
Overview
TMS Scripter is a set of Delphi/C++Builder components that add scripting capabilities to your

applications. With TMS Scripter your end-user can write his own scripts using visual tools and

then execute the scripts with scripter component. Main components available are:

TatScripter: Non-visual component with cross-language support. Executes scripts in both

Pascal and Basic syntax.

TatPascalScripter: Non-visual component that executes scripts written in Pascal syntax.

TatBasicScripter: Non-visual component that executes scripts written in Basic syntax.

TScrMemo: Lightweight syntax highlight memo, that can be used to edit scripts at run-

time.

TatScripter, TatPascalScripter, TatBasicScripter and TIDEScripter (in this document, all of these

componentes are just called Scripter) descend from TatCustomScripter component, which has

common properties and methods for scripting execution. The scripter has the following main

features:

Run-time Pascal and Basic language interpreter;

Access any Delphi object in script, including properties and methods;

Supports try..except and try..finally blocks in script;

Allows reading/writing of Delphi variables and reading constants in script;

Allows access (reading/writing) script variables from Delphi code;

You can build (from Delphi code) your own classes, with properties and methods, to be

used in script;

Most of Delphi system procedures (conversion, date, formatting, string-manipulation) are

already included (IntToStr, FormatDateTime, Copy, Delete, etc.);

You can save/load compiled code, so you don't need to recompile source code every time

you want to execute it;

Debugging capabilities (breakpoint, step into, run to cursor, pause, halt, and so on);

Thread-safe;

COM (Microsoft Common Object Model) Support;

DLL functions calls.

In addition to the scripting engine, a full Integrated Development Environment (IDE) is to edit

scripts, design forms, debugging, and many other operations with Delphi/Visual Studio look and

feel for both creating and running script projects. The following features are present in the IDE:

Full IDE environment dialog;

Visual form designer;

Component palette and palette buttons with Delphi 2007 style;

Integrated syntax memo with built-in code completion and breakpoint features.

Rebuilding Packages
If for any reason you want to rebuild source code, you should do it using the "Packages Rebuild

Tool" utility that is installed. There is an icon for it in the Start Menu.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 1 of 149

Just run the utility, select the Delphi versions you want the packages to be rebuilt for, and click

"Install".

If you are using Delphi XE and up, you can also rebuild the packages manually by opening the

dpk/dproj file in Delphi/Rad Studio IDE.

Do NOT manually recompile packages if you use Delphi 2010 or lower. In this case always use

the rebuild tool.

Use in Firemonkey applications
TMS Scripter engine can now be used in Firemonkey applications. You can execute scripts in FM

applications even with forms.

But note that several VCL components don't have Firemonkey equivalents yet, especially the

visual ones, so the scripter IDE (form designer, syntax memo, object inspector, etc.) are not

available for Firemonkey applications.

All you need to do in your Firemonkey application is add unit FMX.ScripterInit to your project

or the uses clause of any unit. Then you can use the scripter component normally just as you

would do with in VCL (see chapter Working with Scripter).

There are several demos in TMS Scripter distributing showing how to use it with Firemonkey

application, including manual debugging.

In this section:

Integrated Development Environment

The ready-to-use IDE for writing scripts and designing forms, available for VCL applications.

Language Features

Topics about supported languages, features, syntax, constructors, etc.

Pascal syntax

Basic syntax

Calling DLL functions

Working with scripter

Using scripter component in your application: how to run, debug, access Delphi objects and

other tasks.

The syntax highlighting memo

Using the TAdvMemo control that provides syntax highlighting for Pascal and Basic scripts.

TMS Scripter 7.36 Page 2 of 149

C++Builder Examples

C++Builder examples equivalent to every Delphi example in this guide.

TMS Scripter 7.36 Page 3 of 149

Integrated Development

Environment
TMS Scripter includes a ready-to-use IDE for writing scripts and designing forms. This chapter

covers how to use that IDE and how to use additional components to build your own IDE. The

IDE is only available for VCL applications.

Specific IDE components
TMS Scripter is a full scripting package for editing, debugging and running scripts and forms in

Delphi and C++ Builder environment.

Basic concepts

TMS Scripter provides a set of components for scripting and designing. In summary, we can

separate the usage in runtime and design time.

Runtime

For runtime execution, the main component to use is TIDEScripter. This component descends

from TatScripter which descends from TatCustomScripter, so it has all functionalities of other

scripter components present in previous versions and editions of TMS Scripter.

TIDEScripter is the scripter engine which runs scripts. So, basically, it holds a collection of one or

more scripts that can be executed. To see all tasks that can be done with TIDEScripter

component, please refer to Working with scripter topic. To see a reference about the languages

supported in script, and the syntax of each language, please refer to Language Features.

Design time

TMS Scripter provides several components that will allow your end-user to write and design

scripts and script projects. Basically you can provide an Integrated Development Environment for

your end-user to build script projects, create forms, and write scripts. Please refer to the

Integrated Development Environment chapter.

Component overview

TIDEScripter

This component is the non-visual component for running/debugging scripts. Check the topic

"The TIDEScripter component" for more information.

TMS Scripter 7.36 Page 4 of 149

TIDEEngine

This is the core engine component for the IDE. Check the topic "The TIDEEngine component" for

more information.

TIDEDialog

This is the wrapper for the IDE window. Use this component to show the IDE. Check the topic

"Running the IDE: TIDEDialog component" for more information.

Custom IDE components

TIDEPaletteToolbar

TIDEInspector

TIDEMemo

TIDEFormDesignControl

TIDEComponentComboBox

TIDEPaletteButtons

TIDEWatchListView

The components above are used to build your own custom IDE. Check the section "Building your

own IDE" for more information.

The TIDEScripter component

The TIDEScripter component is a non-visual component used to execute scripts. It descends from

TatCustomScripter and is fully compatible with other scripter components like TatPascalScripter

and TatBasicScripter.

The chapters "Language Features" and "Working with scripter" describes how to use the scripter

component to execute scripts, access Delphi objects, integrate the scripter with your application,

and also know the valid syntax and languages available.

Running the IDE: TIDEDialog component
The TIDEDialog component provides quick access to the ready-to-use IDE. It is a wrapper for a

IDE form which already contains the memo, object inspector, among others. To invoke the IDE:

Drop a TIDEScripter component in the form.

Drop a TIDEEngine component in the form.

Drop a TIDEDialog component in the form.

•

•

•

•

•

•

•

1.

2.

3.

TMS Scripter 7.36 Page 5 of 149

Link the TIDEScripter component to the TIDEEngine component through the

TIDEEngine.Scripter property.

Link the TIDEEngine component to the TIDEDialog component through the

TIDEDialog.Engine property.

Call TIDEDialog.Execute method:

This will open the IDE window.

Overview of the IDE
This is a screenshot of the TMS Scripter IDE:

It's very similar to a Delphi or Visual Studio IDE. The object inspector is at the left, the syntax

code editor memo is in center, menus and toolbars at the top, and the tool palette is at right.

Please not that the tool palette is only available from Delphi 2005 and up. For previous versions

of Delphi, a toolbar is available with Delphi 7 style (at the top of the IDE).

Shortcuts are available for most used actions, you can see the shortcuts available in the main

menu of the IDE.

4.

5.

6.

IDEDialog1.Execute;

TMS Scripter 7.36 Page 6 of 149

Managing projects and files

Project concept and structure

A project in TMS Scripter is a collection of scripts (files), and each file can be a unit (a single

script file) or a form (a script file and a form file). A project file is just a list of the script files

belonging to that project and the information of which script is the main script.

Mixing languages

You can mix scripts with different languages, i.e., in a project you can have a Basic script which

creates and executes a Pascal form.

Main script

Each project has a "main" script. The main script is the script which will be executed when you

press F9 or click the "Run" button (or menu option).

Creating a new project

To create a new project, choose "File | New Project" menu option. This dialog will be displayed:

Keep in mind that here you are choosing the language for the units that will be created

automatically by the IDE. It's not the language of the "project" itself, since such concept doesn't

exist. It's the language of the main units.

After you choose the language of the main units, the IDE will create a main unit and a form unit.

This is the basic project and if you execute it right away you will have a running blank form in

your screen.

NOTE

Before running this simple example, you must add the following units to your Delphi/C+

+Builder uses/include clause: ap_Classes , ap_Controls , ap_Forms , ap_Dialogs ,

ap_Graphics and ap_StdCtrls .

Creating/adding units/forms to the project

You can create or add existing units/forms to the project by choosing the "File | New unit", "File |

New Form" and "File | Open (add to project)" menu options. If you are creating a new one, you

will be prompted with the same dialog as above, to choose the language of the new unit. If

you're adding an existing unit, then the IDE will detect the script language based on the file

extension.

Editing the script in code editor

The IDE provides you with a code editor with full syntax highlight for the script language.

TMS Scripter 7.36 Page 7 of 149

The main features of code editor are:

code completion (pressing Ctrl+Space);

syntax highlight;

line numbering;

clipboard operations;

automatic identation;

among other features.

Designing forms

When you're dealing with units that are forms, then you have two parts: the script and the form.

You can switch between script and form using F12 key or by pressing the "Code" and "Design"

tabs at the bottom of the screen.

The form editor looks like the picture below:

•

•

•

•

•

•

TMS Scripter 7.36 Page 8 of 149

Designing forms is a similar task as designing forms in Delphi or Visual Studio. You can use the

tool palette the choose a component to drop on the form, position the component using the

mouse or keyboard (resize, move, etc.) and change the properties using the object inspector.

The main features of the form designer are:

Multi-selection;

Clipboard operations;

Alignment palette (menu "Edit | Align");

Bring to front / Send to back;

Tab order dialog;

Size dialog;

Locking/unlocking controls;

Grid and Snap to Grid;

among other features.

You can change some properties of the form designer by opening the Designer Options dialog.

This is available under the menu "Tools | Designer options":

You can customize the look and feel of the designer choosing colors, hints and grid options.

Running and debugging scripts

You can run and debug scripts from the TMS Scripter IDE. The main features of the debugger

are:

Breakpoints;

Watches;

Step over/Trace into;

Run to cursor/Run until return;

Pause/Reset;

and more...

The image below shows the options under the menu item "Run":

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 9 of 149

You can use the shortcuts above or use the menu/toolbar buttons to perform running/

debugging actions, like run, pause, step over, trace into, etc..

You can also toggle a breakpoint on/off by clicking on the left gutter in the code editor.

The image below shows a script being debugged in the IDE. A watch has been added in this

example to inspect the value of variable "FinalMsg".

Library Browser

The IDE provides the library browser dialog accessible from menu View > Library Browser.

It allows your end-user too see all the classes, functions, methods, constants, procedures, etc.,

that are registered in the scripting system and available to be used. It works as kind of full

reference/documentation for the IDE.

TMS Scripter 7.36 Page 10 of 149

Code Insight features
TMS Scripter comes with code insight features, meaning that in the IDE editor you can have fully

automatic code completion and parameter hints.

Code Completion

Code completion is a feature activated by Ctrl+<Space> or when you type an identifier name

followed by a "." (dot).

A list appears at the cursor position, displaying all the available options (methods, properties,

functions, variables) for the given context.

TMS Scripter 7.36 Page 11 of 149

Smart code completion

When a code completion list appears, it will automatically preselect the item which was

previously chosen by you. The item selected is specific to the context.

For example, you might be dealing with a TDataset and retrieving several field values from it,

using FieldByName method. You follow this steps to use code completion for the first line:

Invoke code completion by typing Ctrl+<Space>.

Start type the naming of your TDataset object, for example, type "Dat" and then you get

the "Dataset1" item selected in the completion list.

Press "." to insert "Dataset1." text in the editor.

A new code completion list will appear listing the methods and properties of the dataset.

You start typing "FieldB" to select the item "FieldByName" from the completion list.

Press "(" to insert "FieldByName(", type the name of field, type ")." to close the parameters

and invoke the list again.

Type "AsStr" to find AsString property and then press ";" to finally complete the line.

Now, you want to start a second line with the same code for another field. Smart code

completion will remember your last options, and this is what you would need to type:

Invoke code completion by typing Ctrl+<Space>.

"Dataset1" will come preselected in the list. Just press "." to insert text and invoke a new

list for Dataset1 members.

1.

2.

3.

4.

5.

6.

7.

1.

2.

TMS Scripter 7.36 Page 12 of 149

"FieldByName" will come preselected in the list. Just press "(" to insert text and type the

field name.

When close FieldByName parameters and press "." again, "AsString" will also come

preselected, and you can just type ";" to finish typing.

Easy navigation

When you have the desired item selected in code completion list, you can click Enter to make the

selection be typed in the text editor, so you don't have to type it.

You can type other keyboard keys in order to complete the text and also insert the character. For

example, if you press "." (dot), the selected item will be inserted in the text, followed by a dot,

and a new completion list will be displayed for the selected context.

Parameter Hints

Parameter hints is a feature activated by Ctrl+Shift+<Space>, or when you type a method/

function name followed by "(".

This will display the list of parameters for the specified method, so you can properly type the

parameters.

The current parameter being typed is highlighted in the hint.

Enabling parameter hints

Parameter hints feature is enabled by default, but you have to provide info to it. For each

method, you must provide the names and types of parameters so scripter can show them. This is

done with UpdateParameterHints method of TatMethod object. You would usually do this when

you register a new method in scripter.

You can use DefineMethod method and pass it as the last parameter:

3.

4.

TMS Scripter 7.36 Page 13 of 149

or you can just call UpdateParameterHints:

Parameter hint syntax

The parameter hint has a very simple and specific syntax, which is:

Parts between brackets are optional. If there are more than one parameter, you must separate

then with semicommas (;). Some examples:

You can have spaces between the characters, and you must not include any parameter modifier

(var, const, etc.), this will be used automatically by the scripter.

Also be aware that the parameter hints do NOT affect any information in the registered method

itself. For example, if you build the hint with a different number of parameters than the specified

for the method, the remaining parameters will be ignored. This is also valid for default values

and param types, they are only used for hinting purposes.

Cross-language parameter hints

Scripter will automatically translate the parameter hints to the proper script language, so you

don't need to register a parameter hint for each language syntax. The hint will be displayed

according to the current script syntax. Even if you use script-based libraries, written in Pascal

language, for example, when you call those methods from a Basic script, parameter hints will be

displayed in Basic syntax.

DefineClass(TSomeClass).DefineMethod(

 'MyMethod', 2, TkInteger, nil, MyMethodProc, true, 0,

 'Name:string;Value:integer');

with DefineMethod('MyMethod', 2, TkInteger, nil, MyMethodProc) do

 UpdateParameterHints('Name:string;Value:integer');

ParamName[:ParamType][=DefaultValue]

'Param1:String;Param2:Integer'

'Param1; Param2; Param3 = 0'

'Param1; Param2: TButton; Param3: boolean = false'

TMS Scripter 7.36 Page 14 of 149

Import tool

The scripter import tool properly generates the DefineMethod call including the correct

parameter hint for the method being registered.

Enchanced RTTI

If you use Delphi 2010 and up, and register your classes using the new enchanced RTTI,

parameter hint are retrieved automatically with the RTTI and are available in the editor with no

need for extra code.

Building your own IDE
TMS Scripter provides you several components to make it easy to build your own IDE. All

elements in the IDE like the code editor, object inspector, tool palette, etc., are available for

stand-alone or integrated use.

And more, you don't need to use all components, you can use only three, two, or even one

single component!

The "magic" here is that all components are grouped together under a TIDEEngine. If you want

one component to work in sync with another one, just use a TIDEEngine component to group

them. The following sections will provide more information about the available components and

the engine.

IDE Components available

The "pieces" of the IDE available as componentes are:

TIDEMemo

TMS Scripter 7.36 Page 15 of 149

Stand-alone syntax-highlighting memo for editing script source code. It is inherited from

TAdvMemo component.

TIDEFormDesignControl

Stand-alone form designer control to allow designing forms and its child controls.

TIDEPaletteToolbar and TIDEPaletteButtons

Component palette controls. The TIDEPaletteToolbar is a Delphi7-like component toolbar, while

TIDEPaletteButtons is a tool palette which looks like the Delphi 2005-2007 component palette.

The TIDEPaletteButtons component is not available for Delphi 7 and previous versions.

TIDEInspector

Stand-alone object inspector for viewing/changing properties of components.

TIDEComponentComboBox

A combo box which lists all the components available in the form, and selects the control when

the user chooses an item from the combo box. To be used in conjunction with

TIDEFormDesignControl.

TIDEWatchListView

A stand-alone list view which shows the watches defined in the IDE, for debugging purposes.

The TIDEEngine component

The TIDEEngine component is the code behind the IDE. In other words, it has all the code which

makes the IDE work and integrates all IDE components together. All IDE components provide

feedback to the engine in order to synchronize other components. For example, when a

component is selected in the form designer, the form designer notifies the TIDEEngine so that

the engine can notify the inspector to update itself and show the properties of the selected

component.

TMS Scripter 7.36 Page 16 of 149

All IDE components have an Engine property which points to a TIDEEngine component. And the

TIDEEngine component also have properties which points to the component pieces that builds

an IDE. The Engine property in the components are public, and the properties in the TIDEEngine

are published, so at design-time you use the TIDEEngine component properties to link

everything together. The key properties of the TIDEEngine component are:

Scripter

Points to an TIDEScripter component. The scripter is used to hold the scripts belonging to a

project, to retrieve the name of the available event handlers, to refactor, among other functions.

ComponentCombo

Points to a TIDEComponentComboBox component. This component is optional, but if you

associated it to the engine, then the engine will update the combo automatically and no extra

code is needed to make it work.

DesignControl

Points to a TIDEFormDesignControl component. This component is used to design the form

components. The engine synchronizes this component with the inspector, the component

combo and the component palette toolbar (or buttons).

Inspector

Points to a TIDEInspector component. This component is used to inspect the properties and

events of the component(s) selected in the designer. The engine synchronizes the inspector and

the designer accordingly.

Memo

Points to a TIDEMemo component. The engine automatically updates the memo source code

with the currently selected unit in the project, and also automatically provides code completion

and other features.

PaletteToolbar or PaletteButtons

Points to a TIDEPaletteToolbar or TIDEPaletteButtons (from Delphi 2005 or above) component.

They display at runtime all the components that are available to be dropped in the form

designer. Several components are already available, and you can register more components in

the IDE if you want to. The engine synchronizes the component palette and the designer, so that

a component selected in the toolbar can be dropped in the designer.

TabControl

Points to a regular TTabControl component. This component is used to display the available units

in the project, and also to select the desired unit when the end-user clicks a tab.

WatchList

Points to a TIDEWatchListView component. This component shows all active watches in the

debugging environment, and the engine automatically updates the watches while debugging.

Basic steps to build a custom IDE

The following steps are a quick start guide to build a custom IDE. With these basic steps you can

get a custom IDE running with minimum functionality.

Drop a TIDEEngine component in the form.

Drop a TIDEScripter component in the form.

1.

2.

TMS Scripter 7.36 Page 17 of 149

Drop a TTabControl component in the form.

Drop a TIDEMemo component in the TTabControl. You can set Align property to alClient to

make it look better.

Drop a TIDEFormDesignControl component in the TTabControl. You can set Align property

to alClient to make it look better.

Drop a TIDEInspector component in the form.

Drop a TIDEPaletteToolbar (or TIDEPaletteButtons) component in the form.

Select the TIDEEngine component and set the following properties, pointing to the

respective components:

Scripter (link to the TIDEScripter component);

DesignControl (link to the TIDEFormDesignControl component);

Inspector (link to TIDEInspector component);

Memo (link to the TIDEMemo component);

PaletteToolbar (or PaletteButtons, linking to the TIDEPaletteToolbar or

TIDEPaletteButtons component); and

TabControl (link to the TTabControl component).

That's it, you have the IDE running already. Of course, you need to add several actions to create

unit, create form, save, load, etc., and you do that by using the TIDEDialog component

programatically.

So, as an example, you can perform these extra 9 and 10 steps here to have a project running:

9. Drop a TButton in the form, change the Caption property to "Start" and in the OnClick event

add the following code:

10. Drop a TButton in the form, change the Caption property to "Run" and in the OnClick event

add the following code:

Using ready-to-use inspector and palette forms

As an alternative to using TIDEInspector and TIDEPaletteButtons component, you can use some

already built forms which contain those components. The advantage of using the forms is that

they add some extra functionality (for example, the inspector form has the tabset which displays

the tabs "properties" and "events", while the palette buttons form adds filtering functionality).

TfmObjectInspector form

The form with the inspector is available in the fObjectInspector.pas unit. Just create an

instance of the TfmObjectInspector form and set its Engine property to a valid TIDEEngine

component.

3.

4.

5.

6.

7.

8.

◦

◦

◦

◦

◦

◦

IDEEngine1.CreateMainUnits(slPascal);

IDEEngine.RunProject;

TMS Scripter 7.36 Page 18 of 149

TfmToolPalette form

The form with the palette buttons is available in the fToolPalette.pas unit. Just create an

instance of the TfmToolPalette form and set its Engine property to a valid TIDEEngine component.

Using ready-to-use actions

TMS Scripter also provides a TDataModule which contains several actions that can be used in

your custom IDE.

Just add the dIDEActions.pas unit to your project. Link your IDE form to this unit by adding it

to the uses clause, create an instance of the TdmIDEActions data module and use the actions as

you want. These actions are used by the default IDE provided by the TIDEDialog component, so

you don't need to add extra code to perform basic operations like new project, open project,

save file, create unit, copy to clipboard, etc..

Using TIDEEngine component

programatically
The TIDEEngine component is the core component of an IDE in TMS Scripter. It provides several

methods and properties to work with the IDE programatically. This topic shows some basic

operations you can do with the component in either situation, and in all examples the name of

the TIDEEngine component will be IDEEngine1.

Creating a new project

Use NewProject method. This will clear all existing files in the project and creating a new blank

project:

Optionally, you can ask the engine to create the main units for a very basic project. This would

be a blank form, and a separated unit (which will be the main unit) that creates an instance of the

form and show it. To do that, call this method (you must pass the language used to create the

units):

Adding/removing units (scripts and forms) to the project

You can add new blank units and forms to the project using these methods:

IDEEngine1.NewProject;

IDEEngine1.CreateMainUnits(slPascal);

TMS Scripter 7.36 Page 19 of 149

To remove a unit from the project, just destroy the TIDEProjectFile object inside the collection:

C++Builder example

Executing a project programatically

The example below creates a new project, add a unit with a script source code, and execute it.

This example does the same, but instead of executing the code, it opens the IDE with the current

unit:

var

 ANewUnit: TIDEProjectFile;

 ANewForm: TIDEProjectFile;

begin

 {Creates a blank unit in Basic}

 ANewUnit := IDEEngine1.NewUnit(slBasic);

 {Creates a blank form in Pascal}

 ANewForm := IDEEngine1.NewFormUnit(slPascal);

end;

//Remove Unit1 from project

var

 AUnit: TIDEProjectFile;

begin

 AUnit := IDEEngine1.Files.FindByUnitName('Unit1');

 if AUnit <> nil then

 AUnit.Free;

end;

procedure TForm1.RunSampleProject;

var

 AUnit: TIDEProjectFile;

 AEngine: TIDEEngine;

 AScripter: TIDEScripter;

begin

 AEngine := TIDEEngine.Create(nil);

 AScripter := TIDEScripter.Create(nil);

 AEngine.Scripter := AScripter;

 AEngine.NewProject;

 AUnit := AEngine.NewUnit(slPascal);

 AUnit.Script.SourceCode.Text := 'ShowMessage(''Hello world!'');';

 AEngine.RunProject;

 AEngine.Free;

 AScripter.Free;

end;

TMS Scripter 7.36 Page 20 of 149

C++Builder example

Managing units and changing its properties

All units in a project are kept in a collection named Files (IDEEngine1.Files). Each unit (file) is a

TIDEProjectFile object. So, for example, to iterate through all units in a project:

C++Builder example

The TIDEProjectFile class has several properties and we list here the main ones (see full

component reference for all properties):

Script

Points to the TatScript object inside the scripter component. When a unit is created, it also

creates a TatScript object in the Scripter component. They are in sync (the file and the script). Use

this to change source code, for example:

procedure TForm1.ShowIDEWithSimpleUnit;

var

 AUnit: TIDEProjectFile;

 ADialog: TIDEDialog;

 AEngine: TIDEEngine;

 AScripter: TIDEScripter;

begin

 ADialog := TIDEDialog.Create(nil);

 AEngine := TIDEEngine.Create(nil);

 AScripter := TIDEScripter.Create(nil);

 ADialog.Engine := AEngine;

 AEngine.Scripter := AScripter;

 AEngine.NewProject;

 AUnit := AEngine.NewUnit(slPascal);

 AUnit.Script.SourceCode.Text := 'ShowMessage(''Hello world!'');';

 ADialog.Execute;

 ADialog.Free;

 AEngine.Free;

 AScripter.Free;

end;

var

 AUnit: TIDEProjectFile;

begin

 for c := 0 to IDEEngine1.Files.Count - 1 do

 begin

 AUnit := IDEEngine1.Files[c];

 //Do something with AUnit

 end;

end;

AUnit.Script.SourceCode.Text := 'ShowMessage(''Hello world!'')';

TMS Scripter 7.36 Page 21 of 149

IsForm

Use this function to check if the unit has a form associated with it:

Setting the active unit in the IDE

Use ActiveFile property to specify which file is the one selected in the IDE:

C++Builder example

Running and debugging a project

To run a project, use RunProject method:

the main unit will be executed. The main unit is the unit specified by IDEEngine1.MainUnit

property. There are several methods for debugging the script, and all of them start with "Debug"

in method name.

C++Builder example

Here is a list with the main methods:

HasForm := AUnit.IsForm;

AMyUnit := IDEEngine1.Files.FindByUnitName('Unit1');

IDEEngine1.ActiveFile := AMyUnit;

IDEEngine1.RunProject;

TMS Scripter 7.36 Page 22 of 149

Methods for end-user interaction - open, save dialogs,

etc.

The TIDEEngine component provides several high-level methods for user interaction. All of those

methods begin with "Dlg" in the method name, and are used to open/save project and units,

closing units, etc.. The difference from the regular methods for saving/loading (or removing

units) is that they perform more higher level operations, like displaying the open/save dialogs,

checking if the file was saved or not, asking for saving if the file was modified, checking if the

unit name exist, etc.. These are the main methods:

{Pauses the script execution, for IDE debugging purposes}

procedure DebugPause;

{Perform debug step over action in the current active script}

procedure DebugStepOver(RunMode: TIDERunMode = rmMainUnit);

{Perform debug step into action in the current active script}

procedure DebugTraceInto(RunMode: TIDERunMode = rmMainUnit);

{Perform debug action "run to line": run the active script until the selected

line in memo}

procedure DebugRunToLine(RunMode: TIDERunMode = rmMainUnit);

{Perform debug action "run until return": run the active script until the routine

exists}

procedure DebugUntilReturn;

{Halts script execution}

procedure DebugReset;

{Toggle breakpoint on/off in the memo and script.

 If ALine is -1 then current line in memo will be toggled for breakpoint}

procedure DebugToggleBreak(ALine: integer = -1);

{Creates a new project. Returns true if the new project is created sucessfully.}

function DlgNewProject: boolean;

{DlgProjectFile opens a dialog for choosing a project file and then open the

project

 file, clearing all units and loading the units belonging to that project.

 It returns true if the project is opened successfully.}

function DlgOpenProject: boolean;

{Call DlgOpenFile to open an existing file in the IDE interface.

 It will open a dialog for choosing the file, and if confirmed, the new file will

be

 added to the project and opened in the IDE.

 This method returns the newly created TIDEProjectFile which contains the opened

file.}

function DlgOpenFile: TIDEProjectFile;

TMS Scripter 7.36 Page 23 of 149

{Call DlgSaveFile method to save the file specified by AFile. It automatically

 opens the "Save as..." dialog if the file was not yet saved for the first time.

 This method returns true if the file was saved succesfully.}

function DlgSaveFile(AFile: TIDEProjectFile): boolean;

{Same for DlgSaveFile method, except it automatically saves the

 currently active file in the project.

 This method returns true if the file was saved succesfully.}

function DlgSaveActiveFile: boolean;

{Open the "Save as..." dialog for saving an unit.

 It performs extra operations like checking if the unit name already exists,

 and update the script source code (directive "$FORM") with the correct file

name,

 in case the file name was changed.

 This method returns true if the file was saved succesfully.}

function DlgSaveFileAs(AFile: TIDEProjectFile): boolean;

{Same as DlgSaveFileAs, except that it automatically saves the currently active

file.

 This method returns true if the file was saved succesfully.}

function DlgSaveActiveFileAs: boolean;

{Save all files in the project at once.

 For each file, if the file is not saved, it opens a "Save as..." dialog.

 If the dialog is canceled at some point, the remaining files will not be saved.

 This function returns true if all files were saved sucessfully.}

function DlgSaveAll: boolean;

{Closes the file specified by AFile. If the file was already saved,

 then it is not removed from project, just made invisible in the IDE.

 If the file is a new file that was not saved yet, then it's removed.

 If the file was modified, the engine asks the user if the file must be saved or

not.

 The result of the closing operation is returned in the TIDECloseFileResult.}

function DlgCloseFile(AFile: TIDEProjectFile): TIDECloseFileResult;

{Same as DlgCloseFile, except that it automatically closes the currently active

file.}

function DlgCloseActiveFile: TIDECloseFileResult;

{Close all files in the project. It calls DlgCloseFile for each file in the

project.

 It returns true if all files were closed succesfully.}

function DlgCloseAll: boolean;

{Same as DlgRemoveFile, except it removes the currently active file.}

function DlgRemoveActiveFile: boolean;

{Remove the file specified by AFile from the project.

 If the file was not saved, it asks for saving it.

TMS Scripter 7.36 Page 24 of 149

Registering components in the IDE
This topic covers some tasks that you can do to register (or unregister) components in the IDE

system.

Retrieving existing registered components

All the components already registered in the IDE system are available in the

TIDEEngine.RegisteredComps property. It is a collection of TIDERegisteredComp objects which

holds information for each registered component. As an example, the code below retrieves

information about all registered components:

 The method returns true if the file was successfully removed.}

function DlgRemoveFile(AFile: TIDEProjectFile): boolean;

{Opens a save dialog to save the project. Returns true if the project was saved

sucessfully.}

function DlgSaveProjectAs: boolean;

{Save the current project. If the project was not saved yet, it calls

 DlgSaveProjectAs to choose the file name for the project.}

function DlgSaveProject: boolean;

{Calls the Add Watch dialog to add a new watch while debugging.

 Returns nil if no watch is added, otherwise returns the newly created

TatDebugWatch object.

 There is no need to destroy this object later, the engine takes care of it

automatically.}

function DlgAddWatch: TatDebugWatch;

TMS Scripter 7.36 Page 25 of 149

C++Builder example

Registering/Unregistering standard tabs

The TIDEEngine component provides some methods which register/unregister automatically

some components that are commonly used. The methods available are:

var

 ARegComp: TIDERegisteredComp;

 c: integer;

 ACompClass: TComponentClass;

 AUnits: string;

 APage: string;

begin

 for c := 0 to IDEEngine1.RegisteredComps.Count - 1 do

 begin

 ARegComp := IDEEngine1.RegisteredComps[c];

 {Contains the class registered, for example, TButton}

 ACompClass := ARegComp.CompClass;

 {Contains the name of units (separated by commas) that will be

 added to the script when the component is dropped in a form.

 For example, 'ComCtrls,ExtCtrls'}

 AUnits := ARegComp.Units;

 {Contains the name of the page (category, tab) where the

 component will be displayed. For example, 'Standard'}

 APage := ARegComp.Page;

 end;

end;

{Register the following components in the tab "Standard":

 TMainMenu, TPopupMenu, TLabel, TEdit, TMemo, TButton, TCheckBox,

 TRadioButton, TListBox, TComboBox, TGroupBox, TPanel, TRadioGroup}

procedure RegisterStandardTab;

{Register the following components in the tab "Additional":

 TBitBtn, TSpeedButton, TMaskEdit, TImage, TShape, TBevel, TStaticText,

TSplitter}

procedure RegisterAdditionalTab;

{Register the following components in the tab "Dialogs":

 TOpenDialog, TSaveDialog, TFontDialog, TColorDialog, TPrintDialog,

TPrinterSetupDialog}

procedure RegisterDialogsTab;

{Register the following components in the tab "Win32":

 TTabControl, TPageControl, TProgressBar, TTreeView, TListView, TDateTimePicker}

procedure RegisterWin32Tab;

TMS Scripter 7.36 Page 26 of 149

To unregister a tab from the palette, just call UnregisterTab method. Example:

C++Builder example

Register new components

To register a new component in the component palette, just call RegisterComponent method. For

example:

C++Builder example

To set the image used to display the component in the palette, use the

TIDEEngine.OnGetComponentImage event.

Storing units in a database (alternative to

files)
By default the IDE in TMS Scripter saves projects and units to regular files. It displays open/save

dialogs and then open/save the files. But you can also change this behaviour and make the IDE

save/load the files in the place you want. The most common use for it is databases. You can also

replace the open/save dialogs to display your own dialogs for the end-user to choose the

available files to open, or choose the file name to be saved.

To do that, you must add code to some special events of TIDEDialog component. This topic

covers those events and how to use them.

Replacing save/load operations

You must add event handler code to two events: OnLoadFile and OnSaveFile.

Declaration:

IDEEngine1.UnregisterTab('Win32');

{Register the new component TMyComponent in the tab "Custom".

 When the user drops this component in the form, the units ComCtrls,

 ExtCtrls and MyComponentUnit are added to the script.

 These units must be registered in scripter in order to give access to

 them in the script environment. This registration can be done manually

 (check "Accessing Delphi objects" chapter) or using the ImportTool.}

IDEEngine1.RegisterComponent('Custom', TMyComponent, 'ComCtrls,ExtCtrls,MyCompone

ntUnit');

TMS Scripter 7.36 Page 27 of 149

Example:

type

 TIDELoadFileEvent = procedure(Sender: TObject; IDEFileType: TIDEFileType; AFile

Name: string;

 var AContent: string; AFile: TIDEProjectFile; var Handled: boolean) of

object;

 TIDESaveFileEvent = procedure(Sender: TObject; IDEFileType: TIDEFileType; AFile

Name: string;

 AContent: string; AFile: TIDEProjectFile; var Handled: boolean) of object;

property OnLoadFile: TIDELoadFileEvent read FOnLoadFile write FOnLoadFile;

property OnSaveFile: TIDESaveFileEvent read FOnSaveFile write FOnSaveFile;

procedure TForm1.IDEEngine1SaveFile(Sender: TObject;

 IDEFileType: TIDEFileType; AFileName, AContent: String;

 AFile: TIDEProjectFile; var Handled: Boolean);

begin

 {The IDEFileType parameter tells you if the file to be saved is a project file,

 a script file, or a form file.

 Valid values are: iftScript, iftProject, iftForm}

{The AFileName string contains the name of the file that was chosed in the save

dialog.

 Remember that you can replace the save dialog by your own, so the AFileName

will

 depend on the value returned by the save dialog}

 {The AContent parameter contains the file content in string format}

 {The AFile parameter points to the TIDEProjectFile object that is being saved.

 You will probably not need to use this parameter, it's passed only in case

 you need additional information for the file}

 {If you save the file yourself, you need to set Handled parameter to true.

 If Handled is false, then the IDE engine will try to save the file normally}

 {So, as an example, the code below saves the file in a table which contains the

 fields FileName and Content. Remember that AContent string might be a big

string,

 since it has all the content of the file (specially for form files)}

 MyTable.Close;

 case IDEFileType of

 iftScript: MyTable.TableName := 'CustomScripts';

 iftForm: MyTable.TableName := 'CustomForms';

 iftProject: MyTable.TableName := 'CustomProjects';

 end;

 MyTable.Open;

 if MyTable.Locate('FileName', AFileName, [loCaseInsensitive]) then

TMS Scripter 7.36 Page 28 of 149

Sample code for loading the file:

 MyTable.Edit

 else

 begin

 MyTable.Append;

 MyTable.FieldByName('FileName').AsString := AFileName;

 end;

 MyTable.FieldByName('Content').AsString := AContent;

 MyTable.Post;

 Handled := true;

end;

procedure TForm1.IDEEngine1LoadFile(Sender: TObject;

 IDEFileType: TIDEFileType; AFileName: String; var AContent: String;

 AFile: TIDEProjectFile; var Handled: Boolean);

begin

 {The IDEFileType parameter tells you if the file to be loaded is a project

file,

 a script file, or a form file.

 Valid values are: iftScript, iftProject, iftForm}

{The AFileName string contains the name of the file that was chosed in the open

dialog.

 Remember that you can replace the open dialog by your own, so the AFileName

will

 depend on the value returned by the open dialog}

 {The AContent parameter contains the file content in string format.

 You must return the content in this parameter}

 {The AFile parameter points to the TIDEProjectFile object that is being loaded.

 You will probably not need to use this parameter, it's passed only in case

 you need additional information for the file}

 {If you load the file yourself, you need to set Handled parameter to true.

 If Handled is false, then the IDE engine will try to load the file normally}

 {So, as an example, the code below loads the file from a table which contains

the

 fields FileName and Content. Remember that AContent string might be a big

string,

 since it has all the content of the file (specially for form files)}

 MyTable.Close;

 case IDEFileType of

 iftScript: MyTable.TableName := 'CustomScripts';

TMS Scripter 7.36 Page 29 of 149

C++Builder example

Replacing open/save dialogs

You must add event handler code to two events: OnOpenDialog and OnSaveDialog. The

parameters are similar to the OnLoadFile and OnSaveFile. You must build your own windows to

replace the default ones. Remember that in FileName parameter you can also return a path

structure like '\MyFiles\MyFileName.psc'. Then you must handle this structure yourself in the

OnLoadFile and OnSaveFile events.

Declaration:

Example:

 iftForm: MyTable.TableName := 'CustomForms';

 iftProject: MyTable.TableName := 'CustomProjects';

 end;

 MyTable.Open;

 if MyTable.Locate('FileName', AFileName, [loCaseInsensitive]) then

 AContent := MyTable.FieldByName('Content').AsString

 else

 raise Exception.Create(Format('File %s not found!', [AFileName]));

 Handled := true;

end;

type

 TIDEOpenDialogEvent = procedure(Sender: TObject; IDEFileType: TIDEFileType;

 var AFileName: string; var ResultOk, Handled: boolean) of object;

 TIDESaveDialogEvent = procedure(Sender: TObject; IDEFileType: TIDEFileType;

 var AFileName: string; AFile: TIDEProjectFile; var ResultOk, Handled:

boolean) of object;

property OnSaveDialog: TIDESaveDialogEvent read FOnSaveDialog write

FOnSaveDialog;

property OnOpenDialog: TIDEOpenDialogEvent read FOnOpenDialog write

FOnOpenDialog;

TMS Scripter 7.36 Page 30 of 149

Sample code for replacing open dialog:

procedure TForm1.IDEEngine1SaveDialog(Sender: TObject;

 IDEFileType: TIDEFileType; var AFileName: String; AFile: TIDEProjectFile;

 var ResultOk, Handled: Boolean);

begin

 {The IDEFileType parameter tells you if the file to be saved is a project file,

 a script file, or a form file.

 Valid values are: iftScript, iftProject. itForm is not used for open/save

dialogs}

{The AFileName string contains the name of the file that was chosed in the save

dialog.

 You must return the name of the file to be saved here}

 {The AFile parameter points to the TIDEProjectFile object that is being saved.

 You will probably not need to use this parameter, it's passed only in case

 you need additional information for the file}

 {You must set ResultOk to true if the end-user effectively has chosen a file

name.

 If the end-user canceled the operation, set ResultOk to false

 so that save process is canceled}

 {If you display the save dialog yourself, you need to set Handled parameter to

true.

 If Handled is false, then the IDE engine will open the default save dialog}

 {So, as an example, the code below shows a very rudimentar save dialog

(InputQuery) in

 replacement to the regular save dialog. Note that this example doesn't check

if the

 file is a project or a script. You must consider this parameter in your

application}

 AResultOk := InputQuery('Save unit', 'Choose a file name', AFileName);

 Handled := true;

end;

TMS Scripter 7.36 Page 31 of 149

C++Builder example

Checking if a file name is valid

Another event that must have code attached is the OnCheckValidFile event. This event is called

just after an open dialog is called, and before the file is opened. It is used to check if the file

name provided by the open dialog is a valid file name, before effectively opening the file.

procedure TForm1.IDEEngine1OpenDialog(Sender: TObject;

 IDEFileType: TIDEFileType; var AFileName: String; var ResultOk,

 Handled: Boolean);

var

 AMyOpenDlg: TMyOpenDlgForm;

begin

 {The IDEFileType parameter tells you if the file to be loaded is a project

file,

 a script file, or a form file.

 Valid values are: iftScript and iftProject. itForm is not used for open/save

dialogs}

{The AFileName string contains the name of the file that was chosed in the open

dialog.

 You must return the name of the file to be loaded here}

 {You must set ResultOk to true if the end-user effectively has chosen a file

name.

 If the end-user canceled the operation, set ResultOk to false

 so that open process is canceled}

 {If you display the open dialog yourself, you need to set Handled parameter to

true.

 If Handled is false, then the IDE engine will open the default open dialog}

 {So, as an example, the code below shows an open dialog in replacement to the

regular

 open dialog. It considers that the form TMyOpenDlgForm lists all available

units from

 a database table or something similar. Note that this example doesn't check if

the file

 is a project or a script. You must consider this parameter in your

application}

 AMyOpenDlg := TMyOpenDlgForm.Create(Application);

 AResultOk := (AMyOpenDlg.ShowModal = mrOk);

 if AResultOk then

 AFileName := AMyOpenDlg.ChosenFileName;

 AMyOpenDlg.Free;

 Handled := true;

end;

TMS Scripter 7.36 Page 32 of 149

IMPORTANT

This event is also important for the engine to know if there is a form file associated with a

script. When using regular files, the engine tests if the file "UnitName.XFM" exists in order to

know if the script has a form or not. So, you must return the correct information for the event

so everything works fine.

C++Builder example

type

 TCheckValidFileEvent = procedure(Sender: TObject; AFileName: string;

 var AValid: boolean) of object;

property OnCheckValidFile: TCheckValidFileEvent read FOnCheckValidFile write FOnC

heckValidFile;

procedure TForm1.IDEEngine1CheckValidFile(Sender: TObject; IDEFileType: TIDEFileT

ype;

 AFileName: String; var AValid: Boolean);

begin

 {The IDEFileType parameter tells you if the file to be checked is a form,

script or project.

 Valid values are: iftScript, iftProject}

 {The AFileName is the file name to be tested}

 {the AValid parameter must be set to true if the file name is valid.}

 {The code below is an example of how to use this event}

 MyTable.Close;

 case IDEFileType of

 iftScript: MyTable.TableName := 'CustomScripts';

 iftForm: MyTable.TableName := 'CustomForms';

 iftProject: MyTable.TableName := 'CustomProjects';

 end;

 MyTable.Open;

 AValid := MyTable.Locate('FileName', AFileName, [loCaseInsensitive]);

end;

TMS Scripter 7.36 Page 33 of 149

Language Features
This chapter covers all the languages you can use to write scripts, and which language features

you can use, language syntax, constructors, etc.

Pascal Syntax

Basic Syntax

Calling DLL functions

•

•

•

TMS Scripter 7.36 Page 34 of 149

Pascal syntax

Overview
TatPascalScripter component executes scripts written in Pascal syntax. Current Pascal syntax

supports:

begin .. end constructor

procedure and function declarations

if .. then .. else constructor

for .. to .. do .. step constructor

while .. do constructor

repeat .. until constructor

try .. except and try .. finally blocks

case statements

array constructors (x := [1, 2, 3];)

^ , * , / , and , + , - , or , <> , >= , <= , = , > , < , div , mod , xor , shl , shr

operators

access to object properties and methods (ObjectName.SubObject.Property)

Script structure
Script structure is made of two major blocks: (a) procedure and function declarations and (b)

main block. Both are optional, but at least one should be present in script. There is no need for

main block to be inside begin..end . It could be a single statement. Some examples:

SCRIPT 1:

SCRIPT 2:

•

•

•

•

•

•

•

•

•

•

•

procedure DoSomething;

begin

 CallSomething;

end;

begin

 CallSomethingElse;

end;

TMS Scripter 7.36 Page 35 of 149

SCRIPT 3:

SCRIPT 4:

Like in Pascal, statements should be terminated by ";" character. begin..end blocks are allowed

to group statements.

Identifiers
Identifier names in script (variable names, function and procedure names, etc.) follow the most

common rules in Pascal: should begin with a character (a..z or A..Z), or '_', and can be followed by

alphanumeric chars or '_' char. Cannot contain any other character or spaces.

Valid identifiers:

Invalid identifiers:

Assign statements
Just like in Pascal, assign statements (assign a value or expression result to a variable or object

property) are built using ":=". Examples:

begin

 CallSomethingElse;

end;

function MyFunction;

begin

 result := 'Ok!';

end;

CallSomethingElse;

VarName

_Some

V1A2

_____Some____

2Var

My Name

Some-more

This,is,not,valid

MyVar := 2;

Button.Caption := 'This ' + 'is ok.';

TMS Scripter 7.36 Page 36 of 149

Character strings
Strings (sequence of characters) are declared in Pascal using single quote (') character. Double

quotes (") are not used. You can also use #nn to declare a character inside a string. There is no

need to use '+' operator to add a character to a string. Some examples:

Comments
Comments can be inserted inside script. You can use // chars or (* *) or { } blocks. Using // char

the comment will finish at the end of line.

Variables
There is no need to declare variable types in script, even though you can put any type in it. Thus,

you declare variable just using var directive and its name. There is no need to declare variables

if scripter property OptionExplicit is set to false. In this case, variables are implicit declared. If you

want to have more control over the script, set OptionExplicit property to true. This will raise a

compile error if variable is used but not declared in script. Examples:

SCRIPT 1:

SCRIPT 2:

A := 'This is a text';

Str := 'Text '+'concat';

B := 'String with CR and LF char at the end'#13#10;

C := 'String with '#33#34' characters in the middle';

//This is a comment before ShowMessage

ShowMessage('Ok');

(* This is another comment *)

ShowMessage('More ok!');

{ And this is a comment

 with two lines }

ShowMessage('End of okays');

procedure Msg;

var S;

begin

 S := 'Hello world!';

 ShowMessage(S);

end;

TMS Scripter 7.36 Page 37 of 149

SCRIPT 3:

Note that if script property OptionExplicit is set to false, then var declarations are not necessary

in any of scripts above.

Array type

Even though variable type is not required and in most cases it will be ignored, there are some

special types that have meaning.

You can declare a variable as an array and the variable will be automatically initialized as a variant

array of that type, instead of null. For example:

Type of array items and the low index are optional. These are also valid declarations and result in

same array type:

Script arrays are always 0-based and indicating a different number for low bound will cause a

compilation error:

var A;

begin

 A := 0;

 A := A + 1;

end;

var S: string;

begin

 S := 'Hello World!';

 ShowMessage(S);

end;

var Arr: array[0..10] of string;

begin

 Arr[1] := 'first';

end;

var

 Arr1: array[0..10] of string;

 Arr2: array[10] of string;

 Arr3: array[0..10];

 Arr4: array[10];

var

 Arr: array[1..10] of string; // Invalid declaration

TMS Scripter 7.36 Page 38 of 149

Indexes
Strings, arrays and array properties can be indexed using "[" and "]" chars. For example, if Str is a

string variable, the expression Str[3] returns the third character in the string denoted by Str,

while Str[I + 1] returns the character immediately after the one indexed by I. More examples:

Arrays
Script support array constructors and support to variant arrays. To construct an array, use "[" and

"]" chars. You can construct multi-index array nesting array constructors. You can then access

arrays using indexes. If array is multi-index, separate indexes using ",".

If variable is a variant array, script automatically support indexing in that variable. A variable is a

variant array is it was assigned using an array constructor, if it is a direct reference to a Delphi

variable which is a variant array (see Delphi integration later) or if it was created using

VarArrayCreate procedure.

Arrays in script are 0-based index. Some examples:

If statements
There are two forms of if statement: if...then and the if...then...else . Like normal Pascal,

if the if expression is true, the statement (or block) is executed. If there is else part and

expression is false, statement (or block) after else is execute. Examples:

MyChar := MyStr[2];

MyStr[1] := 'A';

MyArray[1,2] := 1530;

Lines.Strings[2] := 'Some text';

NewArray := [2, 4, 6, 8];

Num := NewArray[1]; // Num receives "4"

MultiArray := [['green','red','blue'] , ['apple','orange','lemon']];

Str := MultiArray[0,2]; // Str receives 'blue'

MultiArray[1,1] := 'new orange';

if J <> 0 then Result := I/J;

if J = 0 then Exit else Result := I/J;

if J <> 0 then

begin

 Result := I/J;

 Count := Count + 1;

end

else

 Done := True;

TMS Scripter 7.36 Page 39 of 149

while statements
A while statement is used to repeat a statement or a block, while a control condition (expression)

is evaluated as true. The control condition is evaluated before the statement. Hence, if the

control condition is false at first iteration, the statement sequence is never executed. The while

statement executes its constituent statement (or block) repeatedly, testing expression before

each iteration. As long as expression returns True, execution continues. Examples:

repeat statements
The syntax of a repeat statement is repeat statement1; ...; statementn; until expression

where expression returns a Boolean value. The repeat statement executes its sequence of

constituent statements continually, testing expression after each iteration. When expression

returns True, the repeat statement terminates. The sequence is always executed at least once

because expression is not evaluated until after the first iteration. Examples:

for statements
Scripter support for statements with the following syntax:

for counter := initialValue to finalValue do statement .

The for statement set counter to initialValue, repeats execution of statement (or block) and

increment value of counter until counter reachs finalValue. Examples:

while Data[I] <> X do I := I + 1;

while I > 0 do

begin

 if Odd(I) then Z := Z * X;

 I := I div 2;

 X := Sqr(X);

end;

while not Eof(InputFile) do

begin

 Readln(InputFile, Line);

 Process(Line);

end;

repeat

 K := I mod J;

 I := J;

 J := K;

until J = 0;

repeat

 Write('Enter a value (0..9): ');

 Readln(I);

until (I >= 0) and (I <= 9);

TMS Scripter 7.36 Page 40 of 149

SCRIPT 1:

SCRIPT 2:

case statements
Scripter support case statements with following syntax:

If selectorExpression matches the result of one of caseexprn expressions, the respective statement

(or block) will be execute. Otherwise, elsestatement will be execute. Else part of case statement is

optional. Different from Delphi, case statement in script doesn't need to use only ordinal values.

You can use expressions of any type in both selector expression and case expression. Example:

function and procedure declaration
Declaration of functions and procedures are similar to Object Pascal in Delphi, with the

difference you don't specify variable types. Just like OP, to return function values, use implicited

declared result variable. Parameters by reference can also be used, with the restriction

mentioned: no need to specify variable types. Some examples:

for c := 1 to 10 do

 a := a + c;

for i := a to b do

begin

 j := i^2;

 sum := sum+j;

end;

case selectorExpression of

 caseexpr1: statement1;

 ...

 caseexprn: statementn;

else

 elsestatement;

end

case UpperCase(Fruit) of

 'lime': ShowMessage('green');

 'orange': ShowMessage('orange');

 'apple': ShowMessage('red');

else

 ShowMessage('black');

end;

TMS Scripter 7.36 Page 41 of 149

procedure HelloWord;

begin

 ShowMessage('Hello world!');

end;

procedure UpcaseMessage(Msg);

begin

 ShowMessage(UpperCase(Msg));

end;

function TodayAsString;

begin

 result := DateToStr(Date);

end;

function Max(A,B);

begin

 if A > B then

 result := A

 else

 result := B;

end;

procedure SwapValues(var A, B);

var Temp;

begin

 Temp := A;

 A := B;

 B := Temp;

end;

TMS Scripter 7.36 Page 42 of 149

Basic syntax

Overview
TatBasicScripter component executes scripts written in Basic syntax. Current Basic syntax

supports:

sub .. end and function .. end declarations

byref and dim directives

if .. then .. else .. end constructor

for .. to .. step .. next constructor

do .. while .. loop and do .. loop .. while constructors

do .. until .. loop and do .. loop .. until constructors

^ , * , / , and , + , - , or , <> , >= , <= , = , > , < , div , mod , xor , shl , shr

operators

try .. except and try .. finally blocks

try .. catch .. end try and try .. finally .. end try blocks

select case .. end select constructor

array constructors (x = [1, 2, 3])

exit statement

access to object properties and methods (ObjectName.SubObject.Property)

Script structure
Script structure is made of two major blocks: (a) function and sub declarations and (b) main

block. Both are optional, but at least one should be present in script. Some examples:

SCRIPT 1:

SCRIPT 2:

•

•

•

•

•

•

•

•

•

•

•

•

•

SUB DoSomething

 CallSomething

END SUB

CallSomethingElse

CallSomethingElse

TMS Scripter 7.36 Page 43 of 149

SCRIPT 3:

Like in normal Basic, statements in a single line can be separated by ":" character.

Identifiers
Identifier names in script (variable names, function and procedure names, etc.) follow the most

common rules in Basic: should begin with a character (a..z or A..Z), or '_', and can be followed by

alphanumeric chars or '_' char. Cannot contain any other character os spaces.

Valid identifiers:

Invalid identifiers:

Assign statements
Assign statements (assign a value or expression result to a variable or object property) are built

using "=". Examples:

New statement
TMS Scripter provides the "new" statement for Basic syntax. Since you don't provide the method

name in this statement, scripter looks for a method named "Create" in the specified class. If the

method doesn't exist, the statement fails. Example:

In the above examples, a method named "Create" for TLabel and TFont class will be called. The

method must be registered. If the method receives parameters, you can pass the parameters in

parenthesis, like the TLabel example above.

FUNCTION MyFunction

 MyFunction = "Ok!"

END FUNCTION

VarName

_Some

V1A2

_____Some____

2Var

My Name

Some-more

This,is,not,valid

MyVar = 2

Button.Caption = "This " + "is ok."

MyLabel = new TLabel(Form1)

MyFont = new TFont

TMS Scripter 7.36 Page 44 of 149

Character strings
Strings (sequence of characters) are declared in Basic using double quote (") character. Some

examples:

Comments
Comments can be inserted inside script. You can use ' chars or REM. Comment will finish at the

end of line. Examples:

Variables
There is no need to declare variable types in script. Thus, you declare variable just using DIM

directive and its name. There is no need to declare variables if scripter property OptionExplicit is

set to false. In this case, variables are implicit declared. If you want to have more control over the

script, set OptionExplicit property to true. This will raise a compile error if variable is used but not

declared in script. Examples:

SCRIPT 1:

SCRIPT 2:

Note that if script property OptionExplicit is set to false, then variable declarations are not

necessary in any of scripts above.

A = "This is a text"

Str = "Text "+"concat"

' This is a comment before ShowMessage

ShowMessage("Ok")

REM This is another comment

ShowMessage("More ok!")

' And this is a comment

' with two lines

ShowMessage("End of okays")

SUB Msg

 DIM S

 S = "Hello world!"

 ShowMessage(S)

END SUB

DIM A

A = 0

A = A+1

ShowMessage(A)

TMS Scripter 7.36 Page 45 of 149

You can also declare global variables as private or public using the following syntax:

SCRIPT 3:

Variable declared with DIM statement are public by default. Private variables are not acessible

from other scripts.

Variables can be default initialized with the following syntax:

Indexes
Strings, arrays and array properties can be indexed using "[" and "]" chars. For example, if Str is a

string variable, the expression Str[3] returns the third character in the string denoted by Str,

while Str[I + 1] returns the character immediately after the one indexed by I. More examples:

Arrays
Script support array constructors and support to variant arrays. To construct an array, use "[" and

"]" chars. You can construct multi-index array nesting array constructors. You can then access

arrays using indexes. If array is multi-index, separate indexes using ",".

If variable is a variant array, script automatically support indexing in that variable. A variable is a

variant array is it was assigned using an array constructor, if it is a direct reference to a Delphi

variable which is a variant array (see Delphi integration later) or if it was created using

VarArrayCreate procedure.

Arrays in script are 0-based index. Some examples:

PRIVATE A

PUBLIC B

B = 0

A = B + 1

ShowMessage(A)

DIM A = "Hello world"

DIM B As Integer = 5

MyChar = MyStr[2]

MyStr[1] = "A"

MyArray[1,2] = 1530

Lines.Strings[2] = "Some text"

NewArray = [2,4,6,8]

Num = NewArray[1] 'Num receives "4"

MultiArray = [["green","red","blue"] , ["apple","orange","lemon"]]

Str = MultiArray[0,2] 'Str receives 'blue'

MultiArray[1,1] = "new orange"

TMS Scripter 7.36 Page 46 of 149

If statements
There are two forms of if statement: if...then..end if and the if...then...else..end if .

Like normal Basic, if the if expression is true, the statements are executed. If there is else part and

expression is false, statements after else are executed. Examples:

If the IF statement is in a single line, you don't need to finish it with END IF :

while statements
A while statement is used to repeat statements, while a control condition (expression) is

evaluated as true. The control condition is evaluated before the statements. Hence, if the control

condition is false at first iteration, the statement sequence is never executed. The while

statement executes its constituent statement repeatedly, testing expression before each

iteration. As long as expression returns True, execution continues. Examples:

loop statements
Scripter support loop statements. The possible syntax are:

FUNCTION Test(I, J)

 IF J <> 0 THEN Result = I/J END IF

 IF J = 0 THEN Exit Function ELSE Result = I/J END IF

 IF J <> 0 THEN

 Exit Function

 ELSE

 Result = I/J

 END IF

END FUNCTION

IF J <> 0 THEN Result = I/J

IF J = 0 THEN Exit ELSE Result = I/J

WHILE (Data[I] <> X) I = I + 1 END WHILE

WHILE (I > 0)

 IF Odd(I) THEN Z = Z * X END IF

 X = Sqr(X)

END WHILE

WHILE (not Eof(InputFile))

 Readln(InputFile, Line)

 Process(Line)

END WHILE

TMS Scripter 7.36 Page 47 of 149

Statements will be execute WHILE expr is true, or UNTIL expr is true. If expr is before statements,

then the control condition will be tested before iteration. Otherwise, control condition will be

tested after iteration. Examples:

for statements
Scripter support for statements with the following syntax:

FOR counter = initialValue TO finalValue STEP stepValue statements NEXT .

The for statement set counter to initialValue, repeats execution of statement until "next" and

increment value of counter by stepValue, until counter reachs finalValue. Step part is optional,

and if omitted stepValue is considered 1. Examples:

SCRIPT 1:

SCRIPT 2:

DO WHILE expr statements LOOP

DO UNTIL expr statements LOOP

DO statements LOOP WHILE expr

DO statement LOOP UNTIL expr

DO

 K = I mod J

 I = J

 J = K

LOOP UNTIL J = 0

DO UNTIL I >= 0

 Write("Enter a value (0..9): ")

 Readln(I)

LOOP

DO

 K = I mod J

 I = J

 J = K

LOOP WHILE J <> 0

DO WHILE I < 0

 Write("Enter a value (0..9): ")

 Readln(I)

LOOP

FOR c = 1 TO 10 STEP 2

 a = a + c

NEXT

TMS Scripter 7.36 Page 48 of 149

select case statements
Scripter support select case statements with following syntax:

If selectorExpression matches the result of one of caseexprn expressions, the respective

statements will be executed. Otherwise, elsestatement will be executed. Else part of case

statement is optional. Example:

function and sub declaration
Declaration of functions and subs are similar to Basic. In functions to return function values, use

implicited declared variable which has the same name of the function, or use Return statement.

Parameters by reference can also be used, using BYREF directive. Some examples:

FOR I = a TO b

 j = i ^ 2

 sum = sum + j

NEXT

SELECT CASE selectorExpression

 CASE caseexpr1

 statement1

 ...

 CASE caseexprn

 statementn

CASE ELSE

 elsestatement

END SELECT

SELECT CASE uppercase(Fruit)

 CASE "lime" ShowMessage("green")

 CASE "orange"

 ShowMessage("orange")

 CASE "apple" ShowMessage("red")

CASE ELSE

 ShowMessage("black")

END SELECT

TMS Scripter 7.36 Page 49 of 149

You can also declare subs and functions as private or public using the following syntax:

Subs and functions are public by default. Private subs and functions are not acessible from other

scripts.

You can use Return statement to exit subs and functions. For functions, you can also return a

valid value. Examples:

SUB HelloWord

 ShowMessage("Hello world!")

END SUB

SUB UpcaseMessage(Msg)

 ShowMessage(Uppercase(Msg))

END SUB

FUNCTION TodayAsString

 TodayAsString = DateToStr(Date)

END FUNCTION

FUNCTION Max(A,B)

 IF A>B THEN

 MAX = A

 ELSE

 MAX = B

 END IF

END FUNCTION

SUB SwapValues(BYREF A, B)

 DIM TEMP

 TEMP = A

 A = B

 B = TEMP

END SUB

PRIVATE SUB Hello

END SUB

PUBLIC FUNCTION Hello

END FUNCTION

SUB UpcaseMessage(Msg)

 ShowMessage(Uppercase(Msg))

 Return

 'This line will be never reached

 ShowMessage("never displayed")

END SUB

FUNCTION TodayAsString

 Return DateToStr(Date)

END FUNCTION

TMS Scripter 7.36 Page 50 of 149

TMS Scripter 7.36 Page 51 of 149

Calling DLL functions

Overview
Scripter allows importing and calling external DLL functions, by inserting special directives on

declaration of script routines, indicating library name and, optionally, the calling convention,

beyond the function signature.

External libraries are loaded by Scripter on demand, before function calls, if not loaded yet

(dynamically or statically). To load and unload libraries explicitly, functions LoadLibary and

FreeLibrary from unit Windows can be used.

NOTE

To enable DLL function calls, you must set AllowDLLCalls property to true.

Pascal syntax

For example, the following declaration:

imports a function called MyFunction from "CustomLib.dll". Default calling convention, if not

specified, is register. Scripter also allows to declare a different calling convention (stdcall, register,

pascal, cdecl or safecall) and to use a different name for DLL function, like the following

declaration:

that imports MessageBoxW function from "User32.dll" (Windows API library), named

"MessageBox" to be used in script.

Declaration above can be used to functions and procedures (routines without result value).

Basic syntax

For example, the following declaration:

function functionName(arguments): resultType; [callingConvention];

 external 'libName.dll' [name ExternalFunctionName];

function MyFunction(arg: integer): integer; external 'CustomLib.dll';

function MessageBox(hwnd: pointer; text, caption: string; msgtype: integer): inte

ger;

 stdcall; external 'User32.dll' name 'MessageBoxW';

function lib "libName.dll" [alias ExternalFunctionName] [callingConvention]

 functionName(arguments) as resultType

TMS Scripter 7.36 Page 52 of 149

imports a function called MyFunction from "CustomLib.dll". Default calling convention, if not

specified, is stdcall. Scripter also allows to declare a different calling convention (stdcall, register,

pascal, cdecl or safecall) and to use a different name for DLL function, like the following

declaration:

that imports MessageBoxA function from "User32.dll" (Windows API library), named

"MessageBox" to be used in script.

Declaration above can be used to functions and subs (routines without result value).

Supported types
Scripter support following basic data types on arguments and result of external functions:

Integer

Boolean

Char

Extended

String

Pointer

PChar

Object

Class

WideChar

PWideChar

AnsiString

Currency

Variant

Interface

WideString

Longint

Cardinal

Longword

Single

Byte

Shortint

Word

Smallint

Double

Real

DateTime

TObject descendants (class must be registered in scripter with DefineClass)

function lib "CustomLib.dll" MyFunction(arg as integer) as integer

function MessageBox lib "User32.dll" alias "MessageBoxA" stdcall

 (hwnd as pointer, text as string, caption as string, msgtype as integer) as int

eger

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 53 of 149

Others types (records, arrays, etc.) are not supported yet. Arguments of above types can be

passed by reference, by adding var (Pascal) or byref (Basic) in param declaration of function.

TMS Scripter 7.36 Page 54 of 149

Working with scripter
This chapter provides information about how to use the scripter component in your application.

How to run scripts, how to integrate Delphi objects with the script, and other tasks are covered

here.

Getting started
To start using scripter, you just need to know one property (SourceCode) and one method

(Execute). Thus, to start using scripter to execute a simple script, drop it on a form and use the

following code (in a button click event, for example):

And you will get a "Hello world!" message after calling Execute method. That's it. From now, you

can start executing scripts. To make it more interesting and easy, drop a TAdvMemo component

in form and change code to:

C++Builder example

Now you can just type scripts at runtime and execute them.

From this point, any reference to scripter object (methods, properties, events) refers to

TatCustomScripter object and can be applied to TatPascalScripter and TatBasicScripter - except

when explicit indicated. The script examples will be given in Pascal syntax.

Cross-language feature: TatScripter and

TIDEScripter
TMS Scripter provides a single scripter component that allows cross-language and cross-

platform scripting: TatScripter.

Replacing old TatPascalScripter and TatBasicScripter by the new TatScripter is simple and

straightforward. It's full compatible with the previous one, and the cross-language works

smoothly. There only two things that are not backward compatible by default, but you can

change it using properties. The differences are:

OptionExplicit property now is "true" by default

The new TIDEScripter component requires that all variables are declared in script, different

from TatPascalScripter or TatBasicScripter. So, if you want to keep the old default

functionality, you must set OptionExplicit property to false.

Scripter.SourceCode.Text := 'ShowMessage(''Hello world!'');';

Scripter.Execute;

Scripter.SourceCode := AdvMemo1.Lines;

Scripter.Execute;

1.

TMS Scripter 7.36 Page 55 of 149

ShortBooleanEval property now is "true" by default

The new TIDEScripter component automatically uses short boolean evaluation when

evaluation boolean expressions. If you want to keep the old default functionality, set

ShortBooleanEval to false.

In addition to the changes above, the new TatScripter and TIDEScripter includes the following

properties and methods:

New DefaultLanguage property

TatScripter and descendants add the new property DefaultLanguage which is the default

language of the scripts created in the scripter component using the old way

(Scripter.Scripts.Add). Whenever a script object is created, the language of this new script will be

specified by DefaultLanguage. The default value is slPascal. So, to emulate a TatBasicScripter

component with TatScripter, just set DefaultLanguage to slBasic. If you want to use Pascal

language, it's already set for that.

New AddScript method

If you create a script using old Scripts.Add method, the language of the script being created will

be specified by DefaultLanguage. But as an alternative you can just call AddScript method, which

will create a new TatScript object in the Scripts collection, but the language of the script will be

specified by ALanguage parameter. So, for example, to create a Pascal and a Basic script in the

TatScripter component:

C++Builder example

Using cross-language feature

There is not much you need to do to be able to use both Basic and Pascal scripts. It's just

transparent, from a Basic script you can call a Pascal procedure and vice-versa.

Common tasks

Calling a subroutine in script

If the script has one or more functions or procedures declared, than you can directly call them

using ExecuteSubRoutine method:

2.

TScriptLanguage = (slPascal, slBasic);

property DefaultLanguage: TScriptLanguage;

function AddScript(ALanguage: TScriptLanguage): TatScript;

MyPascalScript := atScripter1.AddScript(slPascal);

MyBasicScript := atScripter1.AddScript(slBasic);

TMS Scripter 7.36 Page 56 of 149

Pascal script:

Basic script:

CODE:

C++Builder example

This will display "Hello word!" and "Bye world!" message dialogs.

Returning a value from script

Execute method is a function, which result type is Variant. Thus, if script returns a value, then it

can be read from Delphi code. For example, calling a script function "Calculate":

Pascal script:

Basic script:

CODE:

procedure DisplayHelloWorld;

begin

 ShowMessage('Hello world!');

end;

procedure DisplayByeWorld;

begin

 ShowMessage('Bye world!');

end;

sub DisplayHelloWorld

 ShowMessage("Hello world!")

end sub

sub DisplayByeWorld

 ShowMessage("Bye world!")

end sub

Scripter.ExecuteSubRoutine('DisplayHelloWorld');

Scripter.ExecuteSubRoutine('DisplayByeWorld');

function Calculate;

begin

 result := (10+6)/4;

end;

function Calculate

 Calculate = (10+6)/4

end function

TMS Scripter 7.36 Page 57 of 149

FunctionValue will receive a value of 4. Note that you don't need to declare a function in order to

return a value to script. Your script and code could be just:

Pascal script:

CODE:

C++Builder example

TIP

In Basic syntax, to return a function value you must use "FunctionName = Value" syntax. You

can also return values in Basic without declaring a function. In this case, use the reserved word

"MAIN": MAIN = (10+6)/4 .

Passing parameters to script

Another common task is to pass values of variables to script as parameters, in order to script to

use them. To do this, just use same Execute and ExecuteSubRoutine methods, with a different

usage (they are overloaded methods). Note that parameters are Variant types:

Pascal script:

Basic script:

CODE:

FunctionValue will receive 10. If you want to pass more than one parameter, use a Variant array

or an array of const:

Pascal script:

FunctionValue := Scripter.ExecuteSubRoutine('Calculate');

result := (10+6)/4;

FunctionValue := Scripter.Execute;

function Double(Num);

begin

 result := Num*2;

end;

function Double(Num)

 Double = Num*2

End function

FunctionValue := Scripter.ExecuteSubRoutine('Double', 5);

TMS Scripter 7.36 Page 58 of 149

CODE:

C++Builder example

NOTE

To use parameter by reference when calling script subroutines, the variables must be declared

as variants. In the example above, the Delphi variable MyVar must be of Variant type, otherwise

the script will not update the value of MyVar.

NOTE

Script doesn't need parameter types, you just need to declare their names.

Accessing Delphi objects

Registering Delphi components

One powerful feature of scripter is to access Delphi objects. This way you can make reference to

objects in script, change its properties, call its methods, and so on. However, every object must

be registered in scripter so you can access it. For example, suppose you want to change caption

of form (named Form1). If you try to execute this script:

SCRIPT:

you will get "Unknown identifier or variable not declared: Form1". To make scripter work, use

AddComponent method:

function MaxValue(A,B);

begin

 if A > B then

 result := A

 else

 result := B;

end;

procedure Increase(var C; AInc);

begin

 C := C + AInc;

end;

var

 MyVar: Variant;

begin

 FunctionValue := Scripter.ExecuteSubRoutine('MaxValue', VarArrayOf([5,8]));

 Scripter.ExecuteSubRoutine('Increase', [MyVar, 3]);

end;

Form1.Caption := 'New caption';

TMS Scripter 7.36 Page 59 of 149

CODE:

C++Builder example

Now scripter will work and form's caption will be changed.

Access to published properties

After a component is added, you have access to its published properties. That's why the caption

property of the form could be changed. Otherwise you would need to register property as well.

Actually, published properties are registered, but scripter does it for you.

Class registering structure

Scripter can call methods and properties of objects. But this methods and properties must be

registered in scripter. The key property for this is TatCustomScripter.Classes property. This

property holds a collection of registered classes (TatClass object), which in turn holds its

collection of registered properties and methods (TatClass.Methods and TatClass.Properties). Each

registered method and property holds a name and the wrapper method (the Delphi written code

that will handle method and property).

When you registered Form1 component in the previous example, scripter automatically

registered TForm class in Classes property, and registered all published properties inside it. To

access methods and public properties, you must registered them, as showed in the following

topics.

Calling methods

To call an object method, you need to register it. For instance, if you want to call ShowModal

method of a newly created form named Form2. So we must add the form it to scripter using

AddComponent method, and then register ShowModal method:

CODE:

Scripter.AddComponent(Form1);

procedure Tform1.ShowModalProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(TCustomForm(CurrentObject).ShowModal);

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Form2);

 with Scripter.DefineClass(TCustomForm) do

 begin

 DefineMethod('ShowModal', 0, tkInteger, nil, ShowModalProc);

 end;

end;

TMS Scripter 7.36 Page 60 of 149

C++Builder example

SCRIPT:

This example has a lot of new concepts. First, component is added with AddComponent method.

Then, DefineClass method was called to register TCustomForm class. DefineClass method

automatically check if TCustomForm class is already registered or not, so you don't need to do

test it.

After that, ShowModal is registered, using DefineMethod method. Declaration of DefineMethod

is:

AName receives 'ShowModal' - it's the name of method to be used in script.

AArgCount receives 0 - number of input arguments for the method (none, in the case of

ShowModal).

AResultDataType receives tkInteger - it's the data type of method result. ShowModal

returns an integer. If method is not a function but a procedure, AResultDataType should

receive tkNone.

AResultClass receives nil - if method returns an object (not this case), then AResultClass

must contain the object class. For example, TField.

AProc receives ShowModalProc - the method written by the user that works as

ShowModal wrapper.

And, finally, there is ShowModalProc method. It is a method that works as the wrapper: it

implements a call to ShowModal. In this case, it uses some useful methods and properties of

TatVirtualMachine class:

property CurrentObject – contains the instance of object where the method belongs to.

So, it contains the instance of a specified TCustomForm.

method ReturnOutputArg – it returns a function result to scripter. In this case, returns the

value returned by TCustomForm.ShowModal method.

You can also register the parameter hint for the method using UpdateParameterHints method.

More method calling examples

In addition to previous example, this one illustrates how to register and call methods that receive

parameters and return classes. In this example, FieldByName:

SCRIPT:

ShowResult := Form2.ShowModal;

function DefineMethod(AName: string; AArgCount: integer; AResultDataType: TatType

Kind;

 AResultClass: TClass; AProc: TMachineProc; AIsClassMethod: boolean=false): TatM

ethod;

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 61 of 149

CODE:

C++Builder example

Very similar to Calling methods example. Some comments:

FieldByName method is registered in TDataset class. This allows use of FieldByName

method by any TDataset descendant inside script. If FieldByName was registered in a

TTable class, script would not recognize the method if component was a TQuery.

DefineMethod call defined that FieldByName receives one parameter, its result type is

tkClass, and class result is TField.

Inside FieldByNameProc, GetInputArgAsString method is called in order to get input

parameters. The 0 index indicates that we want the first parameter. For methods that

receive 2 or more parameters, use GetInputArg(1), GetInputArg(2), and so on.

To use ReturnOutputArg in this case, we need to cast resulting TField as integer. This must

be done to return any object. This is because ReturnOutputArg receives a Variant type, and

objects must then be cast to integer.

Accessing non-published properties

Just like methods, properties that are not published must be registered. The mechanism is very

similar to method registering, with the difference we must indicate one wrapper to get property

value and another one to set property value. In the following example, the "Value" property of

TField class is registered:

SCRIPT:

AField := Table1.FieldByName('CustNo');

ShowMessage(AField.DisplayLabel);

procedure TForm1.FieldByNameProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(integer(TDataset(CurrentObject).FieldByName(GetInputArgAsStri

ng(0))));

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Table1);

 with Scripter.DefineClass(TDataset) do

 begin

 DefineMethod('FieldByName', 1, tkClass, TField, FieldByNameProc);

 end;

end;

•

•

•

•

AField := Table1.FieldByName('Company');

ShowMessage(AField.Value);

TMS Scripter 7.36 Page 62 of 149

CODE:

C++Builder example

DefineProp is called passing a tkVariant indicating that Value property is Variant type, and then

passing two methods GetFieldValueProc and SetFieldValueProc, which, in turn, read and write

value property of a TField object. Note that in SetFieldValueProc method was used GetInputArg

(instead of GetInputArgAsString). This is because GetInputArg returns a variant.

Registering indexed properties

A property can be indexed, specially when it is a TCollection descendant. This applies to dataset

fields, grid columns, string items, and so on. So, the code below illustrates how to register

indexed properties. In this example, Strings property of TStrings object is added in other to

change memo content:

SCRIPT:

CODE:

procedure TForm1.GetFieldValueProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(TField(CurrentObject).Value);

end;

procedure TForm1.SetFieldValueProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 TField(CurrentObject).Value := GetInputArg(0);

end;

procedure TForm1.PrepareScript;

begin

 with Scripter.DefineClass(TField) do

 begin

 DefineProp('Value', tkVariant, GetFieldValueProc, SetFieldValueProc);

 end;

end;

ShowMessage(Memo1.Lines.Strings[3]);

Memo1.Lines.Strings[3] := Memo1.Lines.Strings[3] + ' with more text added';

TMS Scripter 7.36 Page 63 of 149

C++Builder example

Some comments:

DefineProp receives three more parameters than DefineMethod:

nil (class type of property. It's nil because property is string type);

false (indicating the property is not a class property); and

1 (indicating that property is indexed by 1 parameter. This is the key param. For

example, to register Cells property of the grid, this parameter should be 2, since

Cells depends on Row and Col).

In GetStringsProc and SetStringsProc, GetArrayIndex method is used to get the index value

passed by script. The 0 param indicates that it is the first index (in the case of Strings

property, the only one).

To define an indexed property as the default property of a class, set the property

TatClass.DefaultProperty after defining the property in Scripter. In above script example

(Memo1.Lines.Strings[i]), if the 'Strings' is set as the default property of TStrings class, the

string lines of the memo can be accessed by "Memo1.Lines[i]".

Code example (defining TStrings class with Strings default property):

procedure TForm1.GetStringsProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(TStrings(CurrentObject).Strings[GetArrayIndex(0)]);

end;

procedure TForm1.SetStringsProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 TStrings(CurrentObject).Strings[GetArrayIndex(0)] := GetInputArgAsString(0);

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Memo1);

 with Scripter.DefineClass(TStrings) do

 begin

 DefineProp('Strings', tkString, GetStringsProc, SetStringsProc, nil, false,

1);

 end;

end;

•

◦

◦

◦

•

•

TMS Scripter 7.36 Page 64 of 149

Retrieving name of called method or property

You can register the same wrapper for more than one method or property. In this case, you

might need to know which property or method was called. In this case, you can use

CurrentPropertyName or CurrentMethodName. The following example illustrates this usage.

C++Builder example

Registering methods with default parameters

You can also register methods which have default parameters in scripter. To do that, you must

pass the number of default parameters in the DefineMethod method. Then, when implementing

the method wrapper, you need to check the number of parameters passed from the script, and

then call the Delphi method with the correct number of parameters. For example, let's say you

have the following procedure declared in Delphi:

To register that procedure in scripter, you use DefineMethod below. Note that the number of

parameters is 5 (five), and the number of default parameters is 3 (three):

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Memo1);

 with Scripter.DefineClass(TStrings) do

 begin

 DefaultProperty := DefineProp('Strings', tkString,

 GetStringsProc, SetStringsProc, nil, false, 1);

 end;

end;

procedure TForm1.GenericMessageProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 if CurrentMethodName = 'MessageHello' then

 ShowMessage('Hello')

 else if CurrentMethodName = 'MessageWorld' then

 ShowMessage('World');

end;

procedure TForm1.PrepareScript;

begin

 with Scripter do

 begin

 DefineMethod('MessageHello', 1, tkNone, nil, GenericMessageProc);

 DefineMethod('MessageWorld', 1, tkNone, nil, GenericMessageProc);

 end;

end;

function SumNumbers(A, B: double; C: double = 0; D: double = 0; E: double = 0): d

ouble;

TMS Scripter 7.36 Page 65 of 149

Then, in the implementation of SumNumbersProc, just check the number of input parameters

and call the function properly:

C++Builder example

Delphi 2010 and up - Registering using new RTTI

Taking advantage of new features related to RTTI and available from Delphi 2010, TMS Scripter

implements methods to make easier the registration of classes, letting them available for use in

scripts. So far we need to manually define each method/property of a class (except published

properties) - at least there's a nice utility program named "ImportTool" - but from now we can

register almost all members of a class automatically and with minimum effort, as seen below.

Registering a class in scripter

To register a class in Scripter, usually we use TatCustomScripter.DefineClass method to define the

class, and helper methods to define each class member, and also we need to implement wrapper

methods to make the calls for class methods, as well as getters and setters for properties.

Example:

Scripter.DefineMethod('SumNumbers', 5 {number of total parameters},

 tkFloat, nil, SumNumbersProc, false, 3 {number of default parameters});

procedure TForm1.SumNumbersProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 begin

 case InputArgCount of

 2: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1))

);

 3: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1),

 GetInputArgAsFloat(2)));

 4: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1),

 GetInputArgAsFloat(2), GetInputArgAsFloat(3)));

 5: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1),

 GetInputArgAsFloat(2), GetInputArgAsFloat(3), GetInputArgAsFloat(4)));

 end;

 end;

end;

with Scripter.DefineClass(TMyClass) do

begin

 DefineMethod('Create', 0, tkClass, TMyClass, __TMyClassCreate, true);

 DefineMethod('MyMethod', tkNone, nil, __TMyClassMyMethod);

 (...)

 DefineProp('MyProp', tkInteger, __GetTMyClassMyProp, __SetTMyClassMyProp);

 (...)

end;

TMS Scripter 7.36 Page 66 of 149

With new features, just call TatCustomScripter.DefineClassByRTTI method to register the class in

scripter, and automatically all their methods and properties:

This method has additional parameters that allow you to specify exactly what will be published in

scripter:

AClass: class to be registered in scripter;

AClassName: custom name for registered class, the original class name is used if empty;

AVisibilityFilter: register only members whose visibility is in this set, by default only public

and published members are registered, but you can register also private and protected

members;

ARecursive: if true, scripter will also register other types (classes, records, enumerated

types) which are used by methods and properties of class being defined. These types are

recursively defined using same option specified in visibility filter.

Registering a record in scripter

Since scripter does not provide support for records yet, our recommended solution is to use

wrapper classes (inherited from TatRecordWrapper) to emulate a record structure by

implementing each record field as a class property. Example:

While scripter still remains using classes to emulated records, is no longer necessary to

implement an exclusive wrapper class for each record, because now scripter implements a

generic wrapper. Thus a record (and automatically all its fields) can be registered into scripter by

TatCustomScripter.DefineRecordByRTTI method, as in example below:

The method only receives a pointer parameter to record type definition:

Scripter.DefineClassByRTTI(TMyClass);

procedure TatCustomScripter.DefineClassByRTTI(

 AClass: TClass;

 AClassName: string = '';

 AVisibilityFilter: TMemberVisibilitySet = [mvPublic, mvPublished];

 ARecursive: boolean = False);

•

•

•

•

TRectWrapper = class(TatRecordWrapper)

 (...)

published

 property Left: Longint read FLeft write FLeft;

 property Top: Longint read FTop write FTop;

 property Right: Longint read FRight write FRight;

 property Bottom: Longint read FBottom write FBottom;

end;

Scripter.DefineRecordByRTTI(TypeInfo(TRect));

TMS Scripter 7.36 Page 67 of 149

Records registered in scripter will work as class and therefore need to be instantiated before use

in your scripts (except when methods or properties return records, in this case scripter

instantiates automatically). Example:

What is not supported

Due to Delphi RTTI and/or scripter limitations, some features are not supported yet and you may

need some workaround for certain operations.

Scripter automatically registers only methods declared in public and published clauses of

a class, since methods declared as private or protected are not accessible via RTTI. When

defining a class with private and protected in visibility filter, scripter will only define fields

and properties declared in these clauses.

If a class method has overloads, scripter will register only the first method overload

declared in that class.

Methods having parameters with default values, when automatically defined in scripter,

are registered with all parameters required. To define method with default parameters, use

DefineMethod method, passing number of default arguments in ADefArgCount parameter,

and implement the method handler (TMachineProc) to check the number of arguments

passed to method by using TatVirtualMachine.InputArgCount function.

Event handlers are not automatically defined by scripter. You must implement a

TatEventDispatcher descendant class and use DefineEventAdapter method.

Some methods having parameters of "uncommon" types (such as arrays and others) are

not defined in scripter, since Delphi does not provide enough information about these

methods.

procedure TatCustomScripter.DefineRecordByRTTI(ATypeInfo: Pointer);

var

 R: TRect;

begin

 R := TRect.Create;

 try

 R.Left := 100;

 // do something with R

 finally

 R.Free;

 end;

end;

•

•

•

•

•

TMS Scripter 7.36 Page 68 of 149

Accessing Delphi functions, variables and

constants
In addition to access Delphi objects, scripter allows integration with regular procedures and

functions, global variables and global constants. The mechanism is very similar to accessing

Delphi objects. In fact, scripter internally consider regular procedures and functions as methods,

and global variables and constants are props.

Registering global constants

Registering a constant is a simple task in scripter: use AddConstant method to add the constant

and the name it will be known in scripter:

CODE:

C++Builder example

SCRIPT:

Access the constants in script just like you do in Delphi code.

Acessing global variables

To register a variable in scripter, you must use AddVariable method. Variables can be added in a

similar way to constants: passing the variable name and the variable itself. In addition, you can

also add variable in the way you do with properties: use a wrapper method to get variable value

and set variable value:

CODE:

Scripter.AddConstant('MaxInt', MaxInt);

Scripter.AddConstant('Pi', pi);

Scripter.AddConstant('MyBirthday', EncodeDate(1992,5,30));

ShowMessage('Max integer is ' + IntToStr(MaxInt));

ShowMessage('Value of pi is ' + FloatToStr(pi));

ShowMessage('I was born on ' + DateToStr(MyBirthday));

TMS Scripter 7.36 Page 69 of 149

C++Builder example

SCRIPT:

var

 MyVar: Variant;

 ZipCode: string[15];

procedure TForm1.GetZipCodeProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(ZipCode);

end;

procedure TForm1.SetZipCodeProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ZipCode := GetInputArgAsString(0);

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddVariable('ShortDateFormat', ShortDateFormat);

 Scripter.AddVariable('MyVar', MyVar);

 Scripter.DefineProp('ZipCode', tkString, GetZipCodeProc, SetZipCodeProc);

 Scripter.AddObject('Application', Application);

end;

procedure TForm1.Run1Click(Sender: TObject);

begin

 PrepareScript;

 MyVar := 'Old value';

 ZipCode := '987654321';

 Application.Tag := 10;

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

 ShowMessage('Value of MyVar variable in Delphi is ' + VarToStr(MyVar));

 ShowMessage('Value of ZipCode variable in Delphi is ' + VarToStr(ZipCode));

end;

ShowMessage('Today is ' + DateToStr(Date) + ' in old short date format');

ShortDateFormat := 'dd-mmmm-yyyy';

ShowMessage('Now today is ' + DateToStr(Date) + ' in new short date format');

ShowMessage('My var value was "' + MyVar + '"');

MyVar := 'My new var value';

ShowMessage('Old Zip code is ' + ZipCode);

ZipCode := '109020';

ShowMessage('Application tag is ' + IntToStr(Application.Tag));

TMS Scripter 7.36 Page 70 of 149

Calling regular functions and procedures

In scripter, regular functions and procedures are added like methods. The difference is that you

don't add the procedure in any class, but in scripter itself, using DefineMethod method. The

example below illustrates how to add QuotedStr and StringOfChar methods:

SCRIPT:

CODE:

C++Builder example

Since there is no big difference from defining methods, the example above introduces an extra

concept: libraries. Note that the way methods are defined didn't change (a call to DefineMethod)

and neither the way wrapper are implemented (QuotedStrProc and StringOfCharProc). The only

difference is the way they are located: instead of TForm1 class, they belong to a different class

named TSomeLibrary. The following topic covers the use of libraries.

Script-based libraries
Script-based library is the concept where a script can "use" other script (to call procedures/

functions, get/set global variables, etc.).

ShowMessage(QuotedStr(StringOfChar('+', 3)));

{ TSomeLibrary }

procedure TSomeLibrary.Init;

begin

 Scripter.DefineMethod('QuotedStr', 1, tkString, nil, QuotedStrProc);

 Scripter.DefineMethod('StringOfChar', 2, tkString, nil, StringOfCharProc);

end;

procedure TSomeLibrary.QuotedStrProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(QuotedStr(GetInputArgAsString(0)));

end;

procedure TSomeLibrary.StringOfCharProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(StringOfChar(GetInputArgAsString(0)[1],

GetInputArgAsInteger(1)));

end;

procedure TForm1.Run1Click(Sender: TObject);

begin

 Scripter.AddLibrary(TSomeLibrary);

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

end;

TMS Scripter 7.36 Page 71 of 149

Take, for example, the following scripts:

When you execute the first script, it "uses" Script2, and then it is able to read/write global

variables and call procedures from Script2.

The only issue here is that script 1 must "know" where to find Script2.

When the compiler reaches a identifier in the uses clause, for example:

Then it tries to "load" the library in several ways. This is the what the compiler tries to do, in that

order:

1. Tries to find a registered Delphi-based library with that name

In other words, any library that was registered with RegisterScripterLibrary. This is the case for the

imported VCL that is provided with Scripter Studo, and also for classes imported by the import

tool. This is the case for Classes , Forms , and other units.

2. Tries to find a script in Scripts collection where UnitName matches the library name

Each TatScript object in the Scripter.Scripts collection has a UnitName property. You can manually

set that property so that the script object is treated as a library in this situations. In the example

above, you could add a script object, set its SourceCode property to the script 2 code, and then

set UnitName to 'Script2'. This way, the script1 could find the script2 as a library and use its

variables and functions.

// Script1

uses Script2;

begin

 Script2GlobalVar := 'Hello world!';

 ShowScript2Var;

end;

// Script2

var

 Script2GlobalVar: string;

procedure ShowScript2Var;

begin

 ShowMessage(Script2GlobalVar);

end;

uses Classes, Forms, Script2;

TMS Scripter 7.36 Page 72 of 149

3. Tries to find a file which name matches the library name (if LibOptions.UseScriptFiles is

set to true)

If LibOptions.UseScriptFiles is set to true, then the scripter tries to find the library in files. For

example, if the script has uses Script2; , it looks for files named "Script2.psc". There are several

sub-options for this search, and LibOptions property controls this options:

LibOptions.SearchPath:

It is a TStrings object which contains file paths where the scripter must search for the file.

It accepts two constants: "$(CURDIR)" (which contains the current directory) and "$

(APPDIR)" (which contains the application path).

LibOptions.SourceFileExt:

Default file extension for source files. So, for example, if SourceFileExt is ".psc", the scripter

will look for a file named 'Script2.psc'. The scripter looks first for compiled files, then

source files.

LibOptions.CompileFileExt:

Default file extension for compiled files. So, for example, if CompileFileExt is ".pcu", the

scripter will look for a file name 'Script2.pcu'. The scripter looks first for compiled files,

then source files.

LibOptions.UseScriptFiles:

Turns on/off the support for script files. If UseScriptFiles is false, then the scripter will not

look for files.

Declaring forms in script
A powerful feature in scripter is the ability to declare forms and use DFM files to load form

resources. With this feature you can declare a form to use it in a similar way than Delphi: you

create an instance of the form and use it.

Take the folowing scripts as an example:

•

•

•

•

// Main script

uses

 Classes, Forms, MyFormUnit;

var

 MyForm: TMyForm;

begin

 {Create instances of the forms}

 MyForm := TMyForm.Create(Application);

 {Initialize all forms calling its Init method}

 MyForm.Init;

 {Set a form variable. Each instance has its own variables}

 MyForm.PascalFormGlobalVar := 'my instance';

TMS Scripter 7.36 Page 73 of 149

The sample scripts above show how to declare forms, create instances, and use their "methods"

and variables. The second script is treated as a regular script-based library, so it follows the same

concept of registering and using. See the related topic for more info.

The $FORM directive is the main piece of code in the form script. This directive tells the compiler

that the current script should be treated as a form class that can be instantiated, and all its

variables and procedures should be treated as form methods and properties. The directive

should be in the format {$FORM FormClass, FormFileName}, where FormClass is the name of the

form class (used to create instances, take the main script example above) and FormFileName is

the name of a DFM form which should be loaded when the form is instantiated. The DFM form

file is searched the same way that other script-based libraries, in other words, it uses

LibOptions.SearchPath to search for the file.

 {Call a form "method". You declare the methods in the form script like

procedures}

 MyForm.ChangeButtonCaption('Another click');

 {Accessing form properties and components}

 MyForm.Edit1.Text := 'Default text';

 MyForm.Show;

end;

// My form script

{$FORM TMyForm, myform.dfm}

var

 MyFormGlobalVar: string;

procedure Button1Click(Sender: TObject);

begin

 ShowMessage('The text typed in Edit1 is ' + Edit1.Text +

 #13#10 + 'And the value of global var is ' + MyFormGlobalVar);

end;

procedure Init;

begin

 MyFormGlobalVar := 'null';

 Button1.OnClick := 'Button1Click';

end;

procedure ChangeButtonCaption(ANewCaption: string);

begin

 Button1.Caption := ANewCaption;

end;

TMS Scripter 7.36 Page 74 of 149

As an option to load DFM files, you can set the form resource through

TatScript.DesignFormResource string property. So, in the TatScript object which holds the form

script source code, you can set DesignFormResource to a string which contains the dfm-file

content in binary format. If this property is not empty, then the compiler will ignore the DFM file

declared in $FORM directive, and will use the DesignFormResource string to load the form.

The DFM file is a regular Delphi-DFM file format, in text format. You cannot have event handlers

define in the DFM file, otherwise a error will raise when loading the DFM.

Another thing you must be aware of is that all existing components in the DFM form must be

previously registered. So, for example, if the DFM file contains a TEdit and a TButton, you must

add this piece of code in your application (only once) before loading the form:

Otherwise, a "class not registered" error will raise when the form is instantiated.

Declaring classes in script (script-based

classes)
It's now possible to declare classes in a script. With this feature you can declare a class to use it

in a similar way than Delphi: you create an instance of the class and reuse it.

Declaring the class

Each class must be declared in a separated script, in other words, you need to have a script for

each class you want to declare.

You turn the script into a "class script" by adding the $CLASS directive in the beginning of the

script, followed by the class name:

Methods and properties

Each global variable declared in a class script actually becomes a property of the class. Each

procedure/function in script becomes a class method.

The main routine of the script is always executed when a new instance of the class is created, so

it can be used as a class initializer and you can set some properties to default value and do some

proper class initialization.

RegisterClasses([TEdit, TButton]);

// Turn this script into a class script for TSomeClass

{$CLASS TSomeClass}

TMS Scripter 7.36 Page 75 of 149

Using the classes

You can use the class from other scripts just by creating a new instance of the named class:

Implementation details

The classes declared in script are "pseudo" classes. This means that no new Delphi classes are

created, so for example although in the sample above you call TMyClass.Create, the "TMyClass"

name is just meaning to the scripting system, there is no Delphi class named TMyClass. All

objects created as script-based classes are actually instances of the class TScriptBaseObject. You

can change this behavior to make instances of another class, but this new class must inherit from

TScriptBaseObject class. You define the base class for all "pseudo"-classes objects in scripter

property ScriptBaseObjectClass.

Memory management

Although you can call Free method in scripts to release memory associated with instances of

script-based classes, you don't need to do that.

All objects created in script that are based on script classes are eventually destroyed by the

scripter component.

Limitations

Since scripter doesn't create new real Delphi classes, there are some limitations about what you

can do with it. The main one is that inheritance is not supported. Since all classes in script are

actually the same Delphi class, you can't create classes that inherit from any other Delphi class

except the one declared in TScriptBaseObject class.

// My class script

{$CLASS TMyClass}

uses Dialogs;

var

 MyProperty: string;

procedure SomeMethod;

begin

 ShowMessage('Hello, world!');

end;

// class initializer

begin

 MyProperty := 'Default Value';

end;

uses MyClassScript;

var

 MyClass: TMyClass;

begin

 MyClass := TMyClass.Create;

 MyClass.MyProperty := 'test';

 MyClass.SomeMethod;

end;

TMS Scripter 7.36 Page 76 of 149

Using the Refactor
Every TatScript object in Scritper.Scripts collection has its own refactor object, accessible through

Refactor property. The Refactor object is just a collection of methods to make it easy and safe to

change source code. As long as new versions of TMS Scripter are released, some new refactoring

methods might be added. For now, these are the current available methods:

Create (or update) the FORM directive in the script giving the AFormClass (form class name) and

AFileName (form file name). For example, the code below:

will create (or update) the form directive in the script as following (in this case, the example is in

Basic syntax):

Declare a routine named ProcName in source code, and return the line number of the declared

routine. The line number returned is not the line where the routine is declared, but the line with

the first statement. For example, in Pascal, it returns the line after the "begin" of the procedure.

Declare a routine in source code, and return the line number of the declared routine. The line

number returned is not the line where the routine is declared, but the line with the first

statement. For example, in Pascal, it returns the line after the "begin" of the procedure.

This method uses the AInfo property to retrieve information about the procedure to be declared.

Basicaly is uses AInfo.Name as the name of routine to be declared, and also uses AInfo.Variables

to declare the parameters. This is a small example:

procedure UpdateFormHeader(AFormClass, AFileName: string); virtual;

UpdateFormHeader('TMyForm', 'myform.dfm');

#FORM TMyForm, myform.dfm

function DeclareRoutine(ProcName: string): integer; overload;

function DeclareRoutine(AInfo: TatRoutineInfo): integer; overload; virtual;

TMS Scripter 7.36 Page 77 of 149

The script above will declare the following routine (in Pascal):

Add the unit named AUnitName to the list of used units in the uses clause. If the unit is already

used, nothing is done. If the uses clause is not present in the script, it is included. Example:

Using libraries
Libraries are just a concept of extending scripter by adding more components, methods,

properties, classes to be available from script. You can do that by manually registering a single

component, class or method. A library is just a way of doing that in a more organized way.

Delphi-based libraries

In script, you can use libraries for registered methods and properties. Look at the two codes

below, the first one uses libraries and the second use the mechanism used in this doc until now:

CODE 1:

AInfo.Name := 'MyRoutine';

 AInfo.IsFunction := true;

 AInfo.ResultTypeDecl := 'string';

 with AInfo.Variables.Add do

 begin

 VarName := 'MyParameter';

 Modifier := moVar;

 TypeDecl := 'integer';

 end;

 with AInfo.Variables.Add do

 begin

 VarName := 'SecondPar';

 Modifier := moNone;

 TypeDecl := 'TObject';

 end;

 ALine := Script.DeclareRoutine(AInfo);

function MyRoutine(var MyParameter: integer; SecondPar: TObject): string;

procedure AddUsedUnit(AUnitName: string); virtual;

AddUsedUnit('Classes');

TMS Scripter 7.36 Page 78 of 149

CODE 2:

type

 TExampleLibrary = class(TatScripterLibrary)

 protected

 procedure CurrToStrProc(AMachine: TatVirtualMachine);

 procedure Init; override;

 class function LibraryName: string; override;

 end;

class function TExampleLibrary.LibraryName: string;

begin

 result := 'Example';

end;

procedure TExampleLibrary.Init;

begin

 Scripter.DefineMethod('CurrToStr', 1, tkInteger, nil, CurrToStrProc);

end;

procedure TExampleLibrary.CurrToStrProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(CurrToStr(GetInputArgAsFloat(0)));

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 Scripter.AddLibrary(TExampleLibrary);

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

end;

procedure TForm1.PrepareScript;

begin

 Scripter.DefineMethod('CurrToStr', 1, tkInteger, nil, CurrToStrProc);

end;

procedure TForm1.CurrToStrProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(CurrToStr(GetInputArgAsFloat(0)));

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 PrepareScript;

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

end;

TMS Scripter 7.36 Page 79 of 149

C++Builder example

Both codes do the same: add CurrToStr procedure to script. Note that scripter initialization

method (Init in Code 1 and PrepareScript in Code 2) is the same in both codes. And so is

CurrToStrProc method - no difference. The two differences between the code are:

The class where the methods belong to. In Code 1, methods belong to a special class

named TExampleLibrary, which descends from TatScripterLibrary. In Code 2, the belong to

the current form (TForm1).

In Code 1, scripter preparation is done adding TExampleLibrary class to scripter, using

AddLibrary method. In Code 2, PrepareScript method is called directly.

So when to use one way or another? There is no rule - use the way you feel more confortable.

Here are pros and cons of each:

Declaring wrapper and preparing methods in an existing class and object

Pros: More convenient. Just create a method inside form, or datamodule, or any object.

Cons: When running script, you must be sure that object is instantiated. It's more difficult

to reuse code (wrapper and preparation methods).

Using libraries, declaring wrapper and preparing methods in a TatScripterLibrary class

descendant

Pros: No need to check if class is instantiated - scripter does it automatically. It is easy to

port code - all methods are inside a class library, so you can add it in any scripter you

want, put it in a separate unit, etc..

Cons: Just the extra work of declaring the new class.

In addition to using AddLibrary method, you can use RegisterScripterLibrary procedure. For

example:

RegisterScripterLibrary is a global procedure that registers the library in a global list, so all scripter

components are aware of that library. The second parameter of RegisterScripterLibrary indicates

if the library is load automatically or not. In the example above, TAnotherLibrary is called with

Explicit Load (True), while TExampleLibrary is called with Explicit Load false (default is false).

When explicit load is false (case of TExampleLibrary), every scripter that is instantiated in

application will automatically load the library.

When explicit load is true (case of TAnotherLibrary), user can load the library dinamically by using

uses directive:

SCRIPT:

Note that "Another" name is informed by TatAnotherLibrary.LibraryName class method.

•

•

•

•

•

•

RegisterScripterLibrary(TExampleLibrary);

RegisterScripterLibrary(TAnotherLibrary, True);

uses Another;

// Do something with objects and procedures register by TatAnotherLibrary

TMS Scripter 7.36 Page 80 of 149

The TatSystemLibrary library

There is a library that is added by default to all scripter components, it is the TatSystemLibrary.

This library is declared in the uSystemLibrary unit. It adds commonly used routines and

functions to scripter, such like ShowMessage and IntToStr.

Functions added by TatSystemLibrary

The following functions are added by the TatSystemLibrary (refer to Delphi documentation for an

explanation of each function):

Abs

AnsiCompareStr

AnsiCompareText

AnsiLowerCase

AnsiUpperCase

Append

ArcTan

Assigned

AssignFile

Beep

Chdir

Chr

CloseFile

CompareStr

CompareText

Copy

Cos

CreateOleObject

Date

DateTimeToStr

DateToStr

DayOfWeek

Dec

DecodeDate

DecodeTime

Delete

EncodeDate

EncodeTime

EOF

Exp

FilePos

FileSize

FloatToStr

Format

FormatDateTime

FormatFloat

Frac

GetActiveOleObject

High

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 81 of 149

Inc

IncMonth

InputQuery

Insert

Int

Interpret (*)

IntToHex

IntToStr

IsLeapYear

IsValidIdent

Length

Ln

Low

LowerCase

Machine (*)

Now

Odd

Ord

Pos

Raise

Random

ReadLn

Reset

Rewrite

Round

Scripter (*)

SetOf (*)

ShowMessage

Sin

Sqr

Sqrt

StrToDate

StrToDateTime

StrToFloat

StrToInt

StrToIntDef

StrToTime

Time

TimeToStr

Trim

TrimLeft

TrimRight

Trunc

UpperCase

VarArrayCreate

VarArrayHighBound

VarArrayLowBound

VarIsNull

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 82 of 149

VarToStr

Write

WriteLn

All functions/procedures added are similar to the Delphi ones, with the exception of those

marked with a "*", explained below:

Executes the script source code specified by AScript parameter.

Returns the current virtual machine executing the script.

Returns the current scripter component.

Returns a set from the array passed. For example:

Removing functions from the System library

To remove a function from the system library, avoiding the end-user to use the function from the

script, you just need to destroy the associated method object in the SystemLibrary class:

C++Builder example

The TatVBScriptLibrary library

The TatVBScriptLibrary adds many VBScript-compatible functions. It's useful to give to your end-

user access to the most common functions used in VBScript, making it easy to write Basic scripts

for those who are already used to VBScript.

How to use TatVBScriptLibrary

Unlike to TatSystemLibrary, the TatVBScriptLibrary is not automatically added to scripter

components. To add the library to scripter and thus make use of the functions, you just follow

the regular steps described in the section Delphi-based libraries, which are described here again:

a. First, you must use the uVBScriptLibrary unit in your Delphi code:

b. Then you just add the library to the scripter component, from Delphi code:

•

•

•

procedure Interpret(AScript: string);

function Machine: TatVirtualMachine;

function Scripter: TatCustomScripter;

function SetOf(array): integer;

MyFontStyle := SetOf([fsBold, fsItalic]);

MyScripter.SystemLibrary.MethodByName('ShowMessage').Free;

uses uVBScriptLibrary;

TMS Scripter 7.36 Page 83 of 149

or, enable the VBScript libraries from the script code itself, by adding VBScript in the uses clause:

Functions added by TatVBScriptLibrary

The following functions are added by the TatVBScriptLibrary (refer to MSDN documentation for

the explanation of each function):

Asc

Atn

CBool

CByte

CCur

CDate

CDbl

Cint

CLng

CreateObject

CSng

CStr

DatePart

DateSerial

DateValue

Day

Fix

FormatCurrency

FormatDateTime

FormatNumber

Hex

Hour

InputBox

InStr

Int

IsArray

IsDate

IsEmpty

IsNull

IsNumeric

LBound

LCase

Left

Len

Log

LTrim

Mid

atBasicScripter1.AddLibrary(TatVBScriptLibrary);

'My Basic Script

uses VBScript

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 84 of 149

Minute

Month

MonthName

MsgBox

Replace

Right

Rnd

RTrim

Second

Sgn

Space

StrComp

String

Timer

TimeSerial

TimeValue

UBound

UCase

Weekday

WeekdayName

Year

Debugging scripts
TMS Scripter contains components and methods to allow run-time script debugging. There are

two major ways to debug scripts: using scripter component methods and properties, or using

debug components. Use of methods and properties gives more flexibility to programmer, and

you can use them to create your own debug environment. Use of components is a more high-

level debugging, where in most of case all you need to do is drop a component and call a

method to start debugging.

Using methods and properties for debugging

Scripter component has several properties and methods that allows script debugging. You can

use them inside Delphi code as you want. They are listed here:

Read/write property. While script is being executed, Running is true. Note that the script might

be paused but still running. Set Running to true is equivalent to call Execute method.

Read/write property. Use it to pause script execution, or get script back to execution.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

property Running: boolean;

property Paused: boolean read GetPaused write SetPaused;

procedure DebugTraceIntoLine;

TMS Scripter 7.36 Page 85 of 149

Executes only current line. If the line contains a call to a subroutine, execution point goes to first

line of subroutine. Similar to Trace Into option in Delphi.

Executes only current line and execution point goes to next line in code. If the current line

contains a call to a subroutine, it executes the whole subroutine. Similar to Step Over option in

Delphi.

Executes code until the current subroutine (procedure, function or script main block) is finished.

Execution point stops one line after the line which called the subroutine.

Executes script until line specified by ALine. Similar to Run to Cursor option in Delphi.

Enable/disable a breakpoint at the line specified by ALine. Execution stops at lines which have

breakpoints set to true.

Return the line number which will be executed.

Stops script execution, regardless the execution point.

This property is true in the short time period after a call to Halt method and before script is

effectively terminated.

Contains a list of breakpoints set in script. You can access breakpoints using Items[Index]

property, or using method BreakPointByLine(ALine: integer). Once you access the breakpoint, you

can set properties Enabled (which indicates if breakpoint is active or not) and PassCount (which

indicates how many times the execution flow will pass through breakpoint until execution is

stopped).

During debugging (step over, step into, etc.) OnDebugHook event is called for every step

executed.

procedure DebugStepOverLine;

procedure DebugRunUntilReturn;

procedure DebugRunToLine(ALine: integer);

function DebugToggleBreakLine(ALine: integer): pSimplifiedCode;

function DebugExecutionLine: integer;

procedure Halt;

property Halted: boolean read GetHalted;

property BreakPoints: TatScriptBreakPoints read GetBreakPoints;

property OnDebugHook: TNotifyEvent read GetOnDebugHook write SetOnDebugHook;

TMS Scripter 7.36 Page 86 of 149

These events are called whenever Paused or Running properties change.

Using debug components

TMS Scripter has specific component for debugging (only for VCL applications). It is

TatScriptDebugDlg. Its usage is very simple: drop it on a form and assign its Scripter property to

an existing script component. Call Execute method and a debug dialog will appear, displaying

script source code and with a toolbar at the top of window. You can then use tool buttons or

shortcut keys to perform debug actions (run, pause, step over, and so on). Shortcut keys are the

same used in Delphi:

F4: Run to cursor

F5: Toggle breakpoint

F7: Step into

F8: Step Over

F9: Run

Shift+F9: Pause

Ctrl+F2: Reset

Shift+F11: Run until return

Form-aware scripters - TatPascalFormScripter

and TatBasicFormScripter
TatPascalFormScripter and TatBasicFormScripter are scripters that descend from TatPascalScripter

and TatBasicScripter respectively. They have the same functionality of their ancestor, but in

addition they already have registered the components that are owned by the form where scripter

component belongs to.

So, if you want to use scripter to access components in the form, like buttons, edits, etc., you can

use form-aware scripter without needing to register form components.

C++ Builder issues
Since TMS Scripter works with objects and classes types and typecasting, it might be some tricky

issues to do some tasks in C++ Builder. This section provides useful information on how to write

C++ code to perform some common tasks with TMS Scripter.

Registering a class method for an object

Let's say you have created a class named testclass, inherited from TObject:

[in .h file]

property OnPauseChanged: TNotifyEvent read GetOnPauseChanged write SetOnPauseChan

ged;

property OnRunningChanged: TNotifyEvent read GetOnRunningChanged write SetOnRunni

ngChanged;

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 87 of 149

[in .cpp file]

If you want to add a class method "Create" which will construct a testclass from script and also

call the testclass() method, you must register the class in script registration system:

Now you must implement constProc method which will implement the constructor method itself:

class testclass : public Tobject

{

 public:

 AnsiString name;

 int number;

 virtual __fastcall testclass();

};

__fastcall testclass::testclass()

: Tobject()

{

 this->name = "test";

 this->number = 10;

 ShowMessage("In constructor");

}

scr->DefineMethod("create", 0, Typinfo::tkClass, __classid(testclass),

constProc, true);

void __fastcall TForm1::constProc(TatVirtualMachine* avm)

{

 testclass *l_tc;

 l_tc = (testclass *) avm->CurrentObject;

 l_tc = new testclass;

 avm->ReturnOutputArg((long)(l_tc));

}

TMS Scripter 7.36 Page 88 of 149

The syntax highlighting memo

Using the memo
TAdvMemo provides syntax highlighting for your Pascal or Basic scripts. To start using the memo

component, drop the memo component on the form together with either an

AdvPascalMemoStyler or an AdvBasicMemoStyler component. Assign the AdvPascalMemoStyler

or the AdvBasicMemoStyler to the TAdvMemo.SyntaxStyles property. Upon assigning, the text in

the memo will be rendered with the syntax highlighting chosen. You can also programmatically

switch the syntax highlighting by assigning at runtime a memo styler components:

To change the colors of the syntax highlighting, the various properties of the language elements

are kept in the TAdvPascalMemoStyler or TAdvBasicMemoStyler. Text and background colors and

font can be set for comments, numbers in the MemoStyler properties or for keywords, symbols

or values between brackets in the AllStyles properties.

TAdvPascalMemoStyler or TAdvBasicMemoStyler have predefined keywords for the Pascal

language or Basic language. If colors need to be changed for custom introduced keywords in the

scripter, this can be easily done by adding a TElementStyle in the AllStyles property. Set the

styletype to stKeyword and add the keywords to the Keywords stringlist.

TAdvMemo has a gutter that displays the line numbers of the source code. In addition it can also

display executable code, breakpoints and active source code line. This is done automatically in

the TatScriptDebugDlg component that uses the TAdvMemo for displaying the source code. It

can be done separately through following public properties:

Sets the active source code line. This line will be displayed in active line colors.

When true, the line in source code has a breakpoint. Only executable lines can have breakpoints.

It is through the scripter engine debug interfaces that you can retrieve whether a line is

executable or not. A breakpoint is displayed as a red line with white font.

When true, a marker is displayed in the gutter that the line is executable.

Using the memo with scripter is as easy as assigning the AdvMemo lines to the scripter

SourceCode property and execute the code:

AvdMemo1.SyntaxStyles := AdvPascalMemoStyler;

TAdvMemo.ActiveLine: Integer;

TAdvMemo.BreakPoints[RowIndex]: Boolean;

TAdvMemo.Executable[RowIndex]: Boolean;

atPascalScripter.SourceCode.Assign(AdvMemo.Lines);

atPascalScripter.Execute;

TMS Scripter 7.36 Page 89 of 149

TMS Scripter 7.36 Page 90 of 149

C++Builder Examples
This section contains C++Builder examples equivalent to every Delphi example in this manual.

Each example provides a link to the related topic, and vice versa.

Integrated Development Environment

Using TIDEEngine component programatically

Adding/removing units (scripts and forms) to the project

Original topic

Executing a project programatically

TIDEProjectFile *ANewUnit, *ANewForm;

// Creates a blank unit in Basic

ANewUnit = IDEEngine1->NewUnit(slBasic);

// Creates a blank form in Pascal

ANewForm = IDEEngine1->NewFormUnit(slPascal);

// Remove Unit1 from project

TIDEProjectFile *AUnit = IDEEngine1->Files->FindByUnitName("Unit1");

if(AUnit != NULL)

 delete AUnit;

void __fastcall TForm1::RunSampleProject()

{

 TIDEProjectFile *AUnit;

 TIDEEngine *AEngine;

 TIDEScripter *AScripter;

 AEngine = new TIDEEngine(NULL);

 AScripter = new TIDEScripter(NULL);

 AEngine->Scripter = AScripter;

 AEngine->NewProject();

 AUnit = AEngine->NewUnit(slPascal);

 AUnit->Script->SourceCode->Text = "ShowMessage('Hello world!');";

 AEngine->RunProject();

 delete AEngine;

 delete AScripter;

}

TMS Scripter 7.36 Page 91 of 149

Original topic

Managing units and changing its properties

Original topic

Setting the active unit in the IDE

Original topic

Running and debugging a project

void __fastcall TForm1::ShowIDEWithSimpleUnit()

{

 TIDEProjectFile *AUnit;

 TIDEDialog *ADialog;

 TIDEEngine *AEngine;

 TIDEScripter *AScripter;

 ADialog = new TIDEDialog(NULL);

 AEngine = new TIDEEngine(NULL);

 AScripter = new TIDEScripter(NULL);

 ADialog->Engine = AEngine;

 AEngine->Scripter = AScripter;

 AEngine->NewProject();

 AUnit = AEngine->NewUnit(slPascal);

 AUnit->Script->SourceCode->Text = "ShowMessage('Hello world!');";

 ADialog->Execute();

 delete ADialog;

 delete AEngine;

 delete AScripter;

}

TIDEProjectFile *AUnit;

for(int c = 0; c < IDEEngine1->Files->Count; c++)

{

 AUnit = IDEEngine1->Files->Items[c];

 // Do something with AUnit

}

TIDEProjectFile *AMyUnit;

AMyUnit = IDEEngine1->Files->FindByUnitName("Unit1");

IDEEngine1->ActiveFile = AMyUnit;

IDEEngine1->RunProject();

TMS Scripter 7.36 Page 92 of 149

Original topic

Registering components in the IDE

Retrieving existing registered components

Original topic

Registering/Unregistering standard tabs

Original topic

Register new components

Original topic

TIDERegisteredComp *ARegComp;

TComponentClass ACompClass;

AnsiString AUnits, APage;

for(int c = 0; c < IDEEngine1->RegisteredComps->Count; c++)

{

 ARegComp = IDEEngine1->RegisteredComps->Items[c];

 // Contains the class registered, for example, TButton

 ACompClass = ARegComp->CompClass;

 // Contains the name of units (separated by commas) that will be

 // added to the script when the component is dropped in a form.

 // For example, 'ComCtrls,ExtCtrls'

 AUnits = ARegComp->Units;

 // Contains the name of the page (category, tab) where the component

 // will be displayed. For example, 'Standard'

 APage = ARegComp->Page;

}

IDEEngine1->UnregisterTab("Win32");

// Register the new component TMyComponent in the tab "Custom". When the user

// drops this component in the form, the units ComCtrls, ExtCtrls and

// MyComponentUnit are added to the script.

// These units must be registered in scripter in order to give access to them in

// the script environment.

// This registration can be done manually (check "Accessing Delphi objects"

// chapter) or using the ImportTool.

IDEEngine1->RegisterComponent("Custom", __classid(TMyComponent),

 "ComCtrls,ExtCtrls,MyComponentUnit");

TMS Scripter 7.36 Page 93 of 149

Storing units in a database (alternative to files)

Replacing save/load operations

void __fastcall TForm1::IDEEngine1SaveFile(TObject *Sender,

 TIDEFileType IDEFileType, AnsiString AFileName, AnsiString AContent,

 TIDEProjectFile *AFile, bool &Handled)

{

 // The IDEFileType parameter tells you if the file to be saved is a project

 // file, a script file, or a form file.

 // Valid values are: iftScript, iftProject, iftForm}

 // The AFileName string contains the name of the file that was chosed in the

 // save dialog.

 // Remember that you can replace the save dialog by your own, so the AFileName

 // will depend on the value returned by the save dialog

 // The AContent parameter contains the file content in string format

 // The AFile parameter points to the TIDEProjectFile object that is being

 // saved. You will probably not need to use this parameter, it's passed only

 // in case you need additional information for the file

 // If you save the file yourself, you need to set Handled parameter to true.

 // If Handled is false, then the IDE engine will try to save the file normally

 // So, as an example, the code below saves the file in a table which contains

 // the fields FileName and Content. Remember that AContent string might be a

 // big string, since it has all the content of the file (specially for form

 // files)

 MyTable->Close();

 switch(IDEFileType)

 {

 case iftScript:

 MyTable->TableName = "CustomScripts";

 break;

 case iftForm:

 MyTable->TableName = "CustomForms";

 break;

 case iftProject:

 MyTable->TableName = "CustomProjects";

 break;

 }

 MyTable->Open();

 if(MyTable->Locate("FileName",AFileName, TLocateOptions()<<loCaseInsensitive))

 MyTable->Edit();

 else

 {

 MyTable->Append();

 MyTable->FieldByName("FileName")->AsString = AFileName;

TMS Scripter 7.36 Page 94 of 149

 }

 MyTable->FieldByName("Content")->AsString = AContent;

 MyTable->Post();

 Handled = true;

}

void __fastcall TForm1::IDEEngine1LoadFile(TObject *Sender,

 TIDEFileType IDEFileType, AnsiString AFileName, AnsiString &AContent,

 TIDEProjectFile *AFile, bool &Handled)

{

 // The IDEFileType parameter tells you if the file to be saved is a project

 // file, a script file, or a form file.

 // Valid values are: iftScript, iftProject, iftForm

 // The AFileName string contains the name of the file that was chosed in the

 // save dialog. Remember that you can replace the save dialog by your own, so

 // the AFileName will depend on the value returned by the save dialog

 // The AContent parameter contains the file content in string format. You must

 // return the content in this parameter

 // The AFile parameter points to the TIDEProjectFile object that is being

 // saved. You will probably not need to use this parameter, it's passed only

 // in case you need additional information for the file

 // If you save the file yourself, you need to set Handled parameter to true.

 // If Handled is false, then the IDE engine will try to save the file normally

 // So, as an example, the code below saves the file in a table which contains

 // the fields FileName and Content. Remember that AContent string might be a

 // big string, since it has all the content of the file (specially for form

 // files)

 MyTable->Close();

 switch(IDEFileType)

 {

 case iftScript:

 MyTable->TableName = "CustomScripts";

 break;

 case iftForm:

 MyTable->TableName = "CustomForms";

 break;

 case iftProject:

 MyTable->TableName = "CustomProjects";

TMS Scripter 7.36 Page 95 of 149

Original topic

Replacing open/save dialogs

 break;

 }

 MyTable->Open();

 if(MyTable->Locate("FileName",AFileName, TLocateOptions()<<loCaseInsensitive))

 AContent = MyTable->FieldByName("Content")->AsString;

 else

 throw Exception(Format("File %s not found!",

 OPENARRAY(TVarRec, (AFileName))));

 Handled = true;

}

void __fastcall TForm1::IDEEngine1SaveDialog(TObject *Sender,

 TIDEFileType IDEFileType, AnsiString &AFileName,

 TIDEProjectFile *AFile, bool &ResultOk, bool &Handled)

{

 // The IDEFileType parameter tells you if the file to be saved is a project

 // file, a script file, or a form file.

 // Valid values are: iftScript, iftProject. itForm is not used for open/save

 // dialogs

 // The AFileName string contains the name of the file that was chosed in the

 // save dialog. You must return the name of the file to be saved here

 // The AFile parameter points to the TIDEProjectFile object that is being

 // saved. You will probably not need to use this parameter, it's passed only

 // in case you need additional information for the file

 // You must set ResultOk to true if the end-user effectively has chosen a file

 // name. If the end-user canceled the operation, set ResultOk to false so that

 // save process is canceled

 // If you display the save dialog yourself, you need to set Handled parameter

 // to true. If Handled is false, then the IDE engine will open the default

 // save dialog

 // So, as an example, the code below shows a very rudimentar save dialog

 // (InputQuery) in replacement to the regular save dialog. Note that this

 // example doesn't check if the file is a project or a script. You must

 // consider this parameter in your application

 ResultOk = InputQuery("Save unit", "Choose a file name", AFileName);

 Handled = true;

}

void __fastcall TForm1::IDEEngine1OpenDialog(TObject *Sender,

 TIDEFileType IDEFileType, AnsiString &AFileName, bool &ResultOk,

 bool &Handled)

{

 // The IDEFileType parameter tells you if the file to be saved is a project

 // file, a script file, or a form file.

TMS Scripter 7.36 Page 96 of 149

Original topic

Checking if a file name is valid

 // Valid values are: iftScript and iftProject. itForm is not used for

 // open/save dialogs

 // The AFileName string contains the name of the file that was chosed in the

 // save dialog. You must return the name of the file to be saved here

 // You must set ResultOk to true if the end-user effectively has chosen a file

 // name. If the end-user canceled the operation, set ResultOk to false so that

 // save process is canceled

 // If you display the save dialog yourself, you need to set Handled parameter

 // to true. If Handled is false, then the IDE engine will open the default

 // save dialog

 // So, as an example, the code below shows an open dialog in replacement to

 // the regular save dialog. It considers that the form TMyOpenDlgForm lists

 // all available units from a database table or something similar. Note that

 // this example doesn't check if the file is a project or a script. You must

 // consider this parameter in your application

 TMyOpenDlgForm *AMyOpenDlg;

 AMyOpenDlg = new TMyOpenDlgForm(Application);

 ResultOk = AMyOpenDlg->ShowModal() == mrOk;

 if(ResultOk)

 AFileName = AMyOpenDlg->ChosenFileName;

 delete AMyOpenDlg;

 Handled = true;

}

void __fastcall TForm1::IDEEngine1CheckValidFile(TObject *Sender,

 TIDEFileType IDEFileType, AnsiString AFileName, bool &AValid)

{

 // The IDEFileType parameter tells you if the file to be checked is a form,

 // script or project.

 // Valid values are: iftScript, iftProject

 // The AFileName is the file name to be tested

 // The AValid parameter must be set to true if the file name is valid.

 // The code below is an example of how to use this event

 MyTable->Close();

 switch(IDEFileType)

 {

 case iftScript:

 MyTable->TableName = "CustomScripts";

 break;

TMS Scripter 7.36 Page 97 of 149

Original topic

Working with scripter

Getting started

Original topic

Cross-language feature: TatScripter and TIDEScripter

Original topic

Common tasks

Calling a subroutine in script

Original topic

 case iftForm:

 MyTable->TableName = "CustomForms";

 break;

 case iftProject:

 MyTable->TableName = "CustomProjects";

 break;

 }

 MyTable->Open();

 AValid = MyTable->Locate("FileName", AFileName,

 TLocateOptions() << loCaseInsensitive);

}

Scripter->SourceCode->Text = "ShowMessage('Hello world!');";

Scripter->Execute();

Scripter->SourceCode->Text = AdvMemo1->Lines->Text;

Scripter->Execute();

TatScript *MyPascalScript, *MyBasicScript;

MyPascalScript = atScripter1->AddScript(slPascal);

MyBasicScript = atScripter1->AddScript(slBasic);

Scripter->ExecuteSubroutine("DisplayHelloWorld");

Scripter->ExecuteSubroutine("DisplayByeWorld");

TMS Scripter 7.36 Page 98 of 149

Returning a value from script

Original topic

Passing parameters to script

Original topic

Accessing Delphi objects

Registering Delphi components

Original topic

Calling methods

Variant FunctionValue;

FunctionValue = Scripter->ExecuteSubroutine("Calculate");

FunctionValue = Scripter->Execute();

Variant FunctionValue;

FunctionValue = Scripter->ExecuteSubroutine("Double", 5);

Variant MyVar;

FunctionValue = Scripter->ExecuteSubroutine("MaxValue",

 VarArrayOf(OPENARRAY(Variant, (5, 8))));

Scripter->ExecuteSubroutine("Increase", VarArrayOf(

 OPENARRAY(Variant, (MyVar, 3))));

Scripter->AddComponent(Form1);

void __fastcall TForm1::ShowModalProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(((TCustomForm*)

 AMachine->CurrentObject)->ShowModal());

}

void __fastcall TForm1::PrepareScript()

{

 Scripter->AddComponent(Form2);

 TatClass *customFormClass = Scripter->DefineClass(__classid(TCustomForm));

 customFormClass->DefineMethod("ShowModal", 0, Atscript::tkInteger, NULL,

 ShowModalProc);

}

TMS Scripter 7.36 Page 99 of 149

Original topic

More method calling examples

Original topic

Acessing non-published properties

Original topic

void __fastcall TForm1::FieldByNameProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg((long) ((TDataSet*)

 AMachine->CurrentObject)->FieldByName(AMachine->GetInputArgAsString(0)));

}

void __fastcall TForm1::PrepareScript()

{

 Scripter->AddComponent(Table1);

 TatClass *datasetClass = Scripter->DefineClass(__classid(TDataSet));

 datasetClass->DefineMethod("FieldByName", 1, Atscript::tkClass,

 __classid(TField), FieldByNameProc);

}

void __fastcall TForm1::GetFieldValueProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(((TField*) AMachine->CurrentObject)->Value);

}

void __fastcall TForm1::SetFieldValueProc(TatVirtualMachine *AMachine)

{

 ((TField*) AMachine->CurrentObject)->Value = AMachine->GetInputArg(0);

}

void __fastcall TForm1::PrepareScript()

{

 TatClass *fieldClass = Scripter->DefineClass(__classid(TField));

 fieldClass->DefineProp("Value", Atscript::tkVariant, GetFieldValueProc,

 SetFieldValueProc);

}

TMS Scripter 7.36 Page 100 of 149

Registering indexed properties

Original topic

Retrieving name of called method or property

Original topic

void __fastcall TForm1::GetStringsProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(((TStrings*)

 AMachine->CurrentObject)->Strings[AMachine->GetArrayIndex(0)]);

}

void __fastcall TForm1::SetStringsProc(TatVirtualMachine *AMachine)

{

 ((TStrings*) AMachine->CurrentObject)->Strings[AMachine->GetArrayIndex(0)] =

 AMachine->GetInputArgAsString(0);

}

void __fastcall TForm1::PrepareScript()

{

 Scripter->AddComponent(Memo1);

 TatClass *stringsClass = Scripter->DefineClass(__classid(TStrings));

 stringsClass->DefineProp("Strings", Atscript::tkString, GetStringsProc,

 SetStringsProc, NULL, false, 1);

}

void __fastcall TForm1::GenericMessageProc(TatVirtualMachine *AMachine)

{

 if(AMachine->CurrentMethodName() == "MessageHello")

 ShowMessage("Hello");

 else if(AMachine->CurrentMethodName() == "MessageWorld")

 ShowMessage("World");

}

void __fastcall TForm1::PrepareScript()

{

 Scripter->DefineMethod("MessageHello", 1, tkNone, NULL, GenericMessageProc);

 Scripter->DefineMethod("MessageWorld", 1, tkNone, NULL, GenericMessageProc);

}

TMS Scripter 7.36 Page 101 of 149

Registering methods with default parameters

Original topic

Accessing Delphi functions, variables and constans

Registering global constants

Original topic

float SumNumbers(float a, float b, float c = 0, float d = 0, float e = 0);

Scripter->DefineMethod("SumNumbers",

 5 /*number of total parameters*/,

 Atscript::tkFloat, NULL, SumNumbersProc, false,

 3 /*number of default parameters*/);

void __fastcall TForm1::SumNumbersProc(TatVirtualMachine *AMachine)

{

 switch(AMachine->InputArgCount())

 {

 case 2:

 AMachine->ReturnOutputArg(SumNumbers(AMachine->GetInputArgAsFloat(0),

 AMachine->GetInputArgAsFloat(1)));

 break;

 case 3:

 AMachine->ReturnOutputArg(SumNumbers(AMachine->GetInputArgAsFloat(0),

 AMachine->GetInputArgAsFloat(1), AMachine->GetInputArgAsFloat(2)));

 break;

 case 4:

 AMachine->ReturnOutputArg(SumNumbers(AMachine->GetInputArgAsFloat(0),

 AMachine->GetInputArgAsFloat(1), AMachine->GetInputArgAsFloat(2),

 AMachine->GetInputArgAsFloat(3)));

 break;

 case 5:

 AMachine->ReturnOutputArg(SumNumbers(AMachine->GetInputArgAsFloat(0),

 AMachine->GetInputArgAsFloat(1), AMachine->GetInputArgAsFloat(2),

 AMachine->GetInputArgAsFloat(3), AMachine->GetInputArgAsFloat(4)));

 break;

 }

}

Scripter->AddConstant("MaxInt", MaxInt);

Scripter->AddConstant("Pi", M_PI);

Scripter->AddConstant("MyBirthday", EncodeDate(1992, 5, 30));

TMS Scripter 7.36 Page 102 of 149

Acessing global variables

Original topic

Variant MyVar;

AnsiString ZipCode;

void __fastcall TForm1::GetZipCodeProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(ZipCode);

}

void __fastcall TForm1::SetZipCodeProc(TatVirtualMachine *AMachine)

{

 ZipCode = AMachine->GetInputArgAsString(0);

}

void __fastcall TForm1::PrepareScript()

{

 Scripter->AddVariable("ShortDateFormat", ShortDateFormat);

 Scripter->AddVariable("MyVar", MyVar);

 Scripter->DefineProp("ZipCode", Atscript::tkString, GetZipCodeProc,

 SetZipCodeProc);

 Scripter->AddObject("Application", Application);

}

void __fastcall TForm1::Run1Click(TObject *Sender)

{

 PrepareScript();

 MyVar = "Old value";

 ZipCode = "987654321";

 Application->Tag = 10;

 Scripter->SourceCode = Memo1->Lines;

 Scripter->Execute();

 ShowMessage("Value of MyVar variable in C++ Builder is " + VarToStr(MyVar));

 ShowMessage("Value of ZipCode variable in C++ Builder is " +

 VarToStr(ZipCode));

}

TMS Scripter 7.36 Page 103 of 149

Calling regular functions and procedures

Original topic

Using libraries

Delphi-based libraries

CODE 1:

void __fastcall TSomeLibrary::Init()

{

 Scripter->DefineMethod("QuotedStr", 1, Atscript::tkString, NULL,

 QuotedStrProc);

 Scripter->DefineMethod("StringOfChar", 2, Atscript::tkString, NULL,

 StringOfCharProc);

}

void __fastcall TSomeLibrary::QuotedStrProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(QuotedStr(AMachine->GetInputArgAsString(0)));

}

void __fastcall TSomeLibrary::StringOfCharProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(StringOfChar(AMachine->GetInputArgAsString(0)[1],

 AMachine->GetInputArgAsInteger(1)));

}

void __fastcall TForm1::Run1Click(TObject *Sender)

{

 Scripter->AddLibrary(__classid(TSomeLibrary));

 Scripter->SourceCode = Memo1->Lines;

 Scripter->Execute();

}

class TExampleLibrary: public TatScripterLibrary

{

 protected:

 void __fastcall CurrToStrProc(TatVirtualMachine *AMachine);

 virtual void __fastcall Init();

 virtual AnsiString __fastcall LibraryName();

};

AnsiString __fastcall TExampleLibrary::LibraryName()

{

 return "Example";

}

void __fastcall TExampleLibrary::Init()

{

TMS Scripter 7.36 Page 104 of 149

CODE 2:

Original topic

Removing functions from the System library

Original topic

 Scripter->DefineMethod("CurrToStr", 1, Atscript::tkInteger, NULL,

 CurrToStrProc);

}

void __fastcall TExampleLibrary::CurrToStrProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(CurrToStr(AMachine->GetInputArgAsFloat(0)));

}

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 Scripter->AddLibrary(__classid(TExampleLibrary));

 Scripter->SourceCode = Memo1->Lines;

 Scripter->Execute();

}

void __fastcall TForm1::PrepareScript()

{

 Scripter->DefineMethod("CurrToStr", 1, Atscript::tkInteger, NULL,

 CurrToStrProc);

}

void __fastcall TForm1::CurrToStrProc(TatVirtualMachine *AMachine)

{

 AMachine->ReturnOutputArg(CurrToStr(AMachine->GetInputArgAsFloat(0)));

}

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 PrepareScript();

 Scripter->SourceCode = Memo1->Lines;

 Scripter->Execute();

}

delete MyScripter->SystemLibrary()->MethodByName("ShowMessage");

TMS Scripter 7.36 Page 105 of 149

About
This documentation is for TMS Scripter.

In this section:

Copyright Notice

What's New

Former Scripter Studio History

Former Scripter Studio Pro History

Getting Support

Breaking Changes

TMS Scripter 7.36 Page 106 of 149

Licensing and Copyright Notice
TMS Scripter components trial version are free for use in non-commercial applications, that is

any software that is not being sold in one or another way or that does not generate income in

any way by the use of the application.

For use in commercial applications, you must purchase a single license or a site license of TMS

Scripter. A site license allows an unlimited number of developers within the company holding the

license to use the components for commercial application development and to obtain free

updates for a full version cycle and priority email support. A single developer license allows ONE

developer within a company to use the components for commercial application development, to

obtain free updates and priority email support. A single developer license is NOT transferable to

another developer within the company or to a developer from another company. Both licenses

allow royalty free use of the components when used in binary compiled applications.

The component cannot be distributed in any other way except through free accessible Internet

Web pages or ftp servers. The component can only be distributed on CD-ROM or other media

with written autorization of the author.

Online registration for TMS Scripter is available at https://www.tmssoftware.com/site/orders.asp.

Source code & license is sent immediately upon receipt of check or registration by email.

TMS Scripter is Copyright © 2002-2025 TMS Software. ALL RIGHTS RESERVED.

No part of this help may be reproduced, stored in any retrieval system, copied or modified,

transmitted in any form or by any means electronic or mechanical, including photocopying and

recording for purposes others than the purchaser's personal use.

TMS Scripter 7.36 Page 107 of 149

https://www.tmssoftware.com/site/orders.asp

What's New

Version 7.36 (Apr-2025)
New: Support for 64-bit IDE.

Improved: Grid step and grab size editors in Designer Options dialog could not be edited

directly, only with spin buttons. Ticket #24243

Fixed: TField.AsLargeInt property was not being correctly read and written for values

higher than the 32-bit range.

Fixed: FreeAndNil method not working correctly in old Delphi versions (below XE7).

Version 7.35 (Oct-2024)
New: Support for Windows 64-bit (Modern) platform

Version 7.34 (Sep-2024)
Improved: Updated TScrMemo, including some performance improvements.

Fixed: Generic getter/setter for properties were not working correctly with Int64 values.

Ticket #23713.

Fixed: DLL import documentation updated. Ticket #22855.

Fixed: AV when saving file in IDE and "with" statement was syntatically incorrect.

Version 7.33 (Mar-2024)
Fixed: Inline directives for several functions were not being applied due to wrong compiler

directive name. Ticket #22456.

Fixed: Range function was not accepting integer parameter. Ticket #13541.

Version 7.32 (Jan-2024)
New: Installation now available via TMS Smart Setup.

Fixed: code completion list not showing if invoked in an empty line. Ticket #22286.

Fixed: Range function was not accepting integer parameter. Ticket #13541.

Version 7.31 (Nov-2023)
New: Delphi 12 Support.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 108 of 149

https://support.tmssoftware.com/t/designer-options-dialog-edits-doesnt-accept-keyboard-numeric-input/24243
https://support.tmssoftware.com/t/bug-in-tms-scripter-atscript-pas-tatproperty-rttigetterproc/23713
https://support.tmssoftware.com/t/user-manual/22855
https://support.tmssoftware.com/t/invalid-define-delphi2006-for-inline-in-atscript-pas/22456
https://support.tmssoftware.com/t/usystemlibrary-added-random-arange-integer-integer-overloaded-method/13541/2
https://doc.tmssoftware.com/smartsetup/
https://support.tmssoftware.com/t/code-completion-stop-working-since-7-31/22286
https://support.tmssoftware.com/t/usystemlibrary-added-random-arange-integer-integer-overloaded-method/13541/2

Version 7.30 (Oct-2023)
Fixed: Access Violation when using record wrappers in Win64 platform. Ticket #21773.

Version 7.29 (Oct-2023)
Improved: Import tool updated to load settings from Delphi Sydney and Delphi 11.

Fixed: TatScripter component not available for platforms other than Win32/Win64.

Ticket #21759.

Version 7.28 (Jan-2023)
Improved: When opening projects, it was trying to load settings from local files even

when scripts were supposed to be loaded from database. Ticket #19756.

Fixed: Refactor.AddUsedUnit was not including the uses clause when the script was not

a {$FORM} or {$CLASS} script. Ticket #19477.

Fixed: Parser failing to recognize some identifiers in Czech language. Ticket #19776.

Fixed: Content of DefaultProperty was not being propagated to descendant classes.

Version 7.27 (Mar-2022)
Improved: Syntax highlight memo updated with bug fixes and improvements.

Fixed: ap_RichEdit was not compiling in Delphi 11.

Version 7.26 (Feb-2022)
New: TSourceExplorer.UpdateInterval property allows defining the update time for

source explorer after source is modified.

Fixed: Workaround Delphi Access Violation issue when using TMS Scripter IDE from a dll.

Fixed: Enter key not working in TIDEMemo when Default property of a button in script

form was set to true.

Version 7.25 (Sep-2021)
New: Delphi 11 / Rad Studio 11 support.

New: Scripter IDE autocompletes a begin..end block with the end keyword after

begin<Enter> is typed.

Fixed: Access Violation when reopening the IDE in Win64 platform.

Fixed: Sporadic "List index out of bounds" error when closing TMS Scripter IDE.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 109 of 149

https://support.tmssoftware.com/t/tms-scripter-tpoint-issue-on-64-bit/21773
https://support.tmssoftware.com/t/installer-fails-to-correctly-add-scripter-objects-only-win32-and-win64-correctly-installed/21759
https://support.tmssoftware.com/t/loading-files-from-database/19756
https://support.tmssoftware.com/t/error-with-refactoring/19477
https://support.tmssoftware.com/t/importtool-do-not-work-in-czech-locale/19776

Fixed: AV when setting IDEEngine.AutoStyler to False , setting the custom syntax styler

directly in the TIDEMemo component.

Fixed: Pascal syntax was accepting ifproc as a valid if statements (without space after

the if).

Version 7.24 (Mar-2021)
Improved: Better block highlight (begin .. end) in syntax memo.

Fixed: TSourceExplorer and TatMemoInterface not working, depending on the order

used to set the source code of the memo (regression).

Version 7.23.1 (Mar-2021)
Fixed: Access Violation after closing and reopening a project in Scripter IDE (regression).

Fixed: Access Violation when using code completion and parameter insight in some

places of the code (regression).

Version 7.23 (Mar-2021)
Improved: Text selection in code editor is now preserved when switching between project

files in Scripter IDE.

Improved: Round and Trunc methods now return Int64 values.

Improved: Random function now accepts the parameter for the range.

Improved: Updated syntax highlighting memo.

Fixed: Undo problems in multiple files. The undo stack for one file in project was being

mixed with other files. See support request.

Fixed: Paste into code editor from clipboard was inserting text in wrong position after

switching between project files in Scripter IDE. See support request.

Fixed: Fixed behavior of some Int64 functions from imported libraries, which were only

handling Integer (32-bit) values. Functions affected: TReader.ReadInt64 (ap_Classes),

StrToInt64 , StrToInt64Def , TryStrToInt64 (ap_SysUtils), SetInt64Prop ,

GetInt64Prop (ap_TypInfo), TRttiInt64Type.MinValue , TRttiInt64Type.MasValue

(ap_Rtti).

Fixed: WideChar values could not be passed as parameter to scripter functions via

ExecuteSubRoutine .

Fixed: Rare Access Violation when filtering components in the component palette and the

name of filtered component was not entirely visible.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 110 of 149

https://support.tmssoftware.com/t/issue-3-undo-changes-problem-in-code/13497
https://support.tmssoftware.com/t/issure-2-copy-paste-issue-between-unites/13496

Version 7.22 (Aug-2020)
Fixed: Sporadic error with ARM 64 compilers (iOSDevice64 and Android64).

Version 7.21 (Jun-2020)
New: Support for RAD Studio 10.4 Sydney.

Improved: Latest TAdvMemo features applied to TScrMemo/TIDEMemo.

Fixed: Closing a modified filed in IDE without saving would keep using the modified

content when running the project.

Version 7.20 (May-2020)
Fixed: Automatic event handler creating in the source code (upon double-clicking object

inspector or the component) was creating the procedure signature with wrong parameters

for the event.

Fixed: Syntax memo updated to mirror TAdvMemo latest features and fixes. Copy/paste

issue (pasting text in wrong position) is one of them.

Version 7.19 (Feb-2020)
Improved: Project group file updated with all TMS Scripter sample projects..

Fixed: Length function returns wrong value for variant arrays.

Fixed: GetInputArgAsString returning error if an uninitialized script variable were passed

to the method/procedure.

Fixed: Comments right after a number constant is not allowed but was not raising a

compilation error. Now it is. Example: const A = 3.14//comment.

Version 7.18 (Nov-2019)
New: Support for Android 64-bit platform (Delphi 10.3.3 Rio).

Improved: Copy function now accepts two parameters (third paramater, the character

count, is optional, just like in Delphi).

Fixed: Error when using form scripts in macOS 64 (function GetInfoFromRoutineName).

Version 7.17 (Jul-2019)
New: macOS 64 support in Delphi Rio 10.3.2.

Improved: Declaring UInt64 literal constants is now supported.

Improved: TatVirtualMachine.GetInputArgAsUInt64 method to retrieve parameters as

UInt64.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 111 of 149

Fixed: Syntax now accepts statements ending with multiple semi-colon.

Fixed: Argument out of range when running scripter on iOS/Mac OS using Dutch

language.

Fixed: Sporadic Access Violation when expanding properties with subproperties (like Font,

for example).

Fixed: Syntax error when using method without result values (procedures) with name

starting with "Try".

Fixed: const section declared after var section was causing syntax error.

Version 7.16 (Mar-2019)
Improved: Syntax memo updates.

Improved: Object inspector is now fully updated when a property changes. This fixes an

issue when a property changes the type of another property (for example, TPersistent with

different subproperties).

Version 7.15 (Dec-2018)
New: Support for Delphi/C++Builder 10.3 Rio.

Fixed: Could not change value of "Name" property when using TIDEInspector component

in a custom IDE.

Version 7.14 (Oct-2018)
New: TDBGrid context popup menu with option "Add all fields" in scripter IDE.

Allows creating columns from the fields of the associated dataset.

Fixed: Access Violation when invoking code completion from uses classes and a few other

parts of the code.

Fixed: Passing WideString parameter as reference to dll functions was not properly

working.

Fixed: Error when accessing properties/methods of script-based objects that return

another script-based object. For example, suppose a script-based class TMyClass that has

a property/method returning another object of type TMyClass. Access properties of that

second object would cause errors.

MyObject.AnotherMyObject.SomeMethod();

Fixed: Range check error when reading/setting RootKey property of TRegistry objects.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 112 of 149

Version 7.13 (Jul-2018)
New: Array declaration automatically initializes variable array. You can now declare

variables with type "array[0..10]" and the variable will be automatically initialized as a

variant array.

Improved: Length function now works for arrays in addition to strings.

Fixed: AV when accessing indexed default properties registered with RTTI and accessed

via variable reference (e.g., LocalVar[Index] := Value;).

Version 7.12 (May-2018)
Improved: Trial and registered installers now offers option to install to Linux platform.

Fixed: Copy/Paste operation in form designer was losing event handlers of pasted child

controls.

Version 7.11 (Mar-2018)
Improved: Compilation is now significantly faster in some situations, especially with big

scripts.

Version 7.10 (Nov-2017)
New: Linux support for the core scripter engine.

Improved: Scripter IDE (TIDEDialog) modernized with new icons, modern color theme and

flat style.

Improved: Better performance when debugging using component TatScriptDebug.

Fixed: Copy/paste a TListBox with Visible property set to False would cause an Access

Violation.

Fixed: Executing TIDEDialog was causing a "property does not exist" error in Delphi 7

(regression).

Version 7.9 (Oct-2017)
Improved: Code completion now shows types of properties, variables and method/

function results, when available.

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 113 of 149

Improved: Code completion has better retrieval of local variables and parameters.

Fixed: Argument out of range when adding code completion list for identifier "fo".

Fixed: "Cannot focus control" error message when creating new unit in TIDEEngine and

form is not yet visible.

Fixed: Rare AV when trying to use code completion in a part of the code that is inside a

case statement.

Fixed: DelphiFormEditing demo: double clicking a control would turn object inspector

blank.

Fixed: Sporadic Access Violation when using TSourceExplorer component.

Fixed: Rare "out of memory" error when displaying parameter hints (code insight)

Version 7.8 (Jul-2017)
Fixed: "Invalid class type" when passing a TClass parameter to a method that was

registered using DefineClassByRTTI.

Fixed: Invalid type cast when reading set properties of classes declared with

DefineClassByRTTI.

Fixed: TObject methods being declared as regular functions/procedures when using

DefineClassByRTTI using redefine as overwrite.

Fixed: Memory leak in some situations when using dll calls in a script-based library.

Previous Versions

Version 7.7 (Mar-2017)

New: RAD Studio 10.2 Tokyo Support.

Version 7.6 (Mar-2017)

Fixed: Wrong behavior when accessing default indexed properties of objects declared as

global variables in a script library.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 114 of 149

Fixed: Access Violation when unsetting events for components that have been already

destroyed.

Version 7.5 (Jan-2017)

Fixed: Library browser not showing types of properties and method parameters when they

were added using new RTTI.

Fixed: IF statements in Basic syntax were not accepting "END IF" at the end of statement if

it was in the same line.

Fixed: Format function not working correctly on next gen compiler.

Fixed: Import tool failing when parsing types which name starts with "string"

Fixed: Comparing object values in mobile compiler was causing invalid type cast error.

Fixed: Invalid class type cast when registering controls with properties of type

TBehaviorBoolean.

Fixed: Invalid Type Cast when setting a boolean property defined with RTTI from an

expression.

Fixed: AV when destroying a control with an event handler set from scripter, in Mac OS X.

Version 7.4 (Aug-2016)

New: Support for record methods when using DefineRecordByRTTI.

Improved: Library browser now displays property types.

Improved: While debugging it's now possible to see source code of units that are not the

active unit.

Improved: Significant performance increase when modifying arrays.

Improved: Code completion not showing up in some situations when script contained

declared routines.

Fixed: Boolean value comparison failing in some situations when invoking methods

defined by new RTTI.

Fixed: TatScriptDebugger component was removing OnSingleDebugHook event from

scripter component after executing the dialog.

Version 7.3 (Jun-2016)

New: TatScripter.AutoLoadClassUsingRTTI property uses complete RTTI to automatic

loading of classes when TatScript.DeferObjectResolution is True.

Fixed: Typing dot (.) in scripter memo in some situations was not opening the code

completion window.

Fixed: TatScripter.OnRunningChange event not being called while scripter IDE was open.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 115 of 149

Fixed: Design Options Dialog not showing selected colors when VCL style/theme is

enabled.

Version 7.2 (Apr-2016)

New: Support for Delphi/C++Builder 10.1 Berlin.

Fixed: "List Index Out Of Bounds" error when acessing default properties.

Version 7.1.1 (Mar-2016)

New: TIDEEngine.OnConfirmSaveFile gives more control over the confirmation message

"Save Changes?" when file was modified.

Fixed: Code completion not working for methods with string parameters - like

FieldByName('Field').

Version 7.1 (Feb-2016)

New: Library Browser dialog provides to your end-user a full reference of available classes,

methods, functions, constants, etc. available to be used in scripts.

Improved: Added *.png in the default filter for the picture editor in IDE designer.

Fixed: Event handlers receiving Int64 parameters were not working properly.

Fixed: Error when accessing components in a script form in mobile applications

Fixed: Parameter hints in IDE not showing when the parameter contains a string literal.

Fixed: Closing the IDE with modified files and then canceling closing upon confirmation

dialog was turning some IDE icons into disabled state.

Fixed: Sporadic AV when using IDE and launching several non-modal script forms multiple

times.

Fixed: TatScripter component disabled in component palette when targeting Android/iOS/

Mac platforms.

Version 7.0 (Jan-2016)

New: iOS and Android support - TMS Scripter is now fully cross-platform supporting all

supported Delphi platforms.

Improved: Code completion optimized for better speed.

Fixed: DefineClassByRTTI was assigning a wrong property as the default indexed property

of the class.

Fixed: Memory leak in FindFirst, FindClose and FindNext methods.

Fixed: Import tool not reparsing some files that were previously parsed with errors.

Fixed: Wrong result values when calling dll functions that return Int64 values on Windows

32.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 116 of 149

Version 6.5.4 (Sep-2015)

New: RAD Studio 10 Seattle support.

Version 6.5.3 (Aug-2015)

Fixed: TFormDesigner.OnCreateComponentClass event type signature changed to work

around issue in C++.

Version 6.5.2 (Jul-2015)

New: Support for set properties when registering classes using new RTTI

(DefineClassByRTTI).

New: LastExceptionLine and LastExceptionCol functions available from script.

New: TAdvFormDesigner.OnCreateComponentClass event provides an opportunity to

manually create an instance of a component needed by the designer.

New: TatCustomScripter.RemoveProperty method.

Improved: Import tool updated with XE8 support.

Fixed: Published properties of type Int64 were not being automatically registered when

registering a class.

Fixed: "True" and "False" constants had wrong types (integer instead of boolean) in Variant

types (regression).

Version 6.5.1 (Apr-2015)

New: Delphi/C++Builder XE8 support.

New: LastExceptionLine and LastExceptionCol properties provide info about the source

code position where last exception was raised.

New: TCustomFormDesigner.GridStepPixel property sets the number of pixels to move/

resize controls when using Ctrl+Arrow keys.

Fixed: Application hanging when registering some specific classes/components using RTTI.

Fixed: Scripter IDE wrongly considering source was changed even though it was not

modified.

Fixed: Sporadic "Index out of bounds" when executing compiled code previously saved.

Version 6.5 (Mar-2015)

New: Packages structure changed. Now it allows using runtime packages with 64-bit

applications. It's a breaking change.

Improved: A breaking change was added for Delphi XE and lower, requiring you to add

Vcl.ScriptInit unit to your project.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 117 of 149

Improved: TScrMemo replaces TAdvMemo as the syntax memo class. It's a breaking

change.

Improved: DefineClassByRTTI sets default indexed property automatically.

Improved: TIDEEngine.PrepareXXXXDialog methods (Save/Load/SaveProject/Loadproject)

made virtual protected.

Improved: TIDEPaletteToolbar.UpdatePalette now virtual.

Fixed: Format function giving wrong results when formatting multiple string values.

Fixed: Setting indexed elements of array parameters passed by reference were not

changing the array in Basic language.

Fixed: Import tool generating importing code that might fail in 64-bit applications.

Fixed: Assigned function could fail in 64-bit applications.

Fixed: Pascal syntax now accepts spaces before and after dot for accessing object

members (<Variable>.<Member>).

Fixed: "Cannot Focus Disable Windows" error message when right-clicking some third-

party components in form designer.

Fixed: Method calls in with clauses had lower precedence than global properties.

Fixed: Margins were incorrect with anchored controls in forms using bsSingle border style.

Fixed: Memory leak when copying components in form designer.

Fixed: TatMethod and TatProperty assign now properly assign event properties.

Version 6.4 (Sep-2014)

New: Rad Studio XE7 support.

New: TIDEEngine.ProjectExt property allows specifying a project extension name different

than '.ssproj'.

Fixed: Syntax memo incorrectly displaying commented code.

Fixed: AV when accessing default indexed properties with more than one index.

Fixed: Setting default indexed properties for untyped variable objects.

Fixed: Ord function not working for non-string values.

Fixed: Import tool incorrectly creating event adapter for events that returned a value

(functions).

Fixed: OnSingleDebugHook event not being fired in TIDEScripter component.

Version 6.3.1 (May-2014)

New: Rad Studio XE6 support.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 118 of 149

New: LibInstance property in TatClass, TatMethod, TatProperty classes indicates the library

which registered them.

Improved: Deprecated methods: TatCustomScripter.AddClass, TatClasses.Add,

TatClasses.AddDelphiClass. All must be replaced by DefineClass method.

Fixed: Icon for non-visual components in form designer were not being affected by

OnGetComponentImage event.

Fixed: Insufficient RTTI Information when trying to import indexed TBytes property. Now

the property is ignored (Delphi limitation).

Fixed: AV violation while destroying TIDEEngine in some rare situations.

Fixed: Some unicode characters being displayed incorrectly in object inspector.

Fixed: "Canvas does not allow drawing" error when using form designer in an styled VCL

application.

Fixed: Rare Access Violation when closing all forms in scripter IDE.

Fixed: Controls not being displayed in some situations, after loading a project, when

controls had their Visible property set to false.

Fixed: Setting object properties failing in some situations in 64-bit applications.

Fixed: Error when forcing varLongWord variants to integer values.

Fixed: "SSImport_Icon not found" error when compiling ImportTool project in some Delphi

versions.

Version 6.3 (Feb-2014)

New: Automatic registration via RTTI now supports indexed properties (Delphi XE2 and

up).

Improved: Code completion for local variables.

Improved: New TPaletteButton.ToolClass property allows checking what is the component

class associated with a palette button.

Fixed: Error when calling methods such as Outer.InnerClass.HelloWorld and both Outer

and InnerClass return script-based classes.

Fixed: Issue with component palette icons when compiling to 64-bit.

Fixed: Access Violation when reading record properties declared using RTTI.

Fixed: Setting ScriptFormClass property had no effect when creating forms from script.

Fixed: Access Violation when using code completion in some situations.

Fixed: Losing event handlers when renaming a component which name is contained by

another component's name.

Fixed: Copy/paste operations were not copying event handlers properly.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 119 of 149

Version 6.2 (Oct-2013)

New: TIDEDialog.Show method now allows IDE to be displayed as non-modal.

New: Rad Studio XE5 support.

Improved: TatScript.FileName property made public.

Fixed: Pascal single-line comments (starting with "//") not working on Mac.

Fixed: Error when trying to pass EmptyParam to OLE servers.

Fixed: AV when setting TIDEEngine.PaletteButtons at design-time.

Fixed: Issue with DebugStepOverLine and DebugUntilReturn methods when scripter is

running in threads.

Fixed: Breakpoints were not being displayed after file was saved in IDE.

Fixed: Small glitch when selecting controls in form designer with fast mouse movement.

Fixed: Custom glyph grab handles not being displayed on graphical controls.

Fixed: MDI child script forms being displayed twice.

Fixed: Anchoring not properly working when creating forms with Position =

poScreenCenter.

Version 6.1.1 (May-2013)

New: Rad Studio XE4 support.

Fixed: AV when trying to insert a component from component palette using keyboard and

no form visible.

Fixed: Flickering when filtering components in component palette.

Fixed: IsDate function in VBLibrary now checks strings for valid dates.

Fixed: Memory leak when using Int64 values in Format function.

Version 6.1 (Mar-2013)

New: Latest AdvMemo 3.1.1 improvements.

Improved: Components now available at design-time for 64-bit applications.

Fixed: Loading forms now opens file in shareable mode to avoid problems with multiple

projects accessing same form file.

Fixed: Events in very specific components like TvrTimer were not being set when form

loads.

Fixed: Issues when compiling scripter with assertions off.

Fixed: Wrong line/column debug information when running pre-compiled code.

Fixed: Msg parameter not being passed as reference in DoCompileError method.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 120 of 149

Fixed: Access violation when registering components in an specific order.

Fixed: Setting TatCustomScripter.ScriptFormClass property raised an incorrect exception.

Fixed: Wrong atScript.hpp header file in C++ Builder 2007.

Fixed: Designer handles not being updated when selected control was resized

automatically after a form resize.

Version 6.0 (Sep-2012)

New: Support for executing scripts in Firemonkey applications.

New: Delphi XE3 and C++ Builder XE3 support.

Improved: DefineRecordByRTTI method now returns the generated class.

Improved: Better performance in import tool by using .spu files if .pas file was not

changed.

Fixed: Duplicated entries in code completion window.

Fixed: Import tool parameter hints with default string values were being exported with

single quotes causing syntax error in imported files.

Fixed: Issue when clearing some scripts between first and second project execution

(implicit class references).

Fixed: Missing component names when loading forms at low level using TFDReader

(without using designer component).

Fixed: Access Violation when closing main form custom IDE's.

Fixed: Access Violation when placing a component over a grab handle in form designer.

Fixed: Support for int64 values in Format function.

New: Dropped support for Delphi 5, 6, 2005, 2006 and C++Builder 6, 2006.

NOTE

TMS Scripter 6 is a merge of former Scripter Studio and Scripter Studio Pro. You can check

version history of such products at the following links.

Scripter Studio version history

Scripter Studio Pro version history

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 121 of 149

Former Scripter Studio History

Version 5.2 (Apr-2012)
New: 64-bit support in Rad Studio XE2.

New: All new features of TAdvMemo 3.0 included.

New: Support to declare 64-bit integer (Int64) literal values in script. Better handling of

Int64 arithmetic operations (Delphi 6 and up only).

Improved: Import tool: Better handling of subtypes. It was ignoring properties/methods

declared after subtype declaration.

Improved: All imported files for VCL updated for 64-bit support and some missing

methods like TList.Count in Delphi XE and up.

Fixed: Several Issue with default properties (using With clause, expression in indexes,

global objects).

Fixed: TatScriptDebugger issue when settings breakpoints in a second execution.

Fixed: Calling class functions using object references (eg. Button1.ClassName) failing in

some situations.

Fixed: Issue with code completion in TatScriptDebugger and TatMemoInterface

components.

Fixed: Import Tool issue with WideChar parameters.

Fixed: Issue with WideString parameters when defining classes using new RTTI.

Fixed: Import tool now splits string constants when they are longer than 255 chars.

Version 5.1 (Sep-2011)
New: Delphi/C++Builder XE2 Support.

New: Delphi XE2 support in import tool.

Improved: Class registration using new RTTI - now also import classes not registered with

RegisterClass.

Fixed: Issue with combined indexed default properties.

Fixed: Minor bug when saving compiled code.

Fixed: Import tool now importing published methods.

Version 5.0 (Apr-2011)
New: Support for creating script-based classes.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 122 of 149

New: New code insight class supporting parameter hints and improved code completion

(to be used in custom IDE's).

New: Updated import tool to also import parameter hints of methods.

New: Updated imported VCL units for all Delphi versions, now including parameter hints.

New: Additional parameter in DefineMethod allowing to specify the parameter hint for

that method.

Improved: Several other improvements added from TAdvMemo 2.3 version (see

AdvMemo.pas source code for more info).

Fixed: Relative paths for script files not working with $(APPDIR) and $(CURDIR).

Version 4.7.1 (Dec-2010)
Fixed: Registered version installer not working properly with TMS VCL Subscription

Manager.

Version 4.7 (Dec-2010)
New: Updated imported VCL units for all Delphi versions, now including indexed

properties, default parameters and other minor tweaks.

Fixed: Issue with getter of boolean properties using DefineClassByRTTI.

Fixed: Issue with TStringList.Create in Delphi XE imported Classes library.

Fixed: Functions with "out" parameters not working in ap_DateUtils.

Fixed: Install conflict between Scripter and other TMS packages.

Fixed: Instructions to return values for "out" parameters not generated by ImportTool.

Fixed: Issue with enumerated types in ImportTool.

Version 4.6.0.1 (Oct-2010)
Improved: Information about CurrentClass in Context parameter for

OnUnknownElementEvent event.

Fixed: Issue with InStr function in VB Script Library.

Fixed: Issues installing Scripter Studio on RAD Studio XE.

Version 4.6 (Sep-2010)
New: RAD Studio XE Support.

New: Support for default indexed properties in script syntax (e.g. Lines[i] instead of

Lines.Strings[i]).

Improved: C++ Builder source code examples included in Scripter manual.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 123 of 149

Improved: Import Tool parser is now recognizing most of new Delphi syntax features and

provides RAD Studio XE support.

Improved: Options in DefineClassByRTTI method to redefine an already defined class in

scripter.

Fixed: Issue with getter of boolean properties.

Fixed: Issue with script executed step by step while watching a variable.

Fixed: Issues with DefineClassByRTTI method (registering of constructor overloads, return

of var/out method parameters).

Fixed: Issue with record declarations in units imported by ImportTool using enhanced RTTI.

Fixed: Issues with code completion (up to Delphi 2005).

Fixed: Find and Replace in memo didn't work with Match Whole Word Only.

Version 4.5 (Jul-2010)
New: Automatic classes, methods and properties registration using new enhanced RTTI

(Delphi 2010 and later).

New: Extensive help component reference.

New: Fully documented source code.

Fixed: Error compiling some imported units in Delphi 2010.

Fixed: Issue with SaveCodeToFile when using form components of a non-registered class.

Fixed: Memory leak when using some rare syntax constructions in script.

Version 4.4.6 (Jan-2010)
New: TatCustomScripter.LoadFormEvents property allows setting event handlers when

loading form dfm files saved in Delphi.

Improved: Char constants now accept hexadecimals (#$0D as an alternative to #13).

Fixed: VB function MsgBox was displaying incorrect window caption.

Fixed: VB function Timer was performing wrong calculation with miliseconds.

Fixed: Issue with OnRuntimeError not providing correct source code row and col of error.

Version 4.4.5 (Sep-2009)
New: Delphi/C++ Builder 2010 support.

New: Array properties supported in COM objects.

Improved: Pascal syntax allows "end." (end dot) in main script block.

Improved: AdvMemo files updated to latest versions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 124 of 149

Fixed: Issue with try..except and try..finally blocks.

Version 4.4 (May-2009)
New: "Private" and "Public" keywords allow defining private global variables, private subs

and private functions (not visible from other scripts) in Basic scripts.

New: Variable initialization in Basic scripts (e.g., Dim A as String = "Hello").

New: Return statement in Basic scripts.

New: If..Then.. statements without "End If" for single line statements (in Basic scripts).

New: Try..Catch..End Try syntax in addition to Try..Except..End (in Basic scripts).

New: TCustomScripter.ScriptFormClass allows providing a different class (derived from

TScriptForm) for forms created from script.

Improved: When scripter don't find a library, a compile error is raised (instead of an

exception).

Version 4.3 (Feb-2009)
New: "new" clause in Basic script. e.g "MyVar = new TLabel(Self)".

New: const declaration in Basic script.

New: VBScript functions Redim, RedimPreserve, Split, Join, StrReverse and Randomize.

New: TatCustomScripter methods BeginRefactor and EndRefactor to allow changing in

source code without clearing events.

Improved: Better load/save compiled code engine.

Improved: Exposed TAdvMemo.VisiblePosCount as public property.

Improved: Scrolling in memo when ActiveLine property is set.

Improved: VBScript functions LBound, UBound, MsgBox now have default parameters.

Fixed: Memory leak in memo using word wrap.

Fixed: Small issue with cursor position handling for wordwrapped memo.

Fixed: Issue with backspace & selection in memo.

Fixed: Issue with input of unicode characters in memo.

Fixed: Issue with paste after delete in specific circumstances in memo.

Fixed: Issue with horiz. scrollbar updating in memo.

Fixed: AV in some scripts accessing indexed properties.

Fixed: AV when setting breakpoint in begin clause.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 125 of 149

Version 4.2 (Oct-2008)
New: Delphi 2009/C++Builder 2009 support.

Fixed: Issue with AssignFile procedure.

Fixed: Issue when removing attached events.

Fixed: Issue while using debug watches for global variables.

Version 4.1 (Jul-2008)
New: Method TAdvMemo.SaveToRTFStream.

New: Property TatCustomScripter.Watches (TatScripterWatches class) with the concept of

watches for the whole scripter, not only the current script being executed.

Improved: Memo syntax highlighting with pascal syntax.

Improved: Autocompletion list updating while typing.

Improved: Local variables are now initialized to NULL.

Fixed: Runtime error message was not displaying correct line and number of error.

Fixed: Issue with parameters passed by value to subroutines behaving like by reference.

Fixed: Issue with paste on non expanded line in TAdvMemo.

Fixed: Issue with repainting after RemoveAllCodeFolding in TAdvMemo.

Fixed: Issue with pasting into an empty memo in TAdvMemo.

Fixed: Issue with TrimTrailingSpaces = false in TAdvMemo.

Fixed: Issue in Delphi 5 with inserting lines in TAdvMemo.

Fixed: Issue with scrollbar animation on Windows Vista in TAdvMemo.

Fixed: Gutter painting update when setting Modified = false programmatically in

TAdvMemo.

Version 4.0 (Apr-2008)
New: TatScripter component supporting cross-language scripts (both Pascal and Basic),

allowing to replace TatPascalScripter and TatBasicScripter by a single component.

New: Forms support. You can now declare forms and instantiate them from scripts. You

can create form methods and load forms from dfm files.

New: TatScript.Refactor property retrieves a TatScriptRefactor object with methods for

refactoring source code, like "DeclareRoutine" and "AddUsedUnit".

New: Debugger now allows tracing into script-based function calls.

New: TatScript.UnitName property allows a script library to be registered using "uses

MyLibrary" syntax without needing MyLibrary to be in a file.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 126 of 149

New: Script-level breakpoints allow better control of breakpoints for debugging, instead

of VirtualMachine-level breakpointsNew: Basic syntax allows declaring the variable type.

New: OnBreakpointStop event in scripter component is called whenever the script

execution stops at a breakpoint.

New: OnSingleDebugHook event allows better performance for debugging than

OnDebugHook.

New: Demo project which shows how to use forms with scripter.

Fixed: Scripter meta info (ScriptInfo): TatVariableInfo.TypeDecl value now has the correct

value (it was empty).

Fixed: Some variable values were not being displayed when using TatWebScripter.

Fixed: Minor bugs.

Version 3.3 (Oct-2007)
New: TSourceExplorer component. Shows the script structure in a Delphi-like source

explorer tree.

New: C++ to Pascal converter demo shows the capabilities of TatSyntaxParser component.

Improved: Scripter Studio Manual includes a "getting started" section for TatSyntaxParser

and TSourceExplorer components.

Improved: More accurated value in TatVariableInfo.DeclarationSourcePos property.

Improved: Small optimizations in parser.

Improved: Many warnings removed.

Fixed: Wrong event name in object inspector in Greatis integration demo.

Version 3.2 (Jul-2007)
New: Delphi 2007 support.

New: Improved Code Completion - now it retrieves methods and properties at multiple

levels for declared global/local script variables (e.g. "var Form: TMyForm"), and retrieves

local script functions and procedures.

New: Improved compilation speed.

New: Improved event handling. Now it allows multiple scripts in a single scripter to handle

component events. It's possible to declare a script event handler from script code (e.g.

MyObject.Event = 'MyScriptEventHandler'), even if the scripter component has multiple

script objects.

New: Improved import tool for better importing: size of sets and record parameters by

reference.

New: New OnUnknownElement event allows defining methods and properties on the fly

during compilation when a unknown method or property is found by the compiler.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 127 of 149

New: Fixed problem with AV in watch viewer.

New: Updated VCL import files.

Import tool: Support for Delphi 2007 in import tool.

Version 3.1 (Sep-2006)
New: Support for calling DLL functions from script, allowing even more flexibility for

scripts. This feature is enabled by AllowDLLCalls property.

New: Support for registering methods with default parameters.

New: OnRuntimeError event.

New: "call dll functions" demo. Includes pascal and basic syntax, and also source code for

CustomLib.dll (used by the demos).

New: "methods with default parameters" demo for Pascal and Basic.

New: "simple demo" which creates the components at runtime.

New: Turbo Delphi compatible.

Updated Scripter Studio manual with the new features and in a new format (chm).

Version 3.0.1 (Jul-2006)
New: TatCustomScripter.AddDataModule method.

New: AName parameter in TatScript.SelfUnregisterAsLibrary method.

Fixed: Form events where not being saved by TSSEventSaver components.

Fixed: Memory leak in some specific cases when an event handler was removed from

dispatcher.

Version 3.0 (Mar-2006)
New: Syntax highlighting memo with codefolding support added.

New: Delphi 2006 & C++Builder 2006 support added.

New: Registered versions comes with VCL ImportTool and full source code for ImportTool.

Version 2.9 (May-2005)
New: TatVBScriptLibrary library which adds several function compatible with the available

ones in VBScript. Functions added: Asc, Atn, CBool, CByte, CCur, CDate, CDbl, CInt, CLng,

CreateObject, CSng, CStr, DatePart, DateSerial, DateValue, Day, Hex, Hour, InStr, Int, Fix,

FormatCurrency, FormatDateTime, FormatNumber, InputBox, IsArray, IsDate, IsEmpty,

IsNull, IsNumeric, LBound, LCase, Left, Len, Log, LTrim, RTrim, Mid, Minute, Month,

MonthName, MsgBox, Replace, Right, Rnd, Second, Sgn, Space, StrComp, String, Timer,

TimeSerial, TimeValue, UBound, UCase, Weekday, WeekdayName, Year.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 128 of 149

New: OnExecHook event for callback while executing script. CallExecHookEvent property

must be set to true to activate the event.

Updated: Manual with list of available functions in system library and vbscript library.

Fixed: A couple of bugs in Basic - REM, DO statements, and others.

Fixed: Greatis demo - component properties were not listing components in the form.

Fixed: Wrong example in manual for Basic Syntax in Exit.

Fixed: D6 errors in imports.

Version 2.8 (Feb-2005)
New: Script file libraries system: now it's possible to use other script files by declaring the

files in the uses clause. This feature is enabled by LibOptions.UseScriptFiles property.

New: Script file libraries works with source files and p-compiled files.

New: LibOptions property allow settings of script file libraries system. Search path can be

defined, as well the default extensions for the source files and compiled files.

New: Added a samples subdirectory in "ide" demo with "newversion.psc" which shows

ilustrates script file libraries usage.

New: Form scripters are now aware of components of the form (not only the controls).

Fixed: Script IDE demo - showing duplicated messages.

Fixed: Problems with Greatis integration and Greatis + Scripter Studio demo.

Fixed: Minor bug fixes & improvements.

Version 2.7.1 (Oct-2004)
New: Delphi 2005 support added.

Version 2.7.0 (Oct-2004)
New: TSSInspector and TSSEventSaver components for smooth integration with Greatis

Runtime Fusion components.

New: "downto" support in for loops (Pascal syntax).

New: Added Widestring support in AddVariable method and GetInputArgAsWideString

function.

New: New TAdvMemo v1.6 integration.

Fixed: OnCompileError was retrieving wrong line/row error when compiling script-based

library.

Fixed: Bug when destroying Scripter Studio at design-time.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 129 of 149

Version 2.6.4 (Aug-2004)
New: Script-based libraries can be used from different scripter components and even

different languages (see updated "script-based libraries" demo).

Fixed: Parameter with names starting with "Var" was considered as by reference.

Fixed: MessageDlg call was not working in Delphi 5.

Fixed: It's now possible to Halt all running scripts.

Fixed: Errors with Create method expecting 0 parameters (important! current users see

AScript.INC file).

Version 2.6.3 (Jun-2004)
Improved: Debugger speed.

Fixed: Syntax Error with WriteLn in webscripter.

Fixed: missing begin..end block in webscripter demo.

Fixed: TypeCast was not working in calls. Example: TStringList(S).Add('Hello'); .

Fixed: SaveCodeToFile and LoadCodeFromFile were failing in some situations.

Version 2.6.2 (May-2004)
New: ShortBooleanEval property to control optional short-circuit boolean evaluation.

Version 2.6.1 (Apr-2004)
Improved: More overloaded AddVariable methods.

Improved: RangeChecks off directive in ascript.inc.

Fixed: Bug with script libraries.

Improved: TAdvMemo syntax highlighting memo.

Version 2.6.0 (Apr-2004)
New: Script-based libraries. It's now possible to call routines/set global variables from

other scripts. See new "script-based libraries" demo to see how it works.

New: File-manipulation routines added: AssignFile, Reset, Rewrite, Append, CloseFile,

Write, WriteLn, ReadLn, EOF, FilePos, FileSize (thanks to Keen Ronald).

New: More system functions added: Abs, ArcTan, ChDir, Chr, Exp, Frac, Int, Ln, Odd, Ord,

Sqr, Sqrt.

New: Support to ElseIf constructor in Basic scripter.

New: Support to Uses and Imports declaration in Basic scripter (thanks to Dean Franks).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 130 of 149

New: Code editor with Drag & drop support.

New: AdvCodeList component.

New: Code editor with wordwrap support (no wordwrap, wordwrap on memo width,

wordwrap on right margin).

New: Code editor with Code block start/end highlighting while typing.

New: Code editor with properties ActiveLineColor, ActiveLineTextColor properties added.

New: Code editor with BreakpointColor, BreakpointTextColor.

New: Code editor with Actions for most common editor actions.

Improved: Could not use events or call subroutines on precompiled scripts (loaded from

stream/file).

Improved: CASE and SELECT CASE statements not working properly.

Improved: FOR statements with negative step not working properly.

Improved: Changing CanClose parameter in OnClose event has no effect.

Improved: Basic double double-quotes in strings not working properly.

Improved: Unknown variable error in FOR statements when OptionExplicit = true.

Version 2.5.3 (Mar-2004)
Fixed: Small fixes and improvements.

Version 2.5.2
New: Debugging can start from any script subroutine, not only main block.

New: Properties in TatScriptDebugger component: RoutineName, UpdateSourceCode and

MemoReadOnly.

Improved: TatScripterDebugger.Execute method now works even if script is already

running.

Improved: Values of global variables keep their values between scripter executions.

Fixed: Bug with variant arrays.

Fixed: Bug with try..except blocks while debugging.

Version 2.5.1
Fixed: Several bug fixes and stability improvements.

Version 2.5
New: WITH clause language construct.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 131 of 149

New: Type casting.

New: IS/AS operators (only between object and class).

New: Typed variable declarations, e.g, var Table: TTable; . It will only take effect for

object variables.

New: Global variables.

New: Watches.

New: Forward directives.

New: Integrated autocompletion in IDE and debugger.

New: Integrated hint for evaluation of variables during debug.

New: Syntax memo with bookmark support.

New: IDE demo app.

Improved: WebScripter & PageProducer component for creating Pascal based ASP-like

web applications.

Improved: Multi-thread support.

Version 2.4.6
Improved: WebScripter component.

New: PageProducer component to be used with WebScripter.

Version 2.4.5
New: WebScripter component (written by and provided by Don Wibier) and Page

producer component that parses Pascal or Basic ASP-like files and produces HTML files.

New: Basic Scripter: "Set" word supported. Example: Set A = 10 .

New: Basic Scripter: "&" operator supported. Example:

MyFullName = MyFirstName & \" \" & MyLastName .

New: Pascal Scripter: function declaration accepts result type (which is ignored): function

MyFunction: string; .

New: Pascal Scripter: const section supported: const MyStr = 'This is a string'; .

New: AdvMemo insert & overwrite mode.

Improved: AdvMemo numeric highlighting.

Version 2.4
New: AdvMemo with parameter hinting.

New: AdvMemo with code completion.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 132 of 149

New: AdvMemo with error marking.

Improved: Various smaller scripter engine improvements.

New: DynaForms demo added.

Version 2.3.5
New: Support for hexadecimal integers ($10 in Pascal, 0x10 in Basic).

New: Allow spaces between function names and parameters, eg.: ShowMessage ('Hello

world!'); .

New: Uses clause (to use import libraries), eg.: uses Classes; {Load Classes library if

TatClassesLibrary was previous registered} .

New: From Delphi function, it is possible to know name of method or property called,

using CurrentPropertyName and CurrentMethodName functions from TatVirtualMachine

object.

New: No need to assign OnDebugHook event to debug script.

New: Use of params by reference when calling script procedures from Delphi.

New: Changed class name of internal library, from TatSytemLibrary to TatInternalLibrary.

New: Minor bug fixes (array property).

Version 2.3
New: Support for Pascal & Basic script engines for Kylix 2,3.

Version 2.2
Improved: Syntax highlighting memo, with improved speed, SaveToHTML function, Print.

Improved: Design time script property editor.

Improved: Debugger control.

Version 2.1
New: Seamless and powerful Delphi component event handling allows event handling

chaining between Delphi and Scripter in any sequence allows setting component event

handling from Delphi or from Scripter or from both.

New: 4 sample applications for Pascal and Basic scripter that shows the new powerful

event handling

Version 2.0
First release as Scripter Studio, suite of scripter tools for applications.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 133 of 149

New: Run-time Pascal and Basic language interpreter.

New: Design-time and run-time debugger.

New: Pascal and Basic syntax highlighting memo with integrated debugging facilities.

New: FormScript, form-aware descendant scripter components for Basic and Pascal.

New: Scripter Studio developers guide.

New: Run-time script debugger dialog.

New: Arguments passed by reference on local procedures/function and on object

methods capability added.

New: Safe multiprocessing/multi-threading features with new method signature and

source code rearrengement.

New: Automatic variable declaration, now is controlled by OptionExplicit property.

New: Array properties, variant array constructor and string as array support was

introduced.

New: Class methods and properties support and class references (allow to implement, for

example, Txxxx.Create(...);).

New: Additional system library usefull routines: Inc, Dec, Format, VarArrayHighBound,

High, VarArrayLowBound, Low, TObject.Create, TObject.Free, VarToStr.

New: Extendable architecture open to add support for other languages in future updates.

Improved: Object Pascal syntax compatibility (not, xor, shl, shr, \, div, mod, break, continue,

exit, null, true, false, var, case, function).

Version 1.5
TatPascalScripter release.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 134 of 149

Former Scripter Studio Pro History

Version 2.2 (Apr-2012)
New: 64-bit support in Rad Studio XE2.

New: All new features of TAdvMemo 3.0 included.

New: Support to declare 64-bit integer (Int64) literal values in script. Better handling of

Int64 arithmetic operations (Delphi 6 and up only).

New: TIDEDialog.PaletteStyle property allows use old-style Delphi 7 palette in newer

Delphis.

New: If palette glyph is not available for a registered component, uses glyph from

ancestor instead of using TComponent glyph.

Improved: Import tool: Better handling of subtypes. It was ignoring properties/methods

declared after subtype declaration.

Improved: All imported files for VCL updated for 64-bit support and some missing

methods like TList.Count in Delphi XE and up.

Fixed: Several Issue with default properties (using With clause, expression in indexes,

global objects).

Fixed: TatScriptDebugger issue when settings breakpoints in a second execution.

Fixed: Calling class functions using object references (eg. Button1.ClassName) failing in

some situations.

Fixed: Issue with TatDebugWatch.

Fixed: Files in Scripter IDE were being marked as modified even when no modifications

were being done to project.

Fixed: Issue with code completion in TatScriptDebugger and TatMemoInterface

components.

Fixed: Import Tool issue with WideChar parameters.

Fixed: Multi selection in form designer was being lost when controls were moved/resized.

Fixed: Issue with WideString parameters when defining classes using new RTTI.

Fixed: Small issue with form header being renamed twice when form unit is project main

unit.

Fixed: Import tool now splits string constants when they are longer than 255 chars.

Version 2.1 (Sep-2011)
New: Delphi/C++Builder XE2 Support.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 135 of 149

New: Undo/Redo operations in IDE form designer.

New: TIDEEngine.UndoLevel property to control the level form designer undo operations.

New: ButtonHints property in Palette Toolbar component allows custom hints.

New: Delphi XE2 support in import tool.

Improved: Class registration using new RTTI - now also import classes not registered with

RegisterClass.

Fixed: Issue with combined indexed default properties.

Fixed: Minor bug when saving compiled code.

Fixed: Import tool now importing published methods.

Version 2.0 (Apr-2011)
New: Full support for parameter hints in syntax memo editor.

New: Smart code completion automatically suggests last choices made by user.

New: Support for creating script-based classes.

New: Updated import tool to also import parameter hints of methods.

New: Updated imported VCL units for all Delphi versions, now including parameter hints.

New: Additional parameter in DefineMethod allowing to specify the parameter hint for

that method.

Improved: Overall improved code completion experience with several issues fixed and

better keyboard support for completion.

Improved: Several other improvements added from TAdvMemo 2.3 version (see

AdvMemo.pas source code for more info).

Fixed: Relative paths for script files not working with $(APPDIR) and $(CURDIR).

Fixed: Issues with on dataset fields editor.

Version 1.7.1 (Dec-2010)
Fixed: Registered version installer not working properly with TMS VCL Subscription

Manager.

Version 1.7 (Dec-2010)
New: Updated imported VCL units for all Delphi versions, now including indexed

properties, default parameters and other minor tweaks.

New: Visual editor for TWideStringList properties in object inspector.

New: Event on TIDEEngine for component selection in form designer.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 136 of 149

Fixed: Issue with getter of boolean properties using DefineClassByRTTI.

Fixed: Issue with TStringList.Create in Delphi XE imported Classes library.

Fixed: Functions with "out" parameters not working in ap_DateUtils.

Fixed: Install conflict between Scripter and other TMS packages.

Fixed: Instructions to return values for "out" parameters not generated by ImportTool.

Fixed: Issue with enumerated types in ImportTool.

Version 1.6.0.1 (Oct-2010)
Improved: Information about CurrentClass in Context parameter for

OnUnknownElementEvent event.

Fixed: Issue with InStr function in VB Script Library.

Fixed: Issues installing Scripter Studio on RAD Studio XE.

Version 1.6 (Sep-2010)
New: RAD Studio XE Support.

New: Support for default indexed properties in script syntax (e.g. Lines[i] instead of

Lines.Strings[i]).

New: Fields Editor for TDataset components in the IDE.

New: Combobox editor for FieldName and TableName properties in Object Inspector.

Improved: C++ Builder source code examples included in Scripter manual.

Improved: Import Tool parser is now recognizing most of new Delphi syntax features and

provides RAD Studio XE support.

Improved: Options in DefineClassByRTTI method to redefine an already defined class in

scripter.

Improved: Added property Modified (read only) in TIDEProjectFile.

Fixed: Issue with getter of boolean properties.

Fixed: Issue with script executed step by step while watching a variable.

Fixed: Issues with DefineClassByRTTI method (registering of constructor overloads, return

of var/out method parameters).

Fixed: Issue with record declarations in units imported by ImportTool using enhanced RTTI.

Fixed: Issues with code completion (up to Delphi 2005).

Fixed: Find and Replace in memo didn't work with Match Whole Word Only.

Fixed: Cursor position was not restoring in source code when toggling form/unit.

Fixed: Unit ap_Mask missing at DB palette registering.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 137 of 149

Version 1.5 (Jul-2010)
New: Automatic classes, methods and properties registration using new enhanced RTTI

(Delphi 2010 and later).

New: Extensive help component reference.

New: Fully documented source code.

New: TIDEEngine.PreventDefaultEventCreation property.

Fixed: Access Violation on Items property of TMainMenu and TPopupMenu.

Fixed: Error compiling some imported units in Delphi 2010.

Fixed: Issue with SaveCodeToFile when using form components of a non-registered class..

Fixed: Paste to editor was not pasting in correct position.

Fixed: Issue with scrollbars in form editor.

Fixed: Issue with tab set in Themed IDE.

Fixed: Memory leak when using some rare syntax constructions in script.

Version 1.4.6 (Jan-2010)
New: TatCustomScripter.LoadFormEvents property allows setting event handlers when

loading form dfm files saved in Delphi.

Improved: Char constants now accept hexadecimals (#$0D as an alternative to #13).

Fixed: Component icons in toolbar were missing when compiling application with

packages.

Fixed: VB function MsgBox was displaying incorrect window caption.

Fixed: VB function Timer was performing wrong calculation with miliseconds.

Fixed: Issue with OnRuntimeError not providing correct source code row and col of error.

Fixed: Issue with F9 key not being trapped by script forms.

Fixed: Editor not becoming invisible when closing a file in the ide (with THEMED_IDE

directive defined).

Version 1.4.5 (Sep-2009)
New: Delphi/C++ Builder 2010 support.

New: Design-time image list editor.

New: Array properties supported in COM objects.

Improved: Pascal syntax allows "end." (end dot) in main script block.

Improved: AdvMemo files updated to latest versions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 138 of 149

Fixed: Issue with try..except and try..finally blocks.

Fixed: Issue with component placing in form designer.

Fixed: Incompatibility when Greatis components are installed together with scripter pro.

Version 1.4 (May-2009)
New: Themed IDE. By defining directive THEMED_IDE in AScript.INC file you can compile

scripter package with TMS Component Pack and have your IDE in Office style (Luna, Olive,

etc.).

New: "Private" and "Public" keywords allow defining private global variables, private subs

and private functions (not visible from other scripts) in Basic scripts.

New: Variable initialization in Basic scripts (e.g., Dim A as String = "Hello").

New: Return statement in Basic scripts.

New: If..Then.. statements without "End If" for single line statements (in Basic scripts).

New: Try..Catch..End Try syntax in addition to Try..Except..End (in Basic scripts).

New: TIDEDialog.AppStyler property allows setting the theme style of the whole IDE

(requires TMS Component Pack).

New: TIDEEngine.UnregisterComponent method.

New: TIDEEngine.OnGetComponentImage event allows providing an image for

component icon (in toolbar and form designer) without needing to include resources.

New: TIDEEngine.OnComponentPlaced event is fired whenever a new component in

placed in form designer.

New: TIDEPaletteButtons.CategoryColor and CategoryColorTo properties allow settings a

background color for all categories in the control.

New: TCustomScripter.ScriptFormClass allows providing a different class (derived from

TScriptForm) for the IDE forms.

Improved: Included packages for specific compilation in C++Builder-only environments.

Improved: When scripter don't find a library, a compile error is raised (instead of an

exception).

Improved: In IDE, current file name is displayed in save dialogs.

Improved: IDE now uses default component icon for new components registered in IDE

that don't have specific icon.

Fixed: Issue with menu option "Compile" in scripter IDE.

Fixed: Issue when double clicking the form's caption in form designer.

Fixed: Issue when using arrow keys to move between controls in form designer.

Fixed: In IDE form designer, form was disappearing in Windows Vista when BorderStyle

was set to bsNone.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 139 of 149

Fixed: Undesired behaviour when using Close Project menu option.

Fixed: Issue with clipboard error in scripter IDE.

Fixed: Issue with popup menu in object inspector when mouse buttons are swapped.

Fixed: "Select Unit" and "Watch Properties" windows are now dialogs (not sizeable, not

minimizable).

Fixed: AV in form designer when cutting controls to clipboard.

Version 1.3 (Feb-2009)
New: "new" clause in Basic script. e.g "MyVar = new TLabel(Self)".

New: const declaration in Basic script.

New: Redo menu option in IDE.

New: Compile menu option in IDE.

New: VBScript functions Redim, RedimPreserve, Split, Join, StrReverse and Randomize.

New: Public method/property TIDEEngine.VisibleFileCount and TIDEEngine.VisibleFiles.

New: Property TIDEEngine.AutoStyler allows avoiding the engine to set an automatic

syntax styler for the memo.

New: TatCustomScripter methods BeginRefactor and EndRefactor to allow changing in

source code without notifying the IDE.

Improved: Better load/save compiled code engine.

Improved: Cursor position in memo is preserved when switching units and/or running the

script.

Improved: Clipboard operations now working in designer, memo and inspector.

Improved: Exposed TAdvMemo.VisiblePosCount as public property.

Improved: Scrolling in memo when ActiveLine property is set.

Improved: VBScript functions LBound, UBound, MsgBox now have default parameters.

Improved: Active line indicator now is hidden after script finished execution.

Improved: Better performance in designer when using big scripts.

Improved: Position of non-visual componentes being saved now.

Improved: Default popup menu (copy, paste, etc.) in object inspector.

Fixed: Issue with KeyPreview property in inspector.

Fixed: Issue with wide string properties in Delphi 2009.

Fixed: Issue with PasswordChar and other properties of type Char.

Fixed: Issue with inspector becoming blank when using scroll bars.

Fixed: Watches not being updated properly in some situations.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 140 of 149

Fixed: Losing form events in some situations.

Fixed: Designer handles not appearing after paste operation.

Fixed: Engine not recognizing basic syntax file extension in some situations.

Fixed: Visual issues in form designer in Windows Vista.

Fixed: Non-visual components appearing behind visual components in designer.

Fixed: Duplicated "save as" dialog when using menu option "Save Project As".

Fixed: Memory leak in memo using word wrap.

Fixed: Small issue with cursor position handling for wordwrapped memo.

Fixed: Issue with backspace & selection in memo.

Fixed: Issue with input of unicode characters in memo.

Fixed: Issue with paste after delete in specific circumstances in memo.

Fixed: Issue with horiz. scrollbar updating in memo.

Fixed: AV in some scripts accessing indexed properties.

Fixed: AV when setting breakpoint in begin clause.

Version 1.2 (Oct-2008)
New: Delphi 2009/C++Builder 2009 support.

Fixed: Issue with AssignFile procedure.

Fixed: Issue when removing attached events.

Fixed: Issue while using debug watches for global variables.

Version 1.1 (Jul-2008)
New: Non-modal menu editor in the IDE allows better integration with the IDE while

editing a menu.

New: Undo menu option in IDE Dialog.

New: "Find" and "Find and Replace" menu options in IDE Dialog.

New: TIDEProjectFile.SaveFormToString method.

New: TIDEProjectFile.FormResource property.

New: Method TAdvMemo.SaveToRTFStream.

New: Property TatCustomScripter.Watches (TatScripterWatches class) with the concept of

watches for the whole scripter, not only the current script being executed.

New: AddNotifier and RemoveNotifier in TIDEEngine allows to receive notifications about

changed in the IDE.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 141 of 149

New: TIDEEngine.ActiveFileModified allows notify the IDE that the current file was

updated.

New: Read/write TIDEEngine.SelectedComponent property identifies which is the current

component selected in the ide form designer.

Improved: Scroll bars now appear in the form designer when the form is bigger than client

editor area.

Improved: Clicking on caption bar now selects the form being designed.

Improved: Renaming internal classes for compatibility with other 3rd party tools (Greatis,

ReportBuilder).

Improved: Memo syntax highlighting with Pascal syntax.

Improved: Autocompletion list updating while typing.

Improved: Local variables are now initialized to NULL.

Fixed: Center in window option in alignment tool was not working properly.

Fixed: Issue with editing TForm.WindowMenu property.

Fixed: Issue with editing TForm.ActiveControl property.

Fixed: Menu items now can be selected in the object inspector and component combobox.

Fixed: Runtime error message was not displaying correct line and number of error.

Fixed: Issue with watches not being updated or disappearing while debugging.

Fixed: Issue with parameters passed by value to subroutines behaving like by reference.

Fixed: Issue with paste on non expanded line in TAdvMemo.

Fixed: Issue with repainting after RemoveAllCodeFolding in TAdvMemo.

Fixed: Issue with pasting into an empty memo in TAdvMemo.

Fixed: Issue with TrimTrailingSpaces = false in TAdvMemo.

Fixed: Issue in Delphi 5 with inserting lines in TAdvMemo.

Fixed: Issue with scrollbar animation on Windows Vista in TAdvMemo.

Fixed: Gutter painting update when setting Modified = false programmatically in

TAdvMemo.

Version 1.0 (Apr-2008)
First release, based on Scripter Studio 4.0.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 142 of 149

Getting Support

General notes
Before contacting support:

Make sure to read the tips, faq and readme.txt or install.txt files in component

distributions.

Make sure you have the latest version of the component(s).

When contacting support:

Specify with which component you have a problem.

Specify which Delphi or C++Builder version you're using and preferably also on which OS.

In case of IntraWeb or ASP.NET components, specify with which browser the issue occurs.

For registered users, use the special priority support email address (mentioned in

registration email) & provide your registration email & code. This will guarantee the

fastest route to a solution.

Send email from an email account that

allows to receive replies sent from our server;

allows to receive ZIP file attachements;

has a properly specified & working reply address.

Getting support
For general information: info@tmssoftware.com

Fax: +32-56-359696

For all questions, comments, problems and feature request for VCL components :

help@tmssoftware.com.

To improve efficiency and speed of help, refer to the version of Delphi, C++Builder, Visual Studio

.NET you are using as well as the version of the component. In case of problems, always try to

use the latest version available first.

•

•

•

•

•

•

1.

2.

3.

TMS Scripter 7.36 Page 143 of 149

mailto:info@tmssoftware.com
mailto:help@tmssoftware.com

Breaking Changes
List of changes in each version that breaks backward compatibility.

Version 6.5
There was a big package restructuration in version 6.5. More info in the dedicated topic.

Now you are required to add Vcl.ScripterInit unit to your project if you are using

Delphi XE or lower, otherwise an error message will appear when you try to use the

scripter components:

Version 6.0
Changes in package structure to support Firemonkey. More info here.

Version 6.5 - Package Restructuration
TMS Scripter packages have been restructured. The packages are now separated into runtime

and design-time packages, and into several smaller ones allowing a better usage of them in an

application using runtime packages (allows it to work with 64-bit applications using runtime

packages, for example). Also, Libsuffix option is now being used so the dcp files are generated

with the same name for all Delphi versions. Here is an overview of what's changed:

Before version 6.5, packages were last restructured in version 6.0. You can check the topic about

Version 6.0 Breaking Changes to see how it was.

From version 6.5 and on, there are twelve packages:

TMSScripter.dpk (Core Package)

TMSScripter_Memo.dpk (Syntax Highlight Memo)

TMSScripter_Imports_RTL.dpk (Imports for RTL Units)

TMSScripter_Imports_VCL.dpk (Imports for VCL Components)

TMSScripter_Imports_DB.dpk (Imports for DB Components)

TMSScripter_Imports_ADODB.dpk (Imports for ADODB Components)

TMSScripter_FMX.dpk (Units to Support Scripter in Firemonkey Applications)

TMSScripter_VCL.dpk (Units to Support Scripter in VCL Applications)

TMSScripter_IDE.dpk (TMS Scripter IDE Components)

TMSScripter_Legacy.dpk (Legacy TMS Scripter Components)

dclTMSScripter.dpk (Design-Time Core Package)

dclTMSScripter_Memo.dpk (Design-Time Memo Package)

•

•

uses

 Vcl.ScripterInit;

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Scripter 7.36 Page 144 of 149

DCP files are generated with same name, and only BPL files are generated with the suffix

indicating the Delphi version. The suffix, however, is the same used by the IDE packages (numeric

one indicating IDE version: 160, 170, etc.). The new package structure is as following (note that

when 6.5 was released, latest Delphi version was XE7. Packages for newer versions will follow the

same structure):

Version Package File Name BPL File Name DCP File Name

Delphi

7

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter70.bpl

TMSScripter_Memo70.bpl

TMSScripter_Imports_RTL70.bpl

TMSScripter_Imports_VCL70.bpl

TMSScripter_Imports_DB70.bpl

TMSScripter_Imports_ADODB70.bpl

TMSScripter_FMX70.bpl

TMSScripter_VCL70.bpl

TMSScripter_IDE70.bpl

TMSScripter_Legacy70.bpl

dclTMSScripter70.bpl

dclTMSScripter_Memo70.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

2007

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter100.bpl

TMSScripter_Memo100.bpl

TMSScripter_Imports_RTL100.bpl

TMSScripter_Imports_VCL100.bpl

TMSScripter_Imports_DB100.bpl

TMSScripter_Imports_ADODB100.bpl

TMSScripter_FMX100.bpl

TMSScripter_VCL100.bpl

TMSScripter_IDE100.bpl

TMSScripter_Legacy100.bpl

dclTMSScripter100.bpl

dclTMSScripter_Memo100.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

2009

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter120.bpl

TMSScripter_Memo120.bpl

TMSScripter_Imports_RTL120.bpl

TMSScripter_Imports_VCL120.bpl

TMSScripter_Imports_DB120.bpl

TMSScripter_Imports_ADODB120.bpl

TMSScripter_FMX120.bpl

TMSScripter_VCL120.bpl

TMSScripter_IDE120.bpl

TMSScripter_Legacy120.bpl

dclTMSScripter120.bpl

dclTMSScripter_Memo120.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

TMS Scripter 7.36 Page 145 of 149

Version Package File Name BPL File Name DCP File Name

Delphi

2010

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter140.bpl

TMSScripter_Memo140.bpl

TMSScripter_Imports_RTL140.bpl

TMSScripter_Imports_VCL140.bpl

TMSScripter_Imports_DB140.bpl

TMSScripter_Imports_ADODB140.bpl

TMSScripter_FMX140.bpl

TMSScripter_VCL140.bpl

TMSScripter_IDE140.bpl

TMSScripter_Legacy140.bpl

dclTMSScripter140.bpl

dclTMSScripter_Memo140.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

XE

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter150.bpl

TMSScripter_Memo150.bpl

TMSScripter_Imports_RTL150.bpl

TMSScripter_Imports_VCL150.bpl

TMSScripter_Imports_DB150.bpl

TMSScripter_Imports_ADODB150.bpl

TMSScripter_FMX150.bpl

TMSScripter_VCL150.bpl

TMSScripter_IDE150.bpl

TMSScripter_Legacy150.bpl

dclTMSScripter150.bpl

dclTMSScripter_Memo150.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

XE2

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter160.bpl

TMSScripter_Memo160.bpl

TMSScripter_Imports_RTL160.bpl

TMSScripter_Imports_VCL160.bpl

TMSScripter_Imports_DB160.bpl

TMSScripter_Imports_ADODB160.bpl

TMSScripter_FMX160.bpl

TMSScripter_VCL160.bpl

TMSScripter_IDE160.bpl

TMSScripter_Legacy160.bpl

dclTMSScripter160.bpl

dclTMSScripter_Memo160.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

TMS Scripter 7.36 Page 146 of 149

Version Package File Name BPL File Name DCP File Name

Delphi

XE3

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter170.bpl

TMSScripter_Memo170.bpl

TMSScripter_Imports_RTL170.bpl

TMSScripter_Imports_VCL170.bpl

TMSScripter_Imports_DB170.bpl

TMSScripter_Imports_ADODB170.bpl

TMSScripter_FMX170.bpl

TMSScripter_VCL170.bpl

TMSScripter_IDE170.bpl

TMSScripter_Legacy170.bpl

dclTMSScripter170.bpl

dclTMSScripter_Memo170.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

XE4

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter180.bpl

TMSScripter_Memo180.bpl

TMSScripter_Imports_RTL180.bpl

TMSScripter_Imports_VCL180.bpl

TMSScripter_Imports_DB180.bpl

TMSScripter_Imports_ADODB180.bpl

TMSScripter_FMX180.bpl

TMSScripter_VCL180.bpl

TMSScripter_IDE180.bpl

TMSScripter_Legacy180.bpl

dclTMSScripter180.bpl

dclTMSScripter_Memo180.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

XE5

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter190.bpl

TMSScripter_Memo190.bpl

TMSScripter_Imports_RTL190.bpl

TMSScripter_Imports_VCL190.bpl

TMSScripter_Imports_DB190.bpl

TMSScripter_Imports_ADODB190.bpl

TMSScripter_FMX190.bpl

TMSScripter_VCL190.bpl

TMSScripter_IDE190.bpl

TMSScripter_Legacy190.bpl

dclTMSScripter190.bpl

dclTMSScripter_Memo190.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

TMS Scripter 7.36 Page 147 of 149

Version Package File Name BPL File Name DCP File Name

Delphi

XE6

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter200.bpl

TMSScripter_Memo200.bpl

TMSScripter_Imports_RTL200.bpl

TMSScripter_Imports_VCL200.bpl

TMSScripter_Imports_DB200.bpl

TMSScripter_Imports_ADODB200.bpl

TMSScripter_FMX200.bpl

TMSScripter_VCL200.bpl

TMSScripter_IDE200.bpl

TMSScripter_Legacy200.bpl

dclTMSScripter200.bpl

dclTMSScripter_Memo200.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Delphi

XE7

TMSScripter.dpk

TMSScripter_Memo.dpk

TMSScripter_Imports_RTL.dpk

TMSScripter_Imports_VCL.dpk

TMSScripter_Imports_DB.dpk

TMSScripter_Imports_ADODB.dpk

TMSScripter_FMX.dpk

TMSScripter_VCL.dpk

TMSScripter_IDE.dpk

TMSScripter_Legacy.dpk

dclTMSScripter.dpk

dclTMSScripter_Memo.dpk

TMSScripter210.bpl

TMSScripter_Memo210.bpl

TMSScripter_Imports_RTL210.bpl

TMSScripter_Imports_VCL210.bpl

TMSScripter_Imports_DB210.bpl

TMSScripter_Imports_ADODB210.bpl

TMSScripter_FMX210.bpl

TMSScripter_VCL210.bpl

TMSScripter_IDE210.bpl

TMSScripter_Legacy210.bpl

dclTMSScripter210.bpl

dclTMSScripter_Memo210.bpl

TMSScripter.dcp

TMSScripter_Memo.dcp

TMSScripter_Imports_RTL.dcp

TMSScripter_Imports_VCL.dcp

TMSScripter_Imports_DB.dcp

TMSScripter_Imports_ADODB.dcp

TMSScripter_FMX.dcp

TMSScripter_VCL.dcp

TMSScripter_IDE.dcp

TMSScripter_Legacy.dcp

dclTMSScripter.dcp

dclTMSScripter_Memo.dcp

Version 6.5 - TScrMemo replaces TAdvMemo
As of TMS Scripter 6.5, TAdvMemo component is no longer available. This doesn't mean there is

no syntax highlight memo component anymore - it was just renamed to TScrMemo.

This was done to get rid of dependency and conflict with TMS Component Pack. Both products

have a TAdvMemo component and although registered versions of both products could be

installed together, it was not an ideal setup.

For most TMS Scripter users, this will be a transparent change. If you use TIDEMemo, it's still

there. If you use TIDEDialog component to show the TMS Scripter IDE, it will still work. If you

have TMS Component Pack installed, you will also have no problems.

The only issue that might appear is if you have TAdvMemo components in your application

forms and you don't have TMS Component Pack installed. In this case, Delphi IDE will complain

that a TAdvMemo component does not exist, and you will have to manually edit your dfm/pas

file and replace any TAdvMemo reference by a TScrMemo reference.

TMS Scripter 7.36 Page 148 of 149

Version 6.0 - Breaking Changes

1. Packages changed

For Delphi XE2 and up, packages were restructured. Package ascriptproxe2.dpk doesn't exist

anymore, and was split into the following packages:

tmsscripter_xe2: Runtime package with core/non-visual classes and scripting engine.

tmsscriptervcl_xe2: Runtime package with VCL components and imported VCL.

tmsscripterreg_xe2: Design-time package.

tmsscripterfmx_xe2: Runtime package with Firemonkey components.

2. Existing applications need a small change

For Delphi XE2 and up, since the scripter engine can work with either VCL or Firemonkey, you

must specify which framework you are using in your application, by adding a proper unit to the

uses clause of any unit in your project.

To use scripter with VCL, add unit Vcl.ScripterInit :

To use scripter with Firemonkey add unit FMX.ScripterInit :

3. Firemonkey compatibility

TMS Scripter engine is now is compatible with Firemonkey. It means you can execute scripts in

Firemonkey applications, even with forms. But note that several VCL components don't have

Firemonkey equivalents yet, especially the visual ones, so the scripter IDE (form designer, syntax

memo, object inspector, etc.) are not available for Firemonkey applications.

•

•

•

•

uses

 Vcl.ScripterInit;

uses

 FMX.ScripterInit;

TMS Scripter 7.36 Page 149 of 149

	Overview
	Integrated Development Environment
	Specific IDE components
	Basic concepts
	Runtime
	Design time

	Component overview
	TIDEScripter
	TIDEEngine
	TIDEDialog
	Custom IDE components

	The TIDEScripter component

	Running the IDE: TIDEDialog component
	Overview of the IDE
	Managing projects and files
	Note

	Editing the script in code editor
	Designing forms
	Running and debugging scripts
	Library Browser

	Code Insight features
	Code Completion
	Parameter Hints

	Building your own IDE
	IDE Components available
	TIDEMemo
	TIDEFormDesignControl
	TIDEPaletteToolbar and TIDEPaletteButtons
	TIDEInspector
	TIDEComponentComboBox
	TIDEWatchListView

	The TIDEEngine component
	Basic steps to build a custom IDE
	Using ready-to-use inspector and palette forms
	Using ready-to-use actions

	Using TIDEEngine component programatically
	Creating a new project
	Adding/removing units (scripts and forms) to the project
	Executing a project programatically
	Managing units and changing its properties
	Setting the active unit in the IDE
	Running and debugging a project
	Methods for end-user interaction - open, save dialogs, etc.

	Registering components in the IDE
	Retrieving existing registered components
	Registering/Unregistering standard tabs
	Register new components

	Storing units in a database (alternative to files)
	Replacing save/load operations
	Replacing open/save dialogs
	Checking if a file name is valid
	Important

	Language Features
	Pascal syntax
	Overview
	Script structure
	Identifiers
	Assign statements
	Character strings
	Comments
	Variables
	Array type

	Indexes
	Arrays
	If statements
	while statements
	repeat statements
	for statements
	case statements
	function and procedure declaration

	Basic syntax
	Overview
	Script structure
	Identifiers
	Assign statements
	New statement
	Character strings
	Comments
	Variables
	Indexes
	Arrays
	If statements
	while statements
	loop statements
	for statements
	select case statements
	function and sub declaration

	Calling DLL functions
	Overview
	Note

	Pascal syntax
	Basic syntax
	Supported types

	Working with scripter
	Getting started
	Cross-language feature: TatScripter and TIDEScripter
	New DefaultLanguage property
	New AddScript method
	Using cross-language feature

	Common tasks
	Calling a subroutine in script
	Returning a value from script
	Tip

	Passing parameters to script
	Note
	Note

	Accessing Delphi objects
	Registering Delphi components
	Access to published properties
	Class registering structure
	Calling methods
	More method calling examples
	Accessing non-published properties
	Registering indexed properties
	Retrieving name of called method or property
	Registering methods with default parameters
	Delphi 2010 and up - Registering using new RTTI
	Registering a class in scripter
	Registering a record in scripter
	What is not supported

	Accessing Delphi functions, variables and constants
	Registering global constants
	Acessing global variables
	Calling regular functions and procedures

	Script-based libraries
	Declaring forms in script
	Declaring classes in script (script-based classes)
	Using the Refactor
	Using libraries
	Delphi-based libraries
	The TatSystemLibrary library
	Removing functions from the System library
	The TatVBScriptLibrary library

	Debugging scripts
	Using methods and properties for debugging
	Using debug components

	Form-aware scripters - TatPascalFormScripter and TatBasicFormScripter
	C++ Builder issues
	Registering a class method for an object

	The syntax highlighting memo
	Using the memo

	C++Builder Examples
	Integrated Development Environment
	Using TIDEEngine component programatically
	Adding/removing units (scripts and forms) to the project
	Executing a project programatically
	Managing units and changing its properties
	Setting the active unit in the IDE
	Running and debugging a project

	Registering components in the IDE
	Retrieving existing registered components
	Registering/Unregistering standard tabs
	Register new components

	Storing units in a database (alternative to files)
	Replacing save/load operations
	Replacing open/save dialogs
	Checking if a file name is valid

	Working with scripter
	Getting started
	Cross-language feature: TatScripter and TIDEScripter
	Common tasks
	Calling a subroutine in script
	Returning a value from script
	Passing parameters to script

	Accessing Delphi objects
	Registering Delphi components
	Calling methods
	More method calling examples
	Acessing non-published properties
	Registering indexed properties
	Retrieving name of called method or property
	Registering methods with default parameters

	Accessing Delphi functions, variables and constans
	Registering global constants
	Acessing global variables
	Calling regular functions and procedures

	Using libraries
	Delphi-based libraries
	Removing functions from the System library

	About
	Licensing and Copyright Notice
	What's New
	Version 7.36 (Apr-2025)
	Version 7.35 (Oct-2024)
	Version 7.34 (Sep-2024)
	Version 7.33 (Mar-2024)
	Version 7.32 (Jan-2024)
	Version 7.31 (Nov-2023)
	Version 7.30 (Oct-2023)
	Version 7.29 (Oct-2023)
	Version 7.28 (Jan-2023)
	Version 7.27 (Mar-2022)
	Version 7.26 (Feb-2022)
	Version 7.25 (Sep-2021)
	Version 7.24 (Mar-2021)
	Version 7.23.1 (Mar-2021)
	Version 7.23 (Mar-2021)
	Version 7.22 (Aug-2020)
	Version 7.21 (Jun-2020)
	Version 7.20 (May-2020)
	Version 7.19 (Feb-2020)
	Version 7.18 (Nov-2019)
	Version 7.17 (Jul-2019)
	Version 7.16 (Mar-2019)
	Version 7.15 (Dec-2018)
	Version 7.14 (Oct-2018)
	Version 7.13 (Jul-2018)
	Version 7.12 (May-2018)
	Version 7.11 (Mar-2018)
	Version 7.10 (Nov-2017)
	Version 7.9 (Oct-2017)
	Version 7.8 (Jul-2017)
	Previous Versions
	Version 7.7 (Mar-2017)
	Version 7.6 (Mar-2017)
	Version 7.5 (Jan-2017)
	Version 7.4 (Aug-2016)
	Version 7.3 (Jun-2016)
	Version 7.2 (Apr-2016)
	Version 7.1.1 (Mar-2016)
	Version 7.1 (Feb-2016)
	Version 7.0 (Jan-2016)
	Version 6.5.4 (Sep-2015)
	Version 6.5.3 (Aug-2015)
	Version 6.5.2 (Jul-2015)
	Version 6.5.1 (Apr-2015)
	Version 6.5 (Mar-2015)
	Version 6.4 (Sep-2014)
	Version 6.3.1 (May-2014)
	Version 6.3 (Feb-2014)
	Version 6.2 (Oct-2013)
	Version 6.1.1 (May-2013)
	Version 6.1 (Mar-2013)
	Version 6.0 (Sep-2012)
	Note

	Scripter Studio version history
	Scripter Studio Pro version history

	Former Scripter Studio History
	Version 5.2 (Apr-2012)
	Version 5.1 (Sep-2011)
	Version 5.0 (Apr-2011)
	Version 4.7.1 (Dec-2010)
	Version 4.7 (Dec-2010)
	Version 4.6.0.1 (Oct-2010)
	Version 4.6 (Sep-2010)
	Version 4.5 (Jul-2010)
	Version 4.4.6 (Jan-2010)
	Version 4.4.5 (Sep-2009)
	Version 4.4 (May-2009)
	Version 4.3 (Feb-2009)
	Version 4.2 (Oct-2008)
	Version 4.1 (Jul-2008)
	Version 4.0 (Apr-2008)
	Version 3.3 (Oct-2007)
	Version 3.2 (Jul-2007)
	Version 3.1 (Sep-2006)
	Version 3.0.1 (Jul-2006)
	Version 3.0 (Mar-2006)
	Version 2.9 (May-2005)
	Version 2.8 (Feb-2005)
	Version 2.7.1 (Oct-2004)
	Version 2.7.0 (Oct-2004)
	Version 2.6.4 (Aug-2004)
	Version 2.6.3 (Jun-2004)
	Version 2.6.2 (May-2004)
	Version 2.6.1 (Apr-2004)
	Version 2.6.0 (Apr-2004)
	Version 2.5.3 (Mar-2004)
	Version 2.5.2
	Version 2.5.1
	Version 2.5
	Version 2.4.6
	Version 2.4.5
	Version 2.4
	Version 2.3.5
	Version 2.3
	Version 2.2
	Version 2.1
	Version 2.0
	Version 1.5

	Former Scripter Studio Pro History
	Version 2.2 (Apr-2012)
	Version 2.1 (Sep-2011)
	Version 2.0 (Apr-2011)
	Version 1.7.1 (Dec-2010)
	Version 1.7 (Dec-2010)
	Version 1.6.0.1 (Oct-2010)
	Version 1.6 (Sep-2010)
	Version 1.5 (Jul-2010)
	Version 1.4.6 (Jan-2010)
	Version 1.4.5 (Sep-2009)
	Version 1.4 (May-2009)
	Version 1.3 (Feb-2009)
	Version 1.2 (Oct-2008)
	Version 1.1 (Jul-2008)
	Version 1.0 (Apr-2008)

	Getting Support
	General notes
	Getting support

	Breaking Changes
	Version 6.5
	Version 6.0
	Version 6.5 - Package Restructuration
	Version 6.5 - TScrMemo replaces TAdvMemo
	Version 6.0 - Breaking Changes
	1. Packages changed
	2. Existing applications need a small change
	3. Firemonkey compatibility

