the memory

usage of the application based on the

previous call to LogMemoryUsage.

StartTimer Starts a timer, needs to be paired with

StopTimer.

StopTimer(const AMode: TTMSLoggerTimerMode =

lsmMilliseconds; const ALogResult: Boolean = False;

const AFormat: string = ''): Int64

Returns an elapsed value in ticks or

milliseconds based on the mode

parameters and stops the timer, needs

to be paired with StartTimer.

Unindent Decreases the indent for log

statements.

TMS Logging 2.13.0.1 Page 19 of 44

Output Handlers
The logger provides the capability of logging to various other output handlers. An output

handler is a class that provides a log output method with a parameter that contains output

information. The output information contains the timestamp, the value, the log level and a set of

pre-formatted strings (such as the name, type and value, based on the TMSLogger.Outputs

property) and then saves the information to a file, or sends it to a browser, TCP/IP client. The

output handlers support various formats such as plain text and HTML.

Each output handler except for the default TTMSLoggerConsoleOutputHandler class is available

in separate units. Each unit name starts with TMSLogging and then specifies which output

handler is implemented. To use an output handler, it needs to be registered first. The logger has

a set of RegisterOutputHandler* methods that can be used to register or create an instance of an

output handler.

An output handler has an Active property, which is true by default and has a set of constructor

overloads. The RegisterOutputHandlerClass method will accept a list of parameters that should

match the number of parameters in the constructor of the output handler class you wish to

create. When you are not sure on the type of parameters, you can take a look at the create

signature, or simply create a separate instance of the output handler. When creating a separate

instance, it can be registered using the RegisterOutputHandler or RegisterManagedOutputHandler

call instead. Using the latter will tell the logger to destroy the output handler instance when the

logger instance itself is destroyed. The former will not destroy the output handler.

Each output handler has a procedure LogOutput(const AOutputInformation:

TTMSLoggerOutputInformation); that contains the log information.

Some output handlers will automatically strip HTML/XML tags from the message. Mostly the

ones which those tags are not relevant, like console output, file output, etc. If you want to

prevent an output handler from stripping such tags, set the StripHtml property to false:

Following are the output handlers that are currently available.

Console Output

Class: TTMSLoggerConsoleOutputHandler at TMSLoggingCore unit.

The TTMSLoggerConsoleOutputHandler outputs the log information to the console window of the

IDE or the log monitor/console of the device (iOS, Android, Mac OSX). Note that this does not

output to the regular Windows console. To do that, you should use the Windows Console Output

handler.

 TextOutputHandler.StripHtml := False;

TMS Logging 2.13.0.1 Page 20 of 44

Windows Console Output

Class name: TTMSLoggerWindowsConsoleOutputHandler at

TMSLoggingWindowsConsoleOutputHandler unit.

The TTMSLoggerWindowsConsoleOutputHandler outputs log messages to the Microsoft Windows

console window. It also changes the output color according to the log level.

Text File Output

Class name: TTMSLoggerTextOutputHandler at TMSLoggingTextOutputHandler unit.

The TTMSLoggerTextOutputHandler outputs the information as plain text to a file.

Sample output:

Event Log Output

Class name: TTMSLoggerEventLogOutputHandler at TMSLoggingEventLogOutputHandler unit.

TMS Logging 2.13.0.1 Page 21 of 44

The TTMSLoggerEventLogOutputHandler will log the output information to the Windows event

log. Creating an instance can be done with the following code:

IMPORTANT

The TTMSLoggerEventOutputHandler requires administrator privileges on Windows in order to

successfully write an event to the Windows event log. Starting the application without

administrator privileges will also log to the event log but will display a message indicating it

cannot find the event id linked to the specific event log.

Sample output:

CSV File Output

Class name: TTMSLoggerCSVOutputHandler at TMSLoggingCSVOutputHandler unit.

The TTMSLoggerCSVOutputHandler outputs the information as plain text to a CSV file, separated

by a delimiter, which can be configured with a separate property.

Sample output:

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerEventLogOutputHandler);

TMS Logging 2.13.0.1 Page 22 of 44

TCP Output

Class name: TTMSLoggerTCPOutputHandler at TMSLoggingTCPOutputHandler unit.

The TTMSLoggerTCPOutputHandler is a server that sends the output information to each

connected TCP/IP client. The client application can implement its own TCP/IP client read buffer

instructions but an instance of TTMSLoggerTCPClient, which already implements this, can also be

chosen. The TTMSLoggerTCPClient has an OnReceivedOutputInformation event is triggered

whenever output information is received.

Registering a TTMSLoggerTCPOutputHandler is similar to the

TTMSLoggerBrowserOutputHandler, but does not have an option to change the HTML

formatting viewer.

The sample output screenshot is a TCP Client that implements this technique and serves as a

viewer. The executable is available in the installation directory and is supported for Windows and

Mac OSX.

Sample output:

TMS Logging 2.13.0.1 Page 23 of 44

Memo Output

Class name: TTMSLoggerMemoOutputHandler at Vcl.TMSLoggingMemoOutputHandler unit.

The TTMSLoggerMemoOutputHandler outputs log messages to a TMemo VCL control, in a

thread-safe way. It's useful to allow the end-user to quickly visualize log information in the VCL

application.

The Create constructor requires you to pass the instance of TMemo that will receive the

messages.

Browser Output

Class name: TTMSLoggerBrowserOutputHandler at TMSLoggingBrowserOutputHandler unit.

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerMemoOutputHandler, [Memo1]);

TMS Logging 2.13.0.1 Page 24 of 44

The TTMSLoggerBrowserOutputHandler is a server that sends the output information to each

connected client browser. To register a TTMSLoggerBrowserOutputHandler, the following code

can be used:

After registering it, navigating to the IP-address of the server, or the localhost with the default

port of 8888 will display an empty HTML table. As soon as the logger logs a value, the table will

be updated. To change the port number, the parameter list can be modified as demonstrated in

the code below.

Optionally, the HTML table view can be changed to an HTML plain view by specifying an

additional parameter:

Available constructors:

AOwner: A component to serve as the owner for internal components. Usually Self.

APort: The TCP port used to create the TCP/IP listener

AMode: The format data will be output.

ATitle: The HTML page title.

Example:

Sample output:

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerBrowserOutputHandler, [Self]);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerBrowserOutputHandler, [Self, 1234]

);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerBrowserOutputHandler, [Self, 1234,

TValue.From(ohmPlain)]);

constructor Create(const AOwner: TComponent); reintroduce; overload; virtual;

constructor Create(const AOwner: TComponent; const APort: Integer); reintroduce;

overload; virtual;

constructor Create(const AOwner: TComponent; const APort: Integer; const AMode: T

TMSLoggerHTMLOutputHandlerMode); reintroduce; overload; virtual;

constructor Create(const AOwner: TComponent; const APort: Integer; const AMode: T

TMSLoggerHTMLOutputHandlerMode; const ATitle: string); reintroduce; overload; vir

tual;

•

•

•

•

var

 Handler: TTMSLoggerBrowserOutputHandler;

begin

 Handler := TTMSLoggerBrowserOutputHandler.Create(Self);

 TMSLogger.RegisterManagedOutputHandler(Handler);

 Handler.Title := 'Browser Logging (Custom Title)';

TMS Logging 2.13.0.1 Page 25 of 44

HTML Output

Class name: TTMSLoggerHTMLOutputHandler at TMSLoggingHTMLOutputHandler unit.

The TTMSLoggerHTMLOutputHandler is based on the same output as the

TTMSLoggerBrowserOutputHandler but saves the output information to a file instead. The

constructor overloads for this class are different than the ones for the

TTMSLoggerBrowserOutputHandler. To know exactly which parameters to pass to the

TMSLogger.RegisterOutputHandlerClass, you can simply type

"TTMSLoggerHTMLOutputHandler.Create(" which will show a list of constructor overloads.

Available constructors:

AFileName: The name of .html file to be generated.

constructor Create(const AFileName: string); overload; override;

constructor Create(const AFileName: string; ADataName: string); reintroduce; over

load; virtual;

constructor Create(const AFileName: string; ADataName: string; AMode: TTMSLoggerH

TMLOutputHandlerMode); reintroduce; overload; virtual;

constructor Create(const AFileName: string; ADataName: string; AMode: TTMSLoggerH

TMLOutputHandlerMode; const ATitle: string); reintroduce; overload; virtual;

•

TMS Logging 2.13.0.1 Page 26 of 44

ADataName: The name of .js file to be generated.

AMode: The format data will be output.

ATitle: The HTML page title.

Examples:

Datasource Output

Class name: TTMSLoggerDataSourceOutputHandler at TMSLoggingDataSourceOutputHandler unit.

The TTMSLoggerDataSourceOutputHandler is capable of connecting to a datasource via the

register method demonstrated in the code below.

The result of the registration returns an instance of TTMSLoggerDataSourceOutputHandler which

contains a Fields property to setup the field names to connect to via the datasource parameter.

By default these fields are already prefilled with property name as a field name.

Aurelius Output

Class name: TTMSLoggerAureliusOutputHandler at TMSLoggingAureliusOutputHandler unit.

The TTMSLoggerAureliusOutputHandler connects via an Aurelius IDBConnectionPool interface to

send logging outputs to a dataset connected via TMS Aurelius. The process of setting up a

connection is simple as demonstrated in the code below.

Slack Output

Class name: TTMSLoggerSlackWebhookOutputHandler at TMSLoggingSlackOutputHandler unit.

The TTMSLoggerSlackWebhookOutputHandler outputs log messages to a Slack channel through

an incoming webhook. The incoming webhook is a Slack feature which provides you a unique

URL that is used to post messages to a specific channel in your workplace.

The Create constructor requires you to pass the incoming webhook URL:

•

•

•

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerHTMLOutputHandler, ['.

\demo_table.html', 'demo_table.js', TValue.From(ohmTable), 'Table logging']);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerHTMLOutputHandler, ['.

\demo_plain.html', 'demo_plain.js', TValue.From(ohmPlain), 'Plain logging']);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerDataSourceOutputHandler, [DataSour

ce1]);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerAureliusOutputHandler, [TValue.Fro

m<IDBConnectionPool>(pool)]);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerSlackWebhookOutputHandler, ['https

://hooks.slack.com/services/ABCDEFG/ABCDEFG/hajsdfhkadsfjbXBAHASQW']);

TMS Logging 2.13.0.1 Page 27 of 44

https://doc.tmssoftware.biz/biz/xdata/idbconnectionpool_interface.html
https://www.tmssoftware.com/site/aurelius.asp
https://slack.com/

Discord Output

Class name: TTMSLoggerDiscordWebhookOutputHandler at TMSLoggingDiscordOutputHandler

unit.

The TTMSLoggerDiscordWebhookOutputHandler outputs log messages to a Discord channel

through an incoming webhook. The incoming webhook is a Discord feature which provides you

a unique URL that is used to post messages to a specific channel in your workplace.

The Create constructor requires you to pass the incoming webhook URL:

Exceptionless Output

Class name: TTMSLoggerExceptionlessOutputHandler at

VCL.TMSLoggingExceptionlessOutputHandler (for VCL) or

FMX.TMSLoggingExceptionlessOutputHandler (for FMX) or

FNC.TMSLoggingExceptionlessOutputHandler (for FNC) unit.

The TTMSLoggerExceptionlessOutputHandler connects via the TAdvExceptionless (VCL) or

TTMSFMXCloudExceptionless (FMX) or TTMSFNCCloudExceptionless (FNC) non-visual

component. When registering this output handler, the log statements are send to the

Exceptionless server which can be monitored through the dashboard service at https://

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerDiscordWebhookOutputHandler, ['htt

ps://discord.com/api/webhooks/0000000000/abcdefgh']);

TMS Logging 2.13.0.1 Page 28 of 44

https://discord.com
https://exceptionless.com

exceptionless.com. This output handler is not pre-installed, and requires the TMS Cloud Pack for

VCL and/or the TMS Cloud Pack for FMX and/or the TMS Cloud Pack for FNC installed. To start

working with TTMSLoggerExceptionlessOutputHandler add the unit for the framework you are

using in your application and add the following to initialize:

or

AProjectID is a string that needs to be replaced after the Exeptionless cloud component has

retrieved its projects. The output handler requires an already authenticated Exceptionless cloud

component in order to function properly.

myCloudData Output

Class name: TTMSLoggerMyCloudDataOutputHandler at

VCL.TMSLoggingMyCloudDataOutputHandler or FMX.TMSLoggingMyCloudDataOutputHandler unit.

The TTMSLoggerMyCloudDataOutputHandler connects via the TAdvMyCloudData (VCL) or

TTMSFMXCloudMyCloudData (FMX) non-visual component. When registering this

outputhandler, the log statements are send to the MyCloudData server. This outputhandler is

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerExceptionlessOutputHandler, [AdvEx

ceptionLess1, 'AProjectID']);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerExceptionlessOutputHandler, [TMSFM

XCloudExceptionLess1, 'AProjectID']);

TMS Logging 2.13.0.1 Page 29 of 44

https://exceptionless.com

not pre-installed, and requires the TMS Cloud Pack for VCL and/or the TMS Cloud Pack for FMX

installed. To start working with TTMSLoggerMyCloudDataOutputHandler add the unit for the

framework you are using in your application and add the following to initialize:

or

The ATableName string parameter is optional. By default the output handler will try to create a

table called 'MyCloudDataLogging' and add Meta data through the MetaData property. This

property can be accessed after registering the TTMSLoggerMyCloudDataOutputHandler which

returns an instance. The MetaData properties are initialized with a default value that can be

overridden. Below is a sample screenshot after following the above steps. The default values for

the table and Meta data names are used in tis sample.

Custom Output

If the default output handlers are not sufficient, the logger supports implementing a custom

output handler. The TTMSLoggerBaseOutputHandler and TTMSLoggerCustomFileOutputHandler

class provides a set of procedures to easily implement a custom output handler. The

TTMSLoggerCustomFileOutputHandler class inherits from TTMSLoggerBaseOutputHandler and

adds support for logging to a file. The functionality to concatenate the output information and

strip the HTML is located in the TMSLoggingUtils unit, and can be access with TTMSLoggerUtils

class functions and procedures. Below is a sample that outputs the log information inside a

TMemo based on the TTMSLoggerBaseOutputHandler:

NOTE

The code below is just for learning purposes. It's simple and not thread-safe to make it easier

to understand. If you want log to a TMemo control, use the built-in Memo Output handler.

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerMyCloudDataOutputHandler, [AdvMyCl

oudData1, 'ATableName']);

TMSLogger.RegisterOutputHandlerClass(TTMSLoggerMyCloudDataOutputHandler, [TMSFMXC

loudMyCloudData1, 'ATableName']);

TMS Logging 2.13.0.1 Page 30 of 44

type

 TMyOutputHandler = class(TTMSLoggerBaseOutputHandler)

 private

 FMemo: TMemo;

 protected

 procedure Clear; override;

 procedure LogOutput(const AOutputInformation: TTMSLoggerOutputInformation); o

verride;

 public

 constructor Create(const AMemo: TMemo); reintroduce; virtual;

 property Memo: TMemo read FMemo write FMemo;

 end;

implementation

{ TMyOutputHandler }

procedure TMyOutputHandler.Clear;

begin

 inherited;

 if Assigned(Memo) then

 Memo.Lines.Clear;

end;

constructor TMyOutputHandler.Create(const AMemo: TMemo);

begin

 inherited Create;

 FMemo := AMemo;

end;

procedure TMyOutputHandler.LogOutput(const AOutputInformation: TTMSLoggerOutputIn

formation);

begin

 inherited;

 if Assigned(Memo) then

 Memo.Lines.Add(TTMSLoggerUtils.StripHTML(

 TTMSLoggerUtils.GetConcatenatedLogMessage(AOutputInformation, True)));

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

 TMSLogger.RegisterOutputHandlerClass(TMyOutputHandler, [Memo1]);

end;

TMS Logging 2.13.0.1 Page 31 of 44

Miscelaneous
TMS Logging provides some additional features and capabilities, assorted listed below.

Helper procedures

In TMSLoggingUtils there are some general-purpose procedures and functions that you can

use:

Name Description

AddBackslash(const AValue: string): string Returns the string with a backslash if

the string does not contain one.

AppendStream(const AFileName: string; const

AStream: TStringStream)

Appends a string stream to a file. If

the file does not exist, the file is

created.

ColorToHTML(const AValue: TAlphaColor): string Converts the TAlphaColor value to a

HTML color string.

CreateFileFromResource(AFileName: string;

AResourceName: string)

Creates a file from a resource.

Decode64Bytes(const AValue: string): TBytes Decodes a base 64 string into an array

of bytes.

Decode64String(const AValue: string): string Decodes a base 64 string into a string.

Encode64Bytes(const AValue: TBytes): string Encodes an array of bytes into a base

64 string.

Encode64String(const AValue: string): string Encodes a string into a base 64 string.

ExtractPicture(const AValue: string): string Extracts the picture data from a string

that begins with #BEGINPIC# and

ends with #ENDPIC# tags.

GetConcatenatedLogMessage(const

AOutputInformation: TTMSLoggerOutputInformation;

const AIndent: Boolean = False): string

Returns a concatenated log message

based on the output information

received from the logger. Optional

parameters specify if indenting needs

to be applied.

GetCurrentLangID: string Returns the current language

identifier.

GetDefaultOutputFileName: string Returns the default output file name

used inside an output handler that

logs to a separate plain text or HTML

file.

TMS Logging 2.13.0.1 Page 32 of 44

Name Description

GetHTMLFormattedMessage(const

AOutputInformation: TTMSLoggerOutputInformation;

const AMode: TTMSLoggerHTMLOutputHandlerMode;

const AApplyOutputParameters: Boolean; const

ADocumentWrite: Boolean; const AEven: Boolean):

string

Returns a HTML formatted message

based on the output information

received from the logger. Optional

parameters specify the mode, if

output parameters need to be applied

such as the global color of the string,

specifies whether document.write

needs to be included and if the style

applied to an element needs to

include the even style.

GetIndent(const AIndent: Integer): string Returns a string containing the

AIndent amount of spaces.

GetProcessID: Cardinal Returns the process id.

GetResourceStream(const AResourceName: string):

TResourceStream

Returns a resource stream based on a

resource name.

GetSystemInformation: string Returns information on the operating

system.

GetThreadID: Cardinal Returns the thread id.

GetTickCountX: Integer Returns the current tick count.

GetTimer(const AMode: TTMSLoggerTimerMode =

lsmMilliseconds): Int64

Returns an elapsed value in ticks or

milliseconds based on the mode

parameters after a timer has been

started with StartTimer.

GetUsedMemory: Cardinal Returns the amount of memory the

application is using.

HexStringToByteStream(const AValue: string; const

ADigits: Integer = 2): TBytesStream

Returns a stream of bytes based on a

hex string.

HexStrToBytes(const AValue: string; const ADigits:

Integer = 2): TBytes

Returns an array of bytes based on a

hex string.

IntToBinByte(const AValue: Byte; const ADecimals:

Integer): string

Converts an integer to a byte with an

optional amount of decimals.

IsTimerRunning Returns a Boolean if the timer is still

running after it was started with the

StartTimer call.

LogToConsole(const AValue: string) Logs a string value to the console

window of the IDE or the log monitor

/ console of the device (iOS, Android,

Mac OSX).

TMS Logging 2.13.0.1 Page 33 of 44

Name Description

ReplaceTextInFile(AFileName, AText, AReplaceText:

string)

Replaces a string inside a file.

StartTimer Starts a timer, needs to be paired with

StopTimer.

StopTimer(const AMode: TTMSLoggerTimerMode =

lsmMilliseconds): Int64

Returns an elapsed value in ticks or

milliseconds based on the mode

parameters and stops the timer, needs

to be paired with StartTimer.

StripHTML(const AValue: string): string Strips HTML from a string.

When adding the unit TMSLoggingCore , there is a helper method TMSLog() to quickly log a

value with optional format and level parameters. Below is a sample that demonstrates this.

Record and Class Helpers

The core packages provides an additional unit which provides record and class helpers for a set

of types available in Delphi. When adding the unit TMSLoggingHelpers , the default record / class

helpers for the type you wish the use will be hidden. Unfortunately Delphi doesn't allow record /

class helper inheritance, so the use of it is completely optional. Below is a sample what can be

achieved when using this unit.

Note that the logging starts from the value itself, instead of passing it as a parameter to the

logger log statements. This unit makes use of the custom logger instance retrieved with

TMSDefaultLogger. The default logger instance retrieved with TMSLogger will be ignored, thus

implying that by default, the TMSDefaultLogger will only log to the console output handler. When

this technique is used, instead of the default TMSLogger functionality, the registration of output

handlers need to be applied separately.

procedure TForm1.Button1Click(Sender: TObject);

var

 i: Integer;

begin

 i := 100;

 TMSLog(i);

end;

procedure TForm1.Button1Click(Sender: TObject);

var

 i: Integer;

 fmt: string;

begin

 fmt := 'The value is {%g}';

 for I := 1 to 10 do

 I.LogInfoFormat(fmt);

end;

TMS Logging 2.13.0.1 Page 34 of 44

Persistence

The logger has the ability to save its configuration, registered output handlers and properties to

a file, stream or registry (Windows only), so to save the logger instance, simply call one of the

Save* methods.

To load, the Load* equivalent of the Save methods can be used. Please note that this will

override any registered output handlers, or properties set.

Each Save* and Load* call will automatically call the Save* and Load* calls on output handler

instances. The TTMSLoggerBaseOutputHandler class provides a set of read and write calls for

registry and ini file save / load instructions.

Initialization of the logger, such as the output handlers, output formats properties can be done

once when saving the configuration. Simply loading the configuration again will automatically

create any registered output handlers with their settings. For creation of the

TTMSLoggerBrowserOutputHandler and TTMSLoggerTCPOutputHandler, the default constructor

has an AOwner: TComponent parameter that needs to be set in order to successfully destroy the

HTTP or TCP server instance. The parameter needs to be a form as demonstrated in the following

sample, which registers a TTMSLoggerBrowserOutputHandler, saves the configuration to a stream

and then reloads the configuration after unregistering all output handlers:

var

 ms: TMemoryStream;

begin

 TMSLogger.RegisterOutputHandlerClass(TTMSLoggerBrowserOutputHandler, [Self]);

 ms := TMemoryStream.Create;

 try

 TMSLogger.SaveConfigurationToStream(ms);

 TMSLogger.UnregisterAllOutputHandlers;

 ms.Position := 0;

 TMSLogger.LoadConfigurationFromStream(Self, ms);

 finally

 ms.Free;

 end;

end;

TMS Logging 2.13.0.1 Page 35 of 44

IDE Plugin

After installing TMS Logging through the automated installer, the IDE is updated with a "TMS

Logging" helper menu that can be used to execute various operation when implementing

logging in your application. Note that each action is only applied to the active source editor

window, not application wide and the plugin is only supported in Delphi.

Add Missing Units (Keyboard shortcut ALT+M+A)

When adding logging to your application with the TMS Logging units, or copy and use the code

snippets from this documentation, which possibly demonstrates the uses of an output handler,

you might encounter compilation issues which indicates that there are missing units. This menu

item will look into the active source file editor window and will automatically add missing units in

order to compile your application. Optionally, to quickly add missing units, the shortcut

ALT+M+A can be used.

Register Output Handlers

This menu option has a set of sub menu items that inserts registration code at the cursor

position. Each output handler has a unique signature and the "Register Output Handler" menu

item will help you setup the registration code needed to use the output handler.

Comment / Uncomment Log Calls / Units

This menu option will look for logger specific calls / units and will comment/uncomment them.

This is designed to quickly eliminate any logger calls when you want to test your application

without logging capabilities.

Remove Log Calls / Units

This menu option will look for logger specific calls / units and will remove them.

TMS Logging 2.13.0.1 Page 36 of 44

About
This documentation is for TMS Logging.

In this section:

What's New

Copyright Notice

Getting Support

Breaking Changes

TMS Logging 2.13.0.1 Page 37 of 44

What's New

Version 2.13 (Apr-2025)

New: Support for the 64-bit IDE.

Version 2.12 (Aug-2024)

Fixed: Sporadic Access Violation when an FMX applications using Logging is being

finalized.

Version 2.11 (Jul-2024)

Fixed: Setting TTMSLoggerBrowserOutputHandler.Port property had no effect. Ticket

#23042.

Version 2.10 (Jan-2024)

Improved: TMSLoggingTCPClient demo updated, dependency on TMS FMX UI Pack

components removed.

Version 2.9 (Nov-2023)

Fixed: support for quoted string formats in logging configuration file. Ticket #22034.

Version 2.8 (Nov-2023)

New: Support for Delphi 12.

Version 2.7 (Oct-2023)

New: TTMSLoggerDiscordWebhookOutputHandler allows output logging messages

to Discord web hooks.

Improved: Support for ARM64 macOS and ARM64 iOS Simulator platforms.

Improved: Save/load configuration to INI files is now saving LogLevelFilters specifically

per output handler.

Fixed: Values with double quote (") was not being properly written in HTML output

handlers. [Ticket #21782](Logging https://support.tmssoftware.com/t/logging-in-html-

logger/21782/2).

•

•

•

•

•

•

•

•

•

•

TMS Logging 2.13.0.1 Page 38 of 44

https://support.tmssoftware.com/t/change-port-in-tmsloggerbrowseroutputhandler/23042
https://support.tmssoftware.com/t/change-port-in-tmsloggerbrowseroutputhandler/23042
https://support.tmssoftware.com/t/load-logger-configuration-from-file-bug/22034
https://support.tmssoftware.com/t/logging-in-html-logger/21782/2
https://support.tmssoftware.com/t/logging-in-html-logger/21782/2

Version 2.6 (Sep-2022)

Fixed: Access Violation when using Event Log output handler in Windows 64 bit

applications.

Version 2.5 (May-2022)

New: TTMSLoggerSyslogOutputHandler allows output logging messages using

syslog.

Version 2.4 (Feb-2022)

New: TTMSLogger.UtcTimeStamp boolean property allows logging the message

timestamp as UTC.

Fixed: HTML stripping of log messages could hang if the message contained several <BR/

> tags.

Fixed: Memory leak when logging memory usage in Android devices (introduced with the

end of ARC in Delphi Sydney 10.4).

Version 2.3 (Sep-2021)

New: Delphi 11 support.

New: SvCom output handler.

Version 2.2 (Jun-2021)

New: StripHtml property for all output handlers controls whether HTML/XML tags will be

removed from the log message.

New: ExceptionLess output handler using FNC framework, in addition to existing VCL and

FMX ones.

Fixed: TTMSLoggerHTMLOutputHandler.Create constructor receiving only a single

parameter didn't correctly create JS file.

Fixed: TTMSLoggerBrowserServer option ohmTableFilter raising Unicode conversion error.

Fixed: TTMSLoggerTCPOutputHandler not sending information from mobile and 64-bit

applications.

Version 2.1 (Jun-2020)

New: Support for RAD Studio 10.4 Sydney.

New: Support for Linux platform.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Logging 2.13.0.1 Page 39 of 44

Version 2.0 (May-2020)

New: Complete new installer, package structure and documentation format. This

include breaking changes in the package files.

New: Title property in boht HTML Output and Browser Output handlers allows for

specifying the title of generated HTML page.

New: RegisterManagedOutputHandler method allows adding an instance of an

output handler to the logger and rely that it will be destroyed by it.

Fixed: HTML Output and Browser Output handlers not working correctly when the logged

message had line breaks.

Version 1.5.1

Fixed: High CPU usage when using TTMSLoggerBrowserOutputHandler.

Version 1.5

New: TTMSLoggerBaseOutputHandler.LogLevelFilters property allows filtering log

messages on a per-outputhandler basis.

New: TLoggingWindowsConsoleOutputHandler outputs log messages to the

Windows console window.

New: TLoggingSlackWebhookOutputHandler outputs log messages to a Slack

channel through a incoming webhook.

New: TLoggingMemoOutputHandler outputs log messges to a VCL TMemo control.

Version 1.4.0.1

Improved: Performance when fetching ip address for logging purposes.

Version 1.4

New: RAD Studio 10.3 Rio support.

Version 1.3.0.2

Improved: Performance when fetching ip address for logging purposes.

Version 1.3.0.1

Fixed: Issue parsing HTML < and > signs in plain text.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Logging 2.13.0.1 Page 40 of 44

Version 1.3

New: Custom log level mode and CustomLogLevel property at logger level.

Version 1.1.0.1

Fixed: Version check for memory access in older devices.

Version 1.1

New: Exception handling.

New: Outputhandlers for Exceptionless.io and MyCloudData.

New: TCP server component for handling multiple clients.

New: TMSLoggingTCPOutputHandler client mode.

Improved: Active and Deactivate all outputhandlers with a single call.

Improved: Allow creation of TTMSLoggerTCPOutputHandler and

TTMSLoggerBrowserOutputHandler without form owner parameter (requires setting active

= false in formclose).

Improved: Public property Server for TTMSLoggerTCPOutputHandler and

TTMSLoggerBrowserOutputHandler to manually configure multiple bindings.

Improved: Automatic disconnect in TMSLoggingTCPClient.

Version 1.0

First Release.

•

•

•

•

•

•

•

•

•

•

•

TMS Logging 2.13.0.1 Page 41 of 44

Copyright Notice
The trial version of this product is intended for testing and evaluation purposes only. The trial

version shall not be used in any software that is not run for testing or evaluation, such as

software running in production environments or commercial software.

For use in commercial applications or applications in production environment, you must

purchase a single license, a small team license or a site license. A site license allows an unlimited

number of developers within the company holding the license to use the components for

commercial application development and to obtain free updates and priority email support for

the support period (usually 2 years from the license purchase). A single developer license allows

ONE named developer within a company to use the components for commercial application

development, to obtain free updates and priority email support. A small team license allows

TWO developers within a company to use the components for commercial application

development, to obtain free updates and priority email support. Single developer and small team

licenses are NOT transferable to another developer within the company or to a developer from

another company. All licenses allow royalty free use of the components when used in binary

compiled applications.

The component cannot be distributed in any other way except through TMS Software web site.

Any other way of distribution must have written authorization of the author.

Online registration/purchase for this product is available at https://www.tmssoftware.com.

Source code & license is sent immediately upon receipt of payment notification, by email.

Copyright © TMS Software. ALL RIGHTS RESERVED.

No part of this help may be reproduced, stored in any retrieval system, copied or modified,

transmitted in any form or by any means electronic or mechanical, including photocopying and

recording for purposes others than the purchaser's personal use.

TMS Logging 2.13.0.1 Page 42 of 44

https://www.tmssoftware.com

Getting Support

General notes

Before contacting support:

Make sure to read this whole manual and any readme.txt or install.txt files in component

distributions, if available.

Make sure you have the latest version of the component(s).

Search public TMS support channels (see below) to see if you question hasn't been already

answer.

When contacting support:

Specify with which component is causing the problem.

Specify which Delphi or C++Builder version you're using and preferably also on which OS.

Getting support

Visit our support page to learn about the channels for support:

https://www.tmssoftware.com/site/support.asp

IMPORTANT

All topics covered by this manual are officially supported and it's unlikely that future versions

will break backward compatibility. If this ever happens, all breaking changes will be covered in

this manual and guidelines to update to a new version will be described. However, it's

important to note that parts of the source code of this product that are undocumented are not

officially supported and are subject to change, which includes breaking backward

compatibility. In case you are using an unsupported/undocumented feature we will not

provide support for upgrading and will not officially support it.

•

•

•

•

•

TMS Logging 2.13.0.1 Page 43 of 44

https://www.tmssoftware.com/site/support.asp

Breaking Changes
List of changes in each version that breaks backward compatibility from a previous version.

Version 2.0

TMS Logging packages have been restructured. The packages now use Libsuffix option so the

dcp files are generated with the same name for all Delphi versions. Here is an overview of what's

changed:

Before version 2.0, the package names were these:

Where <n> is the Delphi version, being 7 = XE7 up to 12 = Delphi 10.3 Rio.

However, the generated DCP had the same Delphi version number in name, e.g.,

TMSLoggingPkgCoreDXE7.dcp for Delphi XE7 and TMSLoggingPkgCoreDXE12.dcp for Delphi 10.3

Rio.

After this restructure, we took the opportunity to fix this and now DCP files have the same name

regarding the Delphi version. The new package names are:

The names are respectives to the previous packages. DCP files are generated with same name,

and only BPL files are generated with the suffix indicating the Delphi version. The suffix, however,

is the same used by the IDE packages (numeric one indicating IDE version: 250, 260, etc.).

TMSLoggingPkgCoreDXE<n>.dpk

TMSLoggingPkgFMXDXE<n>.dpk

TMSLoggingPkgVCLDXE<n>.dpk

TMSLoggingPkgDEDXE<n>.dpk

TMSLogging.dpk

TMSLoggingFMX.dpk

TMSLoggingVCL.dpk

dclTMSLogging.dpk

TMS Logging 2.13.0.1 Page 44 of 44

	Overview
	Using TMSLogger
	Formatting
	Overriding format for a specific log message
	Format string syntax
	OnCustomFormat event

	Validations
	Custom validations
	Using declarative attributes

	Property Filtering
	Using attributes

	Multi-value Logging
	Timing
	Microseconds
	Delta Microseconds
	Direct timing

	Exceptions
	HTML Support
	Other TTMSLogger methods

	Output Handlers
	Console Output
	Windows Console Output
	Text File Output
	Event Log Output
	Important

	CSV File Output
	TCP Output
	Memo Output
	Browser Output
	HTML Output
	Datasource Output
	Aurelius Output
	Slack Output
	Discord Output
	Exceptionless Output
	myCloudData Output
	Custom Output
	Note

	Miscelaneous
	Helper procedures
	Record and Class Helpers
	Persistence
	IDE Plugin
	Add Missing Units (Keyboard shortcut ALT+M+A)
	Register Output Handlers
	Comment / Uncomment Log Calls / Units
	Remove Log Calls / Units

	About
	What's New
	Version 2.13 (Apr-2025)
	Version 2.12 (Aug-2024)
	Version 2.11 (Jul-2024)
	Version 2.10 (Jan-2024)
	Version 2.9 (Nov-2023)
	Version 2.8 (Nov-2023)
	Version 2.7 (Oct-2023)
	Version 2.6 (Sep-2022)
	Version 2.5 (May-2022)
	Version 2.4 (Feb-2022)
	Version 2.3 (Sep-2021)
	Version 2.2 (Jun-2021)
	Version 2.1 (Jun-2020)
	Version 2.0 (May-2020)
	Version 1.5.1
	Version 1.5
	Version 1.4.0.1
	Version 1.4
	Version 1.3.0.2
	Version 1.3.0.1
	Version 1.3
	Version 1.1.0.1
	Version 1.1
	Version 1.0

	Copyright Notice
	Getting Support
	General notes
	Getting support
	Important

	Breaking Changes
	Version 2.0

