
Overview
TMS Workflow Studio is a Delphi VCL framework for Business Process Management (BPM).

With Workflow Studio you can easily add workflow and BPM capabilities to your application, by

allowing you or your end-user to create workflow definitions and running them.

Here are some examples of business process that can be automated by using Workflow Studio:

Order management

Sales management

Hiring process

Help desk tasks

Sales and marketing tasks

Project management

Quality checking

Warranty management

Software deployment

Product requirement and specification

Expense tracking

Main tasks you can do with Workflow Studio are:

Design workflow definitions visually in a diagram

Run the workflow definitions

Manage tasks generated by the workflows

Rebuilding Packages
If for any reason you want to rebuild source code, you should do it using the "Packages Rebuild

Tool" utility that is installed. There is an icon for it in the Start Menu.

Just run the utility, select the Delphi versions you want the packages to be rebuilt for, and click

"Install".

If you are using Delphi XE and up, you can also rebuild the packages manually by opening the

dpk/dproj file in Delphi/Rad Studio IDE.

Do NOT manually recompile packages if you use Delphi 2010 or lower. In this case always use

the rebuild tool.

In this section:

Basic Concepts

How Workflow Studio works and key concepts around workflows and tasks.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 1 of 2

Getting Started

Components overview and initial steps to setup Workflow Studio.

Database Structure

Underlying database structure for Workflow Studio.

Creating Workflow Definitions

Diagram objects and features of workflow definitions editor.

User interface windows

Interfaces for creating workflows and managing tasks.

Using Workflow Studio programmatically

How to run some common tasks from Delphi code.

Extending the scripting system

Take advantage of scripts for increasing integration between workflows and your application.

TMS Workflow Studio 2.20.0.1 Page 2 of 2

Basic Concepts
Some basic concepts are presented here, for your clear understanding of how Workflow Studio

works and its main components.

Workflows and Tasks
Workflow Studio works with two major concepts: workflows and tasks.

A workflow is a representation of a business process. In Worklow Studio, the workflow concept is

split in two more specific concepts: workflow definition, which is the specification of a business

process, and workflow instance, which is a running business process.

A task is a pending work for a user. In Workflow Studio, the task concept is split in two more

specific concepts: task definition, which is the specification of a task, and task instance, which is

actually a existing pending task for a user.

Workflow Definition
A workflow definition is the representation of a business process. For easy understanding, we can

compare the workflow definition to a flowchart which specifies how the business process work.

In a workflow definition you specify which actions are to be performed (update database, send

e-mail, run a script and, more important, create a task), and in which order. If you are creating a

workflow definition for order processing, for example, then you might want to check if the order

amount is higher than 10 000. If not, then create an approval task for the local manager. If yes,

create an approval task for the director. In any case of approval, send an e-mail for the financial

department.

You can use the workflow designer to visually build the flowchart for the workflow definition. All

the workflow definitions are kept in the database. Each workflow definition receives a name that

uniquely identifies it (for example, "order processing", "software deployment", "help desk

support", etc.).

Workflow Instance
A workflow instance is a running instance of a workflow definition. A single workflow definition

will generate an unlimited number of workflow instances.

For example, you can have a single workflow definition for order processing, and for each order,

you will have a workflow instance. In a workflow definition you might have a variable named

"Order number". Each workflow instance will have its own order number, and the variable "Order

number" will have a different value. Each workflow instance will have its own state and internal

variable values.

A workflow instance can be started, running or finished. All workflow instance records are kept in

the database, even the finished ones.

TMS Workflow Studio 2.20.0.1 Page 3 of 4

Task Definition
A task definition specifies a task to be created for a user. It's not the task itself, but a specification

for the task.

In the task definition you specify the subject, task name, description, the user, a list of valid

status, and other properties. A task definition is always "inside" a workflow definition. One of the

actions you can define in a workflow definition is generating tasks, and the task definition is part

of the action specification.

For example, in a workflow definition for order processing, you might want to create a task for

the manager to approve the order. In this case, the task definition would be something like this:

Subject: Order approval

Description: Please approve the order [OrderNo]

User: Manager

Valid Status: Waiting approval, approved, rejected

Task Instance
A task instance is a task created for an user based on a task definition. A single task definition

can generate several task instances.

A task instance is created when a workflow instance is run and reaches to a point where a task

must be created, based on a task definition. At that time, the task instance is created for a

specified user.

Each user has a list of his/her pending task instances. Once the task is finished it is removed from

the list of pending tasks. There is still an option for listing the closed tasks, in the task list

window.

Each task instance has its own record in the database. Even if the task is closed, the record is not

deleted.

Workflow Engine
The workflow engine is the place where the workflow instances are run. It creates the instance,

runs it, and terminates it when the workflow instance is finished. The workflow engine can run

various instances at the same time.

In current version, the workflow engine is just an internal thread-based class that creates a

thread for each running workflow instance, and manages those threads.

Workflow Users and Groups
Workflow Studio is strongly based on tasks, which in turn are always assigned to an user or a

group of users. So, Workflow Studio does also need to use information about users and groups.

Workflow Studio does not provide a full user control system, it does not have login dialogs, add/

remove user, group definition interfaces, etc.. You must build the user management available in

your application, or use a 3rd party tool to do that, like TMS Security System.

TMS Workflow Studio 2.20.0.1 Page 4 of 4

https://www.tmssoftware.com/site/tmsvclsecuritysystem.asp

However, Workflow Studio needs to know about users and groups. So, you must fill in a list of

valid users and groups, that will be used by Workflow Studio. This can be done at the beginning

of the program.

The code below is an example that shows how to add users and groups to Workflow Studio.

Note that two groups were created, and each group contains a list of user id's that belong to

that group. Workflow Studio uses the user information to assign tasks, send e-mails, and other

user-based tasks.

Version Control
It's possible that two different users load the same task or workflow instance, modify it, and try

to save it. This could cause one user overwrite the changes made by the other user. It could

happen either in your application code (manipulating tasks and instances from code) or when

two users have their task lists dialogs open, for example.

To prevent this from happening you can set TWorkflowStudio.VersionControlEnabled property to

true:

This will force version control, which means if a user tries to update a task or workflow instance

that is outdated (another user modified it since it was loaded from the database), an error will be

raised and the update will not be performed.

// Add users and groups

with WorkflowStudio.UserManager do

begin

 // Add all users

 Users.Clear;

 Users.Add('1', 'John', 'john@domain');

 Users.Add('2', 'Sarah', 'sarah@domain');

 Users.Add('3', 'Scott', 'scott@domain');

 Users.Add('4', 'Mario', 'mario@domain');

 Users.Add('5', 'Tina', 'tina@domain');

 // Add groups and specify which users belong to each group

 Groups.Clear;

 with Groups.Add('managers') do

 begin

 UserIds.Add('1'); //John

 UserIds.Add('2'); //Sarah

 end;

 with Groups.Add('programmers') do

 begin

 UserIds.Add('3'); //Scott

 UserIds.Add('4'); //Mario

 UserIds.Add('5'); //Tina

 end;

end;

WorkflowStudio1.VersionControlEnabled := true;

TMS Workflow Studio 2.20.0.1 Page 5 of 4

This feature requires extra fields to be added to existing workflow database structure, be sure to

run the proper SQL scripts to create those fields.

TMS Workflow Studio 2.20.0.1 Page 6 of 4

Getting Started

Components Overview
Here is a brief summary of the installed components.

TWorkflowStudio component

This is the main component of the package. A single TWorkflowStudio instance should be added

to the whole application, and from this component you have access to various methods and

properties needed to work with Workflow Studio programatically.

The global variable WorkflowStudio contains a reference to the main TWorkflowStudio

component of the application.

TWorkflowStudio component provides the following main object properties:

The TWorkflowManager object provides methods to manipulate workflow definitions and

workflow instances (creating, deleting, signaling, etc.).

The TTaskManager object provides methods to manipulate tasks, specially task instances.

The TWorkflowEngine object provides methods to the workflow engine, which runs the workflow

instances.

The TWorkflowUserManager object is used to manipulate workflow users and groups.

The TWorkflowScriptEngine object is used to parse and evaluate expressions and scripts.

The TCustomWorkflowUserInterface object provides methods for displaying the predefined

windows and dialogs of Workflow Studio, like the task list dialog, workflow definition editor and

workflow definition dialog.

property WorkflowManager: TWorkflowManager;

property TaskManager: TTaskManager;

property WorkflowEngine: TWorkflowEngine;

property UserManager: TWorkflowUserManager;

property ScriptEngine: TWorkflowScriptEngine;

property UserInterface: TCustomWorkflowUserInterface;

TMS Workflow Studio 2.20.0.1 Page 7 of 7

The TWorkflowDB object is the component which makes the layer to save/load data to/from the

database. You must specify which TWorkflowDB component you want to use to access database.

TWorkflowDB component

The TWorkflowDB component provides a layer between application-level workflow data and the

database server. This component builds all SQL commands used to insert, delete and update

data in the database, but when it comes to execute the SQL statements, it does nothing.

You must provide event handlers for the events OnCreateQuery, OnExecuteQuery and

OnAssignSQLParams.

Here you must provide your own code to create a TDataset descendant which provides

connection to the database. You must also set the SQL statement (SELECT) provided . You must

return a TDataset object in the parameter Dataset, and set Done parameter to true.

Here you receive your created TDataset descendant and call its specific method to execute an

SQL statement. The SQL statement should have already set in the component in the

OnCreateQuery event.

Here you receive a list of parameters (AParams) and you must set the parameters in your

TDataset descendant, provided in Dataset parameter. Each component has a specific issue with

parameters, and here you might deal with those specific issues, specially with blobs and memos.

This way you have total flexibility to use the component package you want to access your

preferable database.

Workflow Studio provides some TWorkflowDB descendants form some widely used component

sets (like ADO and dbExpress). In that case, you just drop the component you want to use (like

TWorkflowADODB), assign it to the TWorkflowStudio component, and that's it, you don't need to

set anything else.

TWorkflowADODB component

property WorkflowDB: TWorkflowDB;

TCreateQueryEvent = procedure(Sender: TObject; SQL: string;

 var Dataset: TDataset; var Done: boolean) of object;

TExecuteQueryEvent = procedure(Sender: TObject; Dataset: TDataset;

 var Done: boolean) of object;

TAssignSQLParamsEvent = procedure(Sender: TObject; Dataset: TDataset;

 AParams: TParams; var Done: boolean) of object;

TMS Workflow Studio 2.20.0.1 Page 8 of 7

Provides ready-to-use ADO layer to the database. Use it if you want to use ADO components to

access your database.

All you have to do is to set the Connection property to a valid TADOConnection component.

TWorkflowDBXDB component

Provides ready-to-use dbExpress layer to the database. Use it if you want to use dbExpress

components to access your database.

All you have to do is to set the Connection property to a valid TADOConnection component.

Optionally, you can also set DBType property to the database you are going to use, this will

provide specific issues treatment for each database.

TWorkflowpFIBDB component

Provides ready-to-use FIBPlus layer to the database. Use it if you want to use FIBPlus

components to access your database.

All you have to do is to set the Database property to a valid TpFIBDatabase component.

Installing the component

Since not every Delphi environments have the FIBPlus components installed, TWorkflowpFIBDB

component is not installed by default. To install it, do the following steps:

Add {$WS}\source\drivers\fibplus directory to the Delphi library path, where {$WS} is the

root directory of Workflow Studio files.

Open package wspFIBpck.dpk located in the directory above and install it.

If Delphi suggests changes to the package like adding required packages (it will at least

include FIBPlus package to the list of required packages), accept it and install again until

all warnings are gone.

TWorkflowFireDACDB component

Provides ready-to-use FireDAC layer to the database. Use it if you want to use FireDAC

components to access your database.

All you have to do is to set the Connection property to a valid TFDConnection component.

Installing the component

Since not every Delphi environments have the AnyDAC components installed,

TWorkflowAnyDACDB component is not installed by default. To install it, do the following steps:

Add {$WS}\source\drivers\anydac directory to the Delphi library path, where {$WS} is the

root directory of Workflow Studio files.

Open package wsAnyDACpck.dpk located in the directory above and install it.

1.

2.

3.

1.

2.

TMS Workflow Studio 2.20.0.1 Page 9 of 7

https://github.com/madorin/fibplus

If Delphi suggests changes to the package like adding required packages (it will at least

include AnyDAC packages to the list of required packages), accept it and install again until

all warnings are gone.

Auxiliary components

The following components are provided with Workflow Studio, although you might not need to

use them. They are componentes and controls used internally by the Workflow Studio

framework, and you can use them if you want to customize Workflow Studio, like building your

own dialog windows.

TWorkflowDiagram

Contains the workflow definition diagram. It's used in the workflow definition editor. Although

you will probably not add a new TWorkflowDiagram component to a form, you might often use

some of its methods and properties when using Workflow Studio programatically.

TWorkDefListView

It's a TListView descendant which shows a list of the workflow definitions in the database. Used

in the workflow definition dialog.

TTaskListView

It's a TListView descendant which shows a list of task instances based on some filters (assigned

to a user, or belonging to a workflow instance). Used in the task list dialog.

TAttachmentListView

It's a TListView descendant which shows the attachment files in a specified attachment. It's used

in the task definition properties windows and also in the task list dialog.

TTaskStatusCombo

It's a TComboBox descendant which shows the current status of a task instance, and the drop

down list shows the available status. If user changes the combo value, it automatically changes

the value of the status in the task instance object. It's used in the task list dialog.

3.

TMS Workflow Studio 2.20.0.1 Page 10 of 7

TTaskLogListView

It's a TListView descendant which shows the audit log for the changes in a task instance. It's used

in the task list dialog.

"Hello world" tutorial
Workflow Studio provides basic online tutorial in Flash which display the basic steps to get an

application running. Watching that tutorial will help you to understand the basics to start. The

link to the online tutorial is included in tutorials folder.

Here we will provide a very simple list of tasks you should do to get Workflow Studio to run:

1. Install the product.

2. Create the tables and fields for Workflow Studio in your database.

Workflow Studio provides several SQL scripts for creating needed tables and fields for some

database vendors (e.g., Oracle, Microsoft SQL Server, etc.), but you can create yourself in the

database server you want.

3. Create a new VCL Application in Delphi.

4. Drop a TWorkflowStudio component.

5. Drop one of available TWorkflowDB components (TWorkflowADODB for ADO,

TWorkflowDBXDB for dbExpress, etc.).

6. Drop a component for database connection and configure it to connect to your database

(TADOConnection if you're using ADO, TSQLConnection if you're using dbExpress, etc.).

7. Associate your TWorkflowDB component to your database connection component using

Connection property (or analog property).

8. Associate your TWorkflowStudio component to your TWorkflowDB component using

WorkflowDB property.

9. Add valid users to your TWorkflowStudio component before application starts.

It can be done in FormCreate method of application's main form, for example.

10. That's it, you have it configured. Now you can use some methods to call the standard

dialogs in Workflow Studio, like workflow definitions dialog and task list dialog.

E-mail notifications
There are several points in the workflow definition where an e-mail can be sent. An example is

when a task instance is created for an user. If the task definition properties of this task instance is

marked as "Send e-mail notification", an e-mail will be sent to the user notifying him that the

task instance was created and assigned to him.

TMS Workflow Studio 2.20.0.1 Page 11 of 7

However, there is no built-in code to send e-mails in Workflow Studio. When an e-mail is to be

sent, the event OnSendMail of TWorkflowStudio component is fired. So, if you want your

workflow so support e-mail sending, create an event handler for TWorkflowStudio.OnSendMail

event, and send the e-mail yourself from there, using your own method.

The signature for the OnSendMail event is below:

So, use AEmailInfo parameter to build your e-mail message, using ToAddr, From, Bcc, CC, Subject

and Text properties.

Set Sent parameter to true when the e-mail is sent. For extra information (you will often use only

AEmailInfo), you can use TaskIns and AUser parameters to know which task instance generated

the e-mail, and for each workflow user the e-mail is about to be sent.

Monitoring expired tasks (task timeout)
Workflow Studio supports task expiration (timeout). It means you can define a lifetime for a task.

After a task instance is created, the workflow waits for it to be finished. If the task doesn't finish

until the expiration date, the task will expire automatically, and the workflow will follow the path

you have defined for expired tasks.

In the task definition properties you can define the expiration settings.

For the tasks to be effectively expired, you must have some kind of monitor that checks for all

pending tasks in a regular interval, and then perform the correct operations on the expired tasks.

TWorkflowStudio component provides a single method to perform this operation, but

nevertheless, you must build this monitor yourself. Read more in section "Running workflow

instances for expired tasks".

Localization
Workflow Studio provides an easy way to localize the strings. All strings used in user interface

(messages, button captions, dialog texts, menu captions, etc.) are in a single file names

wsLanguage.pas .

In the languages folder, included in Workflow Studio distribution, there are several

wsLanguage.pas files available for different languages. Just pick the one you want and copy it to

the official directory of your workflow studio source code.

type

 TEmailInformation = record

 ToAddr: string;

 From: string;

 Bcc: string;

 Cc: string;

 Subject: string;

 Text: string;

 end;

procedure(Sender: TObject; TaskIns: TTaskInstance; AUser: TWorkflowUser;

 AEmailInfo: TEmailInformation; var Sent: boolean) of object;

TMS Workflow Studio 2.20.0.1 Page 12 of 7

If the language you want does not exist, you can translate it yourself. Just open wsLanguage.pas

file and translate the strings to the language you want.

As a final alternative, you can translate the wsLanguage.txt file, also included in

ws_languages.zip file, and send the new file to us. The advantage of this approach is that this file

is easier to translate (you don't have to deal with Pascal language) and can be included in the

official Workflow Studio distribution. This way we keep track of changes in translable strings and

all new strings are marked in the upcoming releases. This way, you will always know what is

missing to translate, and do not need to do some kind of file comparison in every release of

Workflow Studio.

So, in summary, to localize Workflow Studio strings:

Option 1

Pick the correct wsLanguage.pas file from the ws_languages.zip file, according to the

language you want.

Replace the official wsLanguage.pas (in source code directory) by the one you picked.

Option 2

Translate the official wsLanguage.pas directly.

Option 3

Translate the wsLanguage.txt file and send it to us (support@tmssoftware.com).

We will send you back a translated wsLanguage.pas file and this translation will be

included in official release.

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 13 of 7

mailto:support@tmssoftware.com

Database Structure
Workflow Studio saves and loads data into a database. It is database-based. You must create the

needed tables and fields in your database in order to use Workflow Studio.

Workflow Studio distribution includes some SQL scripts for easy creation of tables in the

database. The scripts are in the dbscripts folder. The scripts provide so far are:

wsSQLServer.sql: for Microsoft SQL Server databases;

wsOracle.sql: for Oracle databases;

wsFirebird.sql: for Firebird/Interbase databases.

As an alternative, you can also manually create the tables and fields in your database, just use

the same underlying database structure.

Underlying Database Structure
Below is the structure for the tables used by Workflow Studio.

The field types are described for Microsoft SQL Server, but you can just translate it for the

database server you want.

For example, Image field is a blob field, while Text is a blob or memo field.

All Datetime fields must contain both date and time parts (not only date).

Table wsattachment

Field Data type Options

id Int Primary key, Required

workkey Int

createdon Datetime

filecontent Image

objecttype Int

Table wstaskinstance

Field Data type Options

id Int Primary key, Required

task Text

createdon Datetime

userid VarChar(50)

•

•

•

TMS Workflow Studio 2.20.0.1 Page 14 of 4

Field Data type Options

comments Text

name VarChar(50)

subject VarChar(50)

description Text

workflowinstancekey Int

workflowdefinitionkey Int

completed VarChar(1)

modifiedon Datetime

modifieduserid VarChar(50)

taskversion Int Default 0

Table wsworkflowdefinition

Field Data type Options

id Int Primary key, Required

workflow Text

name VarChar(255)

Table wsworkflowinstance

Field Data type Options

id Int Primary key, Required

workflow Text

workflowdefinitionkey Int

createdon Datetime

modifiedon Datetime

finishedon Datetime

nextruntime Datetime

instanceversion Int Default 0

TMS Workflow Studio 2.20.0.1 Page 15 of 4

Table wstasklog

Field Data type Options

taskinstancekey Int Primary key, Required

eventdate Datetime Primary key, Required

operation VarChar(1) Primary key, Required

userid VarChar(50)

info VarChar(100)

info2 VarChar(100)

Table wsconfig

Field Data type Options

id Int Primary key, Required

dbversion Int

Upgrading database from previous versions
Some Workflow versions require updates in the database structure. Last versions to require it

were 2.4 and 1.5. If you have the database structure created for Workflow Studio in versions

prior to any of those versions, some changes in structure are required to keep the component

working properly.

Workflow Studio distribution includes some SQL scripts for easy updating the workflow tables in

database, located in in dbscripts folder. The scripts provided so far are:

To update from versions lower then 1.5:

wsSQLServerUpdate.sql: for Microsoft SQL Server databases;

wsOracleUpdate.sql: for Oracle databases;

wsFirebirdUpdate.sql: for Firebird/Interbase databases.

To update from versions lower then 2.4:

wsSQLServerUpdate2_4.sql: for Microsoft SQL Server databases;

wsOracleUpdate2_4.sql: for Oracle databases;

wsFirebirdUpdate2_4.sql: for Firebird/Interbase databases.

Following are listed the database changes required to upgrade Workflow Studio version.

The field types are described for Microsoft SQL Server, but you can just translate it for the

database server you want.

•

◦

◦

◦

•

◦

◦

◦

TMS Workflow Studio 2.20.0.1 Page 16 of 4

From previous versions to version 2.4

New field in table wsworkflowinstance: instanceversion Int Default 0.

New field in table wstaskinstance: taskversion Int Default 0.

New table wsconfig with new record with field values id = 1 and dbversion = 1.

From previous versions to version 1.5

New field in table wsworkflowinstance: nextruntime Datetime.

1.

2.

3.

1.

TMS Workflow Studio 2.20.0.1 Page 17 of 4

Creating Workflow Definitions
One of the main tasks using Workflow Studio is to create workflow definitions that will represent

the business process. You create a workflow definition in the workflow definitions dialog.

A workflow definition is basically a workflow diagram where you add diagram objects.

You can also define workflow variables and workflow attachments to be used in the workflow

diagram. While building the workflow definition, you can take benefit from expressions and

scripts to make it more flexible and adaptable to different situations.

Workflow diagram objects
A diagram object is something that you put inside a workflow diagram. It can be a block which

perform a specified operation, a transition, or some special objects that control the execution

flow, like connectors and forks.

Start block

Overview: indicates where the process starts.

Allowed inputs: 0

Allowed outputs: 1

Description:

Only one Start block can exist in a workflow diagram.

End block

Overview: indicates where the process ends.

Allowed inputs: many

Allowed outputs: 0

Description:

Only one End block can exist in a workflow diagram.

Error block

Overview: Error block is executed when an error occurs while executing the workflow diagram.

Allowed inputs: 0

Allowed outputs: 1

TMS Workflow Studio 2.20.0.1 Page 18 of 19

Description:

Only one Error block can exist in a workflow diagram.

Whenever an error occurs during the execution of the workflow diagram, the execution flow

goes to the error block and then follow the path specified by it (the next block after the error

block). You can use error block to perform some clean up and then finish the execution of

workflow diagram.

Source connector

Overview: The source connector is a passthrough block to increase readibility of diagram. It

makes execution flow to a target connector.

Allowed inputs: many

Allowed outputs: 0

Description:

If the execution flow reaches a source connector, then the diagram jumps to a target connector

that is related to the source connector.

The "relation" between the source and target connector is done by the text inside them. If the

text is the same, the connection is established. For example, when the execution reachs a source

connector labeled "A", then it jumps to the target connector labeled "A". This way you can have

several source-target connections in a single diagram.

Target connector

Overview: The target connector is a passthrough block to increase readibility of diagram. It

receives execution flow from a related source connector.

Allowed inputs: 0

Allowed outputs: 1

Description:

If the execution flow reaches a source connector, then the diagram jumps to a target connector

that is related to the source connector.

The "relation" between the source and target connector is done by the text inside them. If the

text is the same, the connection is established. For example, when the execution reachs a source

connector labeled "A", then it jumps to the target connector labeled "A". This way you can have

several source-target connections in a single diagram.

Transition

Overview: Connects one block to another, indicating the execution flow of diagram.

TMS Workflow Studio 2.20.0.1 Page 19 of 19

Description:

You use a transition (line, or wire) to connect a block to another. The transition indicates the

execution flow, meaning that it flows from the source block to the target block.

You create a transition by pressing down the mouse button at one link point (blue "x" in blocks)

in the source block, dragging the mouse, and releasing the button at one link point in the target

block. An arrow indicates the execution flow.

You can create a normal transition, a side transition or an arc transition. All behave the same, the

difference is only visual.

You might not be able to attach a transition to a block, depending on the allowed inputs and

outputs to the block. For example, if you try to create a transition that targets a Start block, you

won't be able to do it, because a Start block does not allow inputs.

Some blocks allow multiple transitions as outputs. In this case, each transition must be labeled so

that the diagram knows which transition must be used according to a specified condition. Only

one transition is used for leaving a block. So, for example, two transitions might be connected to

the output of a Decision block, but one should be labeled "yes" and the other should be labeled

"no", so the diagram will know which transition to take according to the result of the decision

condition.

You can also specify a script for a transition, so that if the execution goes through the transition,

the script is executed. In the transition dialog editor there is a tab named "Script" where you can

write the script to be executed.

When the transition has a script associated to it, a small lightning bolt icon is displayed at the

beginning of the transition line.

Fork object

Overview: Creates parallel execution paths.

Allowed inputs: many

Allowed outputs: many

Description:

The fork object is used to create parallel execution paths. When a diagram of a workflow

instance is started, there is a single execution path (started by the Start block). If the execution

reaches a fork block, the flow is split in several parallel paths (depending on the number of

outputs in the fork) the execute simultaneously.

TMS Workflow Studio 2.20.0.1 Page 20 of 19

At the end, all execution paths must finish at the same join object, otherwise the diagram is

incorrect. Once all parellel execution paths finish, the main execution path starts again, from the

join object.

Join object

Overview: Ends parallel execution paths created by a fork object.

Allowed inputs: many

Allowed outputs: 1

Description:

The join object is used to end and join parallel execution paths. When a diagram of a workflow

instance is started, there is a single execution path (started by the Start block). If the execution

reaches a fork block, the flow is split in several parallel paths (depending on the number of

outputs in the fork) the execute simultaneously.

At the end, all execution paths must finish at the same join object, otherwise the diagram is

incorrect. Once all parellel execution paths finish, the main execution path starts again, from the

join object.

The main execution path will restart in the join object, going through the next block connected

to its output. The main execution path will not restart until all execution paths created by the

fork object are finished.

Decision block

Overview: Changes the execution flow according to a boolean condition.

Allowed inputs: many

Allowed outputs: 2 ("yes" and "no")

Description:

Use a decision block to change the execution flow according to a boolean condition. When

execution flow reaches a decision block, the condition of the block is evaluated. If it is true, then

the execution path goes through the transition labeled "yes". If it is false, it goes through the

transition labeled "no".

Task block

Overview: Creates task instances for users based on its task definitions.

Allowed inputs: many

Allowed outputs: many (restricted to status list)

TMS Workflow Studio 2.20.0.1 Page 21 of 19

Description:

The task block is one of the more important block types in a diagram. With task block you can

specify task definitions to be created for users. When the execution flow reachs a task block, it

creates task instances for each task definition.

The task block itself is nothing but a set of task definitions. So, to use the task block, just create

one or more task definitions and set the task definition properties.

The workflow execution will stop at the task block until all task instances are finished. A task

instance is finished when its status change to a completion status.

After all task instances are finished, the execution flow continues, according to these rules:

Task block has only one output: The execution flow goes through that path.

Task block has two or more outputs: Each output transition must be labeled with the name

of a completion status. The execution path goes through the transition which is labeled

with the same text as the task block output, which is the completion status of the task

instance, i.e., if the task instance was completed as "approved" (a valid completion status,

for example), then the execution path goes through the transition labeled "approved".

If more than one task instance was created by the task block, either from the same task

definition or from different task definitions, then the task block output will be the most common

completion status among the task instances. For example, if two task instances finish as

"rejected" and one task instance finishes as "approved", then the task block output will be

"rejected" and the execution path will follow the transition labeled the same.

Task definition properties

The task definitions are created in the task definition editor (Tasks dialog) for the Task block.

When you double-click a Task block, the dialog is shown.

You can use Add and Delete buttons to add or delete task definitions. The list view at the left of

the dialog displays the existing task definitons for the block. The name of task definition is

displayed.

Name

Valid identifier that uniquely identifies the task definition. In the example below, "SetDateTask".

General

Subject

Contains the subject of the task. Used as a summary for e-mail messages or for the task list.

Accepts expressions.

Description

Multi-line description of the task. Here all the instructions about the task should be inserted.

Accepts expressions.

•

•

TMS Workflow Studio 2.20.0.1 Page 22 of 19

Assignment

The name of the user (or group) that the task instance will be assigned to. If it is a user, a single

task instance will be created and will be assigned to that user. If it is a group, then the behaviour

depends on the value of TWorkflowStudio.GroupAssignmentMode property:

gamMultipleTasks: This is default value. A task will be created for each user in the group.

So, if a group has users "john" and "maria", one task will be created for John, and antoher

to Maria, and the tasks will be independent (both will have to be concluded).

gamSingleTask: A single task will be created that will be visible for all users in the group. If

you later include/remove users to/from the group, the existing tasks will become not

visible for users removed from the group, and will become visible to users added to

group. Any user from the group can update the task, including finishing it.

You can override the GroupAssignmentMode settings by using any(groupname) or all(groupname)

in assignment. For example, suppose you have a group named "developers".

Filling "developers" in Assignment will either create a task for each member in

"developers" group, or will create a single task for any member in the group to handle it. It

willl depend on value of GroupAssignmentMode.

Filling "any(developers)" will create a single task for any member in the group to handle

(regardless of GroupAssignmentMode).

Filling "all(developers)" will create one task for each member in the group to handle

(regardless of GroupAssignmentMode).

Send mail notification

If true (checked), then an e-mail notification will be sent to the user when the task instance is

created.

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 23 of 19

Status

Status list

Contains a list of the valid status for the task.

The initial status of the task will be the first status in the list.

Some status can be marked as completion status, by checking the "Completion" option. When

the status of a task instance changes to a completion status, the task is considered finished. You

can have more than one status marked as a completion status.

Status with the "Hidden" option checked is a possible status to the task, but will not be displayed

in user interface for changing the task status (like in the status combo box).

When a task instance is created, the valid status are displayed in a combo box in the task list

dialog, and then user can change the status of a task.

If you have status templates predefined in your application, the user will be able to choose one

of the templates by using the down arrow button at the right of the "Add" button.

Attachment permissions

Defines the permissions for the users when handling attachments.

Show attachments

Shows the attachments tab in the task list. If false (unchecked), the user will not be able to do

anything related to attachments (add, view, etc.). If true (checked) the user will be able to, at

least, open and view attachments.

Allow remove attachments

If true (checked), allows the user to remove attachments from the task instance.

Allow insert attachments

If true (checked), allows the user to insert new attachments to the task instance.

TMS Workflow Studio 2.20.0.1 Page 24 of 19

Allow edit attachments

If true (checked), allows the user to open an existing attachments for editing, and updating its

content.

Fields

Defines fields for the task instance. One or more fields can be defined for a task. A field is a

placeholder for a value. All task fields are shown when a task instance is being displayed for a

user in the task list dialog. Fields can be useful for users to see extra information related to the

task, or for users to input valuable information. They add an extra level of flexibility.

A field is always related to a workflow variable, which is the real container for the field value. A

field does not have a "value" it just reads/writes values from/to a workflow variable.

Text caption

It is the name of the field which will be displayed for the user.

Workflow variable

The name of the workflow variable related to the field. Fields read the value from the workflow

variable, and write back the value to the workflow variable, if the user changes the value.

Read only

Mark the field as read-only, so the information is visible but not editable.

Editor type

Chooses the type of editor control used to edit/view the value of the variable when the user is

editing the task.

Valid values can be:

Text: edit box for free text editing;

Check: checkbox for boolean values;

Date: date picker for date values;

•

•

•

TMS Workflow Studio 2.20.0.1 Page 25 of 19

Memo memo for free multiline text editing;

DropDown: combobox with a list of items to choose (you can define the items to be

displayed in combobox).

Required

When a field is required, the task instance can not be saved (altered) until a value is filled in the

field. So, users cannot add, remove, edit attachments, or change task status, or change any other

information in the task instance, if the field specified as required is empty.

Expiration

Defines the date/time for expiration of a workflow task. If a task has a defined expiration date/

time, when it exceeds this date/time without being closed by an user (changed to a completion

status), its status is automatically changed to an expiration status. To use this feature check the

section Running workflow instances for tasks expiration.

Task does not expire

This is the default option. If checked, the task will never expire, and will keep assigned to the

current user/group until finished (changed to a completion status).

Expiration term

Check this option to enter an expiration term for the task, and enter the amount of days, weeks

or months (integer or floating point value). The expiration date will be calculated from the

creation date of the task.

Expiration date/time

Check this option to enter a fixed due date/time for the task.

•

•

TMS Workflow Studio 2.20.0.1 Page 26 of 19

Custom date/time expression

This option allows to enter a custom expression to evaluate the task expiration date/time. The

expression must return a DateTime value and may use variables from the current workflow, task

properties (is common to use _Task.CreatedOn property to retrieve the task creation date/time

and calculate the expiration date), as well as all the features allowed in expressions.

Expiration status

Determines the status to which the task will be automatically changed after expiring. It must be a

completion status.

Approval block

Overview: It's a special task block which has a single approval task definition.

Allowed inputs: many

Allowed outputs: many (restricted to status list)

Description:

The approval block is just a task block which has a single task definition. This task definition is an

approval task definition and it's a regular task definition with the difference that some properties

are already initialized, with the subject, description, and specially the status list.

The approval task comes with three valid status in status list: "opened", "approved" and

"rejected". The approved and rejected status are completion status for the task.

You can change the approval task definition properties as you want, just like in a task block. The

only difference to the task block is that you cannot create more than one task in the approval

block.

TMS Workflow Studio 2.20.0.1 Page 27 of 19

Script block

Overview: Executes a script code.

Allowed inputs: many

Allowed outputs: one (if the script does not return any value) or many (depending on possible

script results)

Description:

The script block just executes a script code. In most cases, the script block will have only one

output. But you can also use multiple outputs from script block, it will depend on script result.

You can define the script result by using result variable:

If you have more than one output, each leaving transition should have a label, and the execution

flow will take the transition which label is the same as the script result. In the example above, you

must have a transition labeled "result1" so the execution will follow that path.

Run workflow block

Overview: runs a separated workflow instance.

Allowed inputs: many

Allowed outputs: 1

Description:

The run workflow block allows running a new workflow (subworkflow), separated from the

current instance, in a synchronous or asynchronous way. To exchange information between the

workflow instances, a variable mapping should be specified in the block definition.

If "Wait until finished" flag is checked, the current workflow will wait the subworkflow to finish, in

order to continue. The variable mapping is bidiretional in this case.

result := 'result1';

TMS Workflow Studio 2.20.0.1 Page 28 of 19

If "Wait until finished" flag in unchecked, the current workflow will continue execution normally

regardless of subworkflow status. Variable mapping is unidirectional only.

The variable mapping lists which variables in the subworkflow will be updated. In the screenshot

example below, variable "Company" in Shipment workflow (subworkflow) will receive the value of

variable "CompanyName" in the current workflow. In the case of bidirectional mapping, when

Shipment workflow finishes, the value of "CompanyName" will be updated again, with the value

of variable "Company".

Database SQL Block

Overview: Run an SQL statement in the database.

Allowed inputs: many

Allowed outputs: 1

Description:

This block allows the you to specify an SQL statement in the database. You can use expressions

in the SQL statement.

Parameters

SQL Statement: Contains the SQL statement to be executed in the database. Supports

expressions. Example:

Send Mail Block

•

Update Invoice Set Status = 3 Where InvoiceId = [InvoiceId]

TMS Workflow Studio 2.20.0.1 Page 29 of 19

Overview: Sends an e-mail message.

Allowed inputs: many

Allowed outputs: 1

Description:

This block sends an e-mail using the existing e-mail notification settings.

Parameters

To: The e-mail address to send the e-mail (recipient). Supports expressions. Examples:

[UserEmail]

john@foo.com

Cc: E-mail address that will receive a copy of e-mail message (carbon copy). Supports

expressions.

Bcc: E-mail address that will receive a blind carbon copy of e-mail message (blind carbon

coby). This means this e-mail address will not be visible to other recipients. Supports

expressions.

Subject: The subject of the e-mail message. Supports expressions. Example:

Please review invoice #[InvoiceId]

Message: The content (body) of e-mail. Supports expressions.

Comment Block

Overview: Shows a comment.

Allowed inputs: none

Allowed outputs: none

Description:

Adds a visual element to the diagram containing a fixed text. This block doesn't affect the

behavior of diagram and is just used for visual indication. If you want text that supports

expressions, use Text Block.

Text Block

Overview: Displays a dynamic text in diagram.

Allowed inputs: none

Allowed outputs: none

Description:

Use this block to display a text in any place of the diagram which can change according to

workflow context. The main difference between this block and Comment block is that it supports

expressions and has no other visual elements besides the text itself. So you can use it to display

dates, variable values, etc., over or close any other diagram object.

•

◦

◦

•

•

•

◦

•

TMS Workflow Studio 2.20.0.1 Page 30 of 19

Workflow variables
A workflow variable is a named "slot" in a workflow where you can save information, just like a

variable in a program.

You create the variable in the workflow definition, and each workflow instance created from the

workflow definition will have a copy of that workflow variable. So, for example, a workflow

definition for order processing might have the workflow variable "OrderNo". Once a workflow

instance is created, the OrderNo variable will be there, and you can read/write values from/to

that variable, and it's valid only for that workflow instance.

To define a workflow variable:

Open the workflow definition editor.

Open the menu option Workflow | Variables...

The variable editor will be displayed.

The variable editor shows a list of defined workflow variables. You can add and delete variables

using "Add" and "Delete" buttons.

All you need to do is define a name for the variable (in this example, two variables named

"CompanyName" and "StartDate"). Optionally you can define a start value for the variable, in the

"Value" edit box.

You can also use the "Description" field to add comments to variable explaining what is it used

for (documentation of the variable).

Once a workflow variable is defined you can use them in expressions and scripts.

Attachments
Attachments are a powerful feature that allows each workflow instance to have one or more files

associated with it. Users can add, edit or remove attachments (depending on their attachment

permissions) while dealing with the tasks.

1.

2.

3.

TMS Workflow Studio 2.20.0.1 Page 31 of 19

As an example, a user can attach a file (or a set of files) to a task, and then another task can be

created for another user, and this new user can see the file attached by the previous one. Or,

users can edit and update attachments along the workflow execution. This makes stronger

collaboration between users while a workflow instance is being executed.

An attachment is actually a container for a group of files (attachment items). These "containers"

(attachments) can created in the workflow definition, and several attachments can be created. By

default a single attachment is always created in the workflow definition, named "Attachments".

To define attachments in a workflow definition:

Open the workflow definition editor.

Open the menu option Workflow | Attachments...

The attachment editor will be displayed.

Here you can create several attachments, and name each one. In the example above, two

attachments were created: "Order attachments" and "Extra attachments".

Note that you can add attachment items (files) in the attachment in this window. But remember

that this is a workflow definition, several workflow instances will be created from this one. If you

add a file here, that file will be present in each workflow instance created. So, in general, you only

create empty attachments here, and each workflow instance will have its own files in there, if any.

While an attachment is at a workflow instance level and you can manipulate attachments any

time, they are strongly related to task instances. When a task instance is created, it is listed in

the task list dialog. The attachments are also displayed in that dialog (if the task definition

allowed it in the attachment permissions). And then users can add, edit or remove attachments.

When the task instance is saved by the user, the files (attachment items) are updated in the

attachment and are saved together with the workflow instance.

Expressions
Expressions are a powerful way to customize the workflow definition. You can use expressions in

several properties of some blocks, specially in task definition properties of a task block. When

the property is about to be used, all expressions in the text are converted to their values.

Expressions are identified by brackets "[" and "]". Below are examples of expression usage:

1.

2.

3.

TMS Workflow Studio 2.20.0.1 Page 32 of 19

Subject: This is a subject about order number [OrderNo].

Description: Please mr. [UserName], solve this task until date [DateToStr(StartDate + 30)].

In these examples we have three expressions: OrderNo , UserName and DateToStr(StartDate +

30) . Note that expressions use workflow variables. The value of the workflow variable is

evaluated and used in the expression. As an example, the result text, after evaluating the

expressions, would be:

Subject: This is a subject about order number 1042.

Description: Please mr. Smith, solve this task until date 12-05-2020.

Besides workflow variables, expressions also accept:

Aritmetic operators

+, -, /, *, div, mod

Boolean/logical operators

and, or, not, xor

Relational operators

<>, =, <, >, <=, >=

Bitwise operators

shl, shr

Numeric constants

153 (integer), 152.43 (decimal), $AA (hexa)

String constants

'This is a text'

Char constants

#13 (return character)

Delphi-like functions and procedures

Abs

AnsiCompareStr

AnsiCompareText

AnsiLowerCase

AnsiUpperCase

Append

ArcTan

Assigned

AssignFile

Beep

Chdir

Chr

CloseFile

CompareStr

CompareText

Copy

Cos

CreateOleObject

Date

DateTimeToStr

DateToStr

DayOfWeek

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

TMS Workflow Studio 2.20.0.1 Page 33 of 19

Dec

DecodeDate

DecodeTime

Delete

EncodeDate

EncodeTime

EOF

Exp

FilePos

FileSize

FloatToStr

Format

FormatDateTime

FormatFloat

Frac

GetActiveOleObject

High

Inc

IncMonth

InputQuery

Insert

Int

IntToHex

IntToStr

IsLeapYear

IsValidIdent

Length

Ln

Low

LowerCase

Now

Odd

Ord

Pos

Raise

Random

ReadLn

Reset

Rewrite

Round

ShowMessage

Sin

Sqr

Sqrt

StrToDate

StrToDateTime

StrToFloat

StrToInt

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

TMS Workflow Studio 2.20.0.1 Page 34 of 19

StrToIntDef

StrToTime

Time

TimeToStr

Trim

TrimLeft

TrimRight

Trunc

UpperCase

VarArrayCreate

VarArrayHighBound

VarArrayLowBound

VarIsNull

VarToStr

Write

WriteLn

Scripts
You can use scripts in Workflow Studio, like in the Script Block, for example.

Scripts are a powerful way to customize your workflow definition. You can do various tasks with a

script block that would not be possible to do with other blocks. The default syntax language for

script is Pascal. So, you can do almost everything you can do in regular Pascal.

Scripts are also a way to manipulate workflow variables. In scripts they are just regular variables.

For example, if you have defined a workflow variable named "TotalAmount", you can read the

variable value using this code:

and also change the variable value using this code:

Avoid to use message boxes and other dialogs or windows that requires user interaction for the

script to continue, this might cause problems. Keep in mind that the workflow is running in

background in a thread, and all actions performed by the workflow should be silent and smooth.

If you need user interaction you often need to use a task block to create a task for the user.

Variables Dialog
When visually creating a workflow definition, you will use dialogs to edit the properties of several

different blocks. Each of those blocks might have parameters that accept expressions.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

//Calculate comission for the sale

Comission := TotalAmount * 0.2;

//Increase TotalAmount by 15%

TotalAmount := TotalAmount * 1.15;

TMS Workflow Studio 2.20.0.1 Page 35 of 19

In every dialog that has parameters supporting expressions you will find a button named

"Variables..." which opens the Variables Dialog. This dialog shows all the variables that can be

used in expressions, and allows you to drag and drop a specified variable to the parameter

control. This will create an expression with the variable name in the control.

TMS Workflow Studio 2.20.0.1 Page 36 of 19

User interface windows

Workflow definitions dialog
The workflow definitions dialog lists all the workflow definitions saved in the database. You can

open it by using TWorkflowUserInterface component:

A windows like this will open:

In this window you can add, edit and delete workflow definitions. Buttons available:

Add: Adds a new workflow definition to database.

Edit: Opens the workflow definition editor to edit the selected item.

Delete: Removes the workflow definition from the database

Refresh: Updates the list of workflow definitions from the database

Run new: Creates and runs a new workflow instance based on the selected workflow

definition.

Workflow definition editor
The workflow definition editor is where you create and edit workflow definitions. You can open it

to edit a workflow definition by using TWorkflowUserInterface component:

WorkflowUserInterface1.ShowWorkflowDefinitionsDlg;

•

•

•

•

•

WorkflowUserInterface1.EditWorkflowDefinition(MyWorkflowDefinitionObject);

TMS Workflow Studio 2.20.0.1 Page 37 of 7

A windows like this will open:

In the workflow definition editor you can do several tasks. Below are the most common ones:

Adding objects to diagram

To add objects to diagram, click one of the objects in the object toolbar, and then click in the

diagram at the position you want the object to be inserted (or press the mouse button, move the

mouse and release the button, to insert the object with a specified size).

Creating transitions between objects

You can create a transition between block by choosing one of the transitions types in the

transition toolbar:

If a transition type is already selected (button pressed), you don't need to reselect the transition

type every time you want to create a transition.

TMS Workflow Studio 2.20.0.1 Page 38 of 7

Once a transition type is selected, press the mouse button in any link point of the source block (a

link point is the blue "x" displayed in the diagram object), drag the mouse, and then release the

mouse button in any link point of the target block. A transition will be created connecting the

source block to the target block.

Changing visual appearance of diagram objects

You can change visual appearance of diagram objects by using some options in the menu and/or

the toolbars. You can change background color, border color, border style, brush style, pen

width, font, and more. The appearance of diagram objects do not affect the way the workflow

definition will behave, it's just for visual purposes.

Saving

Once the diagram is built, save it by choosing the menu option File | Save, or pressing the save

button in the toolbar.

Workflow definition options

Using the menu Workflow, you can click one of the submenu options to define some specific

options for the workflow definition, like workflow variables and workflow attachments.

Workflow validation

By pressing Ctrl+F9 or choosing menu option "Workflow | Check Workflow", you invoke the

workflow definition validator which will check for problems in the workflow. If there are any

issues with the workflow definition, a panel with errors and warnings will be displayed at the

bottom of editor:

Other operations

The workflow definition editor also provides:

preview/printing capabilities;

clipboard operations;

diagram navigator;

top and left rulers;

grid;

and other features.

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 39 of 7

Task list dialog
The task list dialog is the main window for user interface. It displays all the task instances

assigned to an user or to a specific workflow instance. In a production environment, this dialog

will be used daily by users to check the pending tasks for all current business processes.

To open the task list dialog, use the TWorkflowUserInterface component:

Note that you must pass the user id to the function, not the user name. To make the example

above more clear, we considered that the user name is also the user id.

The following window will open:

Task list view

The task list view shows all the pending tasks for the user (it can also show closed tasks by using

popup menu View | Show all tasks). The information displayed is:

Key: The unique id for the task.

Name: The name of the task definition which generated the task.

Workflow: The name of the workflow definition which generated the workflow instance

which the task belongs to.

Subject: The subject of the task, as specified in the task definition.

Status: Current status of the task.

//Shows all tasks assigned to the user 'scott'

WorkflowUserInterface1.ShowUserTasksDlg('scott');

//Shows all tasks assigned to users scott, tina and john

WorkflowUserInterface1.ShowUsersTasksDlg('scott,tina,john');

//Shows all tasks created from a specific workflow instance (key 29)

WorkflowUserInterface1.ShowWorkInsTasksDlg('29');

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 40 of 7

User: The user which the task is assigned to.

Task tab

The task tab shows the details of the task selected in the task list view. It shows the subject, the

description of the task and the current status of the task.

Users can change the status by changing the combo value.

Workflow tab

The workflow tab shows the workflow diagram and in which situation the diagram is, related to

the selected task in the task list view. It's the status of the workflow instance, not the task status.

In general, if a task is opened, the workflow diagram is in a task block, because the task block

waits for the task to be completed.

Fields tab

The fields tab shows the available fields for the current selected task. The fields are defined in the

task definition properties.

Here users can see the value and also change the value of fields (if the field is not read-only).

Are mentioned in the task definition properties section, field values are read and written from/to

workflow variables.

Fields marked with an asterisk (*) are required, and users cannot save changes to the task until

such fields are filled.

•

TMS Workflow Studio 2.20.0.1 Page 41 of 7

Attachments tab

The task list dialog shows a tab for each attachment in the workflow instance. In the screenshot

below, a single attachment named "Attachments" was created, that's why the tab is named

"Attachments". But you can have as many tabs as the number of attachments defined.

In each attachment tab you can add, remove, open and also edit attachments (depending on the

attachment permissions defined in the task definition properties). You use the buttons at the

right to perform these operations. You can also drag and drop files to the attachment area to

add new attachment files.

The changes made to the attachment files are only saved when the user clicks the "Save

changes" button.

TMS Workflow Studio 2.20.0.1 Page 42 of 7

Log tab

The log tab shows all operations performed in the task by users. It's a log view where you can

see when the task was created, updated, finished, and which user did that. The log also shows

the status changes of the task.

TMS Workflow Studio 2.20.0.1 Page 43 of 7

Using Workflow Studio

programmatically
This chapter describes how to use Workflow Studio programatically. It lists some common tasks

and how to do them from Delphi code.

Running an instance based on a definition

name
It might be a common task to run a workflow instance based on a workflow definition name. The

code below shows how to do that. See also the full example of running a workflow instance from

Delphi code.

Workflow with workflow instance variables
Workflow variables are a very used feature. You will often need to set or read workflow variable

values to/from Delphi variables in order to make a strong integration of workflow with your

application. The code below ilustrates how to set a variable value. See also the full example of

running a workflow instance.

Running an instance from code: full example
The following procedure below is a small example which shows how to run a workflow instance

from Delphi code.

function TForm1.RunSomeWorkflow(ADefinitionName: string);

var

 wdf : TWorkflowDefinition;

 wfi : TWorkflowInstance;

begin

 wdf := WorkflowStudio.WorkflowManager.FindWorkflowDefinitionByName(ADefinitionN

ame);

 wfi := WorkflowStudio.WorkflowManager.CreateWorkflowInstance(wdf);

 WorkflowStudio1.WorkflowEngine.RunWorkflow(wfi);

end;

var

 wfi : TWorkflowInstance;

 wvar: TWorkflowVariable;

begin

 wvar := wfi.Diagram.Variables.FindByName('OrderNo');

 if Assigned(wvar) then

 wvar.Value := AOrderNo;

end;

TMS Workflow Studio 2.20.0.1 Page 44 of 4

It runs the instance based on a workflow definition name, passes an order number so that it is

included as a variable in the workflow instance (the variable "OrderNo" must already exist in the

workflow definition), runs the instance and retrieve the record id for the newly created instance.

Retrieve the list of tasks for a specified user
The code below retrieves the list of tasks for a specified user. You can also check the Count

property of the list to see if the user has no open tasks assigned to him/her (Count = 0 means no

tasks).

Creating and editing a workflow definition
The code below creates a new workflow definition in database named "order processing" and

opens the workflow definition editor for editing the newly created defition.

// Run a workflow definition from a specified definition name, and return the

record key

// in the function result. Set the workflow variable "OrderNo" from the AOrderNo

parameter

function TForm1.RunSomeWorkflow(ADefinitionName: string; AOrderNo: integer): stri

ng;

var

 wdf : TWorkflowDefinition;

 wfi : TWorkflowInstance;

 wvar: TWorkflowVariable;

 i: integer;

begin

 wdf := WorkflowStudio.WorkflowManager.FindWorkflowDefinitionByName(ADefinitionN

ame);

 wfi := WorkflowStudio.WorkflowManager.CreateWorkflowInstance(wdf);

 result := wfi.Key;

 wvar := wfi.Diagram.Variables.FindByName('OrderNo');

 if Assigned(wvar) then

 wvar.Value := AOrderNo;

 WorkflowStudio1.WorkflowEngine.RunWorkflow(wfi);

end;

function TForm1.CreateTaskListForUser(UserID: string): TTaskInstanceList;

begin

 result := TTaskInstanceList.Create(TTaskInstanceItem);

 WorkflowStudio.TaskManager.LoadTaskInstanceList(result, tfUser, UserID, true);

end;

TMS Workflow Studio 2.20.0.1 Page 45 of 4

Running workflow instances for expired tasks
Workflow tasks can have defined a date/time for expiration. If a task has a defined expiration

date/time, when it exceeds this date/time without being closed by an user (changed to a

completion status), its status is automatically changed to an expiration status.

However, this expiration of tasks is not done automatically by Workflow Studio. Since it requires

a monitor being executed periodically to run the pending workflows and check for the tasks to

be expired, you have to implement this monitor in your application, according to your needs (for

example, a program scheduled in system task scheduler, a service, or even a timer inside the

application).

All that needs to be done by this monitor is call a method from workflow engine:

Status Templates
You can programatically create status templates to make it easy for your end-user to define a list

of status when using Task blocks.

procedure TForm1.CreateAndEditDefinition(AName: string);

var

 wdf : TWorkflowDefinition;

begin

 // First check if the workflow definition already exists

 wdf := WorkflowStudio.WorkflowManager.FindWorkflowDefinitionByName(AName);

 if not Assigned(wdf) then

 begin

 wdf := TWorkflowDefinition.Create(nil);

 wdf.Name := AName;

 WorkflowStudio.WorkflowManager.SaveWorkflowDefinition(wdf);

 end;

 // Optionally set dimensions of workflow editor window

 WorkflowStudio.UserInterface.WorkflowEditorWidth := 1024;

 WorkflowStudio.UserInterface.WorkflowEditorHeight := 800;

 // Open the editor

 WorkflowStudio.UserInterface.EditWorkflowDefinition(wdf);

 wdf.Free;

end;

...

begin

 CreateAndEditDefinition('order processing');

end;

WorkflowStudio.WorkflowEngine.RunPendingWorkflowInstances;

TMS Workflow Studio 2.20.0.1 Page 46 of 4

A status template is just predefined named list of status items like "Open", "Approved" and

"Rejected". When the user is creating status items in the task definition properties, he can select

one of the templates to automatically define all the status items without needing to insert each

one individually. To indicate a status is a completion status you must prefix the status name with

"*" (asterisk) character.

To create the templates, you use WorkflowManager.Templates property of TWorkflowStudio

object, this way:

uses

 {...}, wsClasses;

var

 Template: TWorkflowTemplate;

Template := WorkflowStudio1.WorkflowManager.Templates.Add(wttTaskStatus, 'Approva

tion');

Template.Lines.Add('Open');

Template.Lines.Add('*Approved'); // completion status

Template.Lines.Add('*Rejected'); // completion status

Template := WorkflowStudio1.WorkflowManager.Templates.Add(wttTaskStatus, 'Open/

Done');

Template.Lines.Add('Open');

Template.Lines.Add('*Done'); // completion status

TMS Workflow Studio 2.20.0.1 Page 47 of 4

Extending the scripting system
Workflow Studio provides a scripting system which can be used in several places of Workflow

Studio framework. Expressions use the scripting system, and the script block as well, which runs

scripts. You can increase integration between Workflow Studio and your Delphi application by

extendeding the scripting system.

You can register your own classes, methods, properties, variables, functions and procedures so

they can be accessible from script. The following topics describe some common tasks to extend

the scripting system.

The examples shown in the following topics use a Scripter object and describe how to register

new components, methods, classes and properties to a scripter component by using methods

like DefineClass, DefineProp, etc.. However, Workflow Studio creates a new scripter component

instance for each script block that is used in a workflow instance. Due to that, you must use

OnGlobalScripterCreate event to make sure you initialize all scripter components in the system.

The following steps show how to do that. The OnGlobalScripterCreate is a global variable of type

TNotifyEvent declared in Wf.Script.pas unit. First of all, you need to set that global variable to

a method in your application:

Then you declare your global initialization method PrepareScripter. The Sender parameter is the

scripter component, so you just need to typecast it to a generic TwfCustomScripter class. Here is

an example:

Accessing Delphi objects
The following topics show how to register Delphi objects in the scripting system.

Registering Delphi components

One powerful feature of scripter is to access Delphi objects. This way you can make reference to

objects in script, change its properties, call its methods, and so on. However, every object must

be registered in scripter so you can access it. For example, suppose you want to change caption

of form (named Form1). If you try to execute this script:

// PrepareScripter is a method in any of your existing and instantiated classes

OnGlobalScripterCreate := PrepareScripter;

procedure TMyDataModule.PrepareScripter(Sender: Tobject);

begin

 with TwfCustomScripter(Sender) do

 begin

 // Examples:

 AddComponent(Form1);

 DefineMethod({...});

 end;

end;

TMS Workflow Studio 2.20.0.1 Page 48 of 16

SCRIPT:

you will get "Unknown identifier or variable not declared: Form1". To make scripter work, use

AddComponent method:

CODE:

Now scripter will work and form's caption will be changed.

Access to published properties

After a component is added, you have access to its published properties. That's why the caption

property of the form could be changed. Otherwise you would need to register property as well.

Actually, published properties are registered, but scripter does it for you.

Class registering structure

Scripter can call methods and properties of objects. But this methods and properties must be

registered in scripter. The key property for this is TatCustomScripter.Classes property. This

property holds a collection of registered classes (TatClass object), which in turn holds its

collection of registered properties and methods (TatClass.Methods and TatClass.Properties). Each

registered method and property holds a name and the wrapper method (the Delphi written code

that will handle method and property).

When you registered Form1 component in the previous example, scripter automatically

registered TForm class in Classes property, and registered all published properties inside it. To

access methods and public properties, you must registered them, as showed in the following

topics.

Calling methods

To call an object method, you need to register it. For instance, if you want to call ShowModal

method of a newly created form named "Form2". So we must add the form it to scripter using

AddComponent method, and then register ShowModal method:

CODE:

Form1.Caption := 'New caption';

Scripter.AddComponent(Form1);

TMS Workflow Studio 2.20.0.1 Page 49 of 16

SCRIPT:

This example has a lot of new concepts. First, component is added with AddComponent method.

Then, DefineClass method was called to register TCustomForm class. DefineClass method

automatically check if TCustomForm class is already registered or not, so you don't need to do

test it.

After that, ShowModal is registered, using DefineMethod method. Declaration of DefineMethod

is:

AName receives 'ShowModal' - it's the name of method to be used in script.

AArgCount receives 0 - number of input arguments for the method (none, in the case of

ShowModal).

AResultDataType receives tkInteger - it's the data type of method result. ShowModal

returns an integer. If method is not a function but a procedure, AResultDataType should

receive tkNone.

AResultClass receives nil - if method returns an object (not this case), then AResultClass

must contain the object class. For example, TField.

AProc receives ShowModalProc - the method written by the user that works as

ShowModal wrapper.

And, finally, there is ShowModalProc method. It is a method that works as the wrapper: it

implements a call to ShowModal. In this case, it uses some useful methods and properties of

TatVirtualMachine class:

property CurrentObject - contains the instance of object where the method belongs to.

So, it contains the instance of a specified TCustomForm.

procedure Tform1.ShowModalProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(TCustomForm(CurrentObject).ShowModal);

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Form2);

 with Scripter.DefineClass(TCustomForm) do

 begin

 DefineMethod('ShowModal', 0, tkInteger, nil, ShowModalProc);

 end;

end;

ShowResult := Form2.ShowModal;

function DefineMethod(AName: string; AArgCount: integer; AResultDataType: TatType

Kind;

 AResultClass: TClass; AProc: TMachineProc; AIsClassMethod: boolean = false): Ta

tMethod;

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 50 of 16

method ReturnOutputArg - it returns a function result to scripter. In this case, returns the

value returned by TCustomForm.ShowModal method.

More method calling examples

In addition to previous example, this one illustrates how to register and call methods that receive

parameters and return classes. In this example, FieldByName:

SCRIPT:

CODE:

Very similar to Calling methods example. Some comments:

FieldByName method is registered in TDataset class. This allows use of FieldByName

method by any TDataset descendant inside script. If FieldByName was registered in a

TTable class, script would not recognize the method if component was a TQuery.

DefineMethod call defined that FieldByName receives one parameters, its result type is

tkClass, and class result is TField.

Inside FieldByNameProc, GetInputArgAsString method is called in order to get input

parameters. The 0 index indicates that we want the first parameter. For methods that

receive 2 or more parameters, use GetInputArg(1), GetInputArg(2), and so on.

To use ReturnOutputArg in this case, we need to cast resulting TField as integer. This must

be done to return any object. This is because ReturnOutputArg receives a Variant type,

and objects must then be cast to integer.

•

AField := Table1.FieldByName('CustNo');

ShowMessage(AField.DisplayLabel);

procedure TForm1.FieldByNameProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(integer(TDataset(CurrentObject).FieldByName(GetInputArgAsStri

ng(0))));

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Table1);

 with Scripter.DefineClass(TDataset) do

 begin

 DefineMethod('FieldByName', 1, tkClass, TField, FieldByNameProc);

 end;

end;

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 51 of 16

Acessing non-published properties

Just like methods, properties that are not published must be registered. The mechanism is very

similar to method registering, with the difference we must indicate one wrapper to get property

value and another one to set property value. In the following example, the "AsFloat" property of

TField class is registered:

SCRIPT:

CODE:

DefineProp is called passing a tkVariant indicating that Value property is Variant type, and then

passing two methods GetFieldValueProc and SetFieldValueProc, which, in turn, read and write

value property of a TField object. Note that in SetFieldValueProc method was used GetInputArg

(instead of GetInputArgAsString). This is because GetInputArg returns a variant.

Registering indexed properties

A property can be indexed, specially when it is a TCollection descendant. This applies to dataset

fields, grid columns, string items, and so on. So, the code below illustrates how to register

indexed properties. In this example, Strings property of TStrings object is added in other to

change memo content:

SCRIPT:

AField := Table1.FieldByName('Company');

ShowMessage(AField.Value);

procedure TForm1.GetFieldValueProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(TField(CurrentObject).Value);

end;

procedure TForm1.SetFieldValueProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 TField(CurrentObject).Value := GetInputArg(0);

end;

procedure TForm1.PrepareScript;

begin

 with Scripter.DefineClass(TField) do

 begin

 DefineProp('Value', tkVariant, GetFieldValueProc, SetFieldValueProc);

 end;

end;

ShowMessage(Memo1.Lines.Strings[3]);

Memo1.Lines.Strings[3] := Memo1.Lines.Strings[3] + ' with more text added';

TMS Workflow Studio 2.20.0.1 Page 52 of 16

CODE:

Some comments:

DefineProp receives three more parameters than DefineMethod: nil (class type of property,

it's nil because property is string type), false (indicating the property is not a class

property) and 1 (indicating that property is indexed by 1 parameter. This is the key param.

For example, to register Cells property of the grid, this parameter show be 2, since Cells

depends on Row and Col).

In GetStringsProc and SetStringsProc, GetArrayIndex method is used to get the index value

passed by script. The 0 param indicates that it is the first index (in the case of Strings

property, the only one).

Retrieving name of called method or property

You can register the same wrapper for more than one method or property. In this case, you

might need to know which property or method was called. In this case, you can use

CurrentPropertyName or CurrentMethodName. The following example illustrates this usage.

procedure TForm1.GetStringsProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(TStrings(CurrentObject).Strings[GetArrayIndex(0)]);

end;

procedure TForm1.SetStringsProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 TStrings(CurrentObject).Strings[GetArrayIndex(0)] := GetInputArgAsString(0);

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddComponent(Memo1);

 with Scripter.DefineClass(TStrings) do

 begin

 DefineProp('Strings', tkString, GetStringsProc, SetStringsProc, nil, false,

1);

 end;

end;

•

•

TMS Workflow Studio 2.20.0.1 Page 53 of 16

Registering methods with default parameters

You can also register methods which have default parameters in scripter. To do that, you must

pass the number of default parameters in the DefineMethod property. Then, when implementing

the method wrapper, you need to check the number of parameters passed from the script, and

then call the Delphi method with the correct number of parameters. For example, let's say you

have the following procedure declared in Delphi:

To register that procedure in scripter, you use DefineMethod below. Note that the number of

parameters is 5 (five), and the number of default parameters is 3 (three):

Then, in the implementation of SumNumbersProc, just check the number of input parameters

and call the function properly:

procedure TForm1.GenericMessageProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 if CurrentMethodName = 'MessageHello' then

 ShowMessage('Hello')

 else if CurrentMethodName = 'MessageWorld' then

 ShowMessage('World');

end;

procedure TForm1.PrepareScript;

begin

 with Scripter do

 begin

 DefineMethod('MessageHello', 1, tkNone, nil, GenericMessageProc);

 DefineMethod('MessageWorld', 1, tkNone, nil, GenericMessageProc);

 end;

end;

function SumNumbers(A, B: double; C: double = 0; D: double = 0; E: double = 0): d

ouble;

Scripter.DefineMethod('SumNumbers', 5 {number of total parameters},

 tkFloat, nil, SumNumbersProc, false, 3 {number of default parameters});

TMS Workflow Studio 2.20.0.1 Page 54 of 16

Acessing Delphi functions, variables and

constants
The following topics describe how to register regular procedures, functions and global variables

in scripting system.

Overview

In addition to access Delphi objects, scripter allows integration with regular procedures and

functions, global variables and global constants. The mechanism is very similar to accessing

Delphi objects. In fact, scripter internally consider regular procedures and functions as methods,

and global variables and constants are props.

Registering global constants

Registering a constant is a simple task in scripter: use AddConstant method to add the constant

and the name it will be known in scripter:

CODE:

SCRIPT:

Access the constants in script just like you do in Delphi code.

procedure TForm1.SumNumbersProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 begin

 case InputArgCount of

 2: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1))

);

 3: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1),

 GetInputArgAsFloat(2)));

 4: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1),

 GetInputArgAsFloat(2), GetInputArgAsFloat(3)));

 5: ReturnOutputArg(SumNumbers(GetInputArgAsFloat(0), GetInputArgAsFloat(1),

 GetInputArgAsFloat(2), GetInputArgAsFloat(3), GetInputArgAsFloat(4)));

 end;

 end;

end;

Scripter.AddConstant('MaxInt', MaxInt);

Scripter.AddConstant('Pi', pi);

Scripter.AddConstant('MyBirthday', EncodeDate(1992, 5, 30));

ShowMessage('Max integer is ' + IntToStr(MaxInt));

ShowMessage('Value of pi is ' + FloatToStr(pi));

ShowMessage('I was born on ' + DateToStr(MyBirthday));

TMS Workflow Studio 2.20.0.1 Page 55 of 16

Acessing global variables

To register a variable in scripter, you must use AddVariable method. Variables can be added in a

similar way to constants: passing the variable name and the variable itself. In addition, you can

also add variable in the way you do with properties: use a wrapper method to get variable value

and set variable value:

CODE:

SCRIPT:

var

 MyVar: Variant;

 ZipCode: string[15];

procedure TForm1.GetZipCodeProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(ZipCode);

end;

procedure TForm1.SetZipCodeProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ZipCode := GetInputArgAsString(0);

end;

procedure TForm1.PrepareScript;

begin

 Scripter.AddVariable('ShortDateFormat', ShortDateFormat);

 Scripter.AddVariable('MyVar', MyVar);

 Scripter.DefineProp('ZipCode', tkString, GetZipCodeProc, SetZipCodeProc);

 Scripter.AddObject('Application', Application);

end;

procedure TForm1.Run1Click(Sender: TObject);

begin

 PrepareScript;

 MyVar := 'Old value';

 ZipCode := '987654321';

 Application.Tag := 10;

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

 ShowMessage('Value of MyVar variable in Delphi is ' + VarToStr(MyVar));

 ShowMessage('Value of ZipCode variable in Delphi is ' + VarToStr(ZipCode));

end;

TMS Workflow Studio 2.20.0.1 Page 56 of 16

Calling regular functions and procedures

In scripter, regular functions and procedures are added like methods. The difference is that you

don't add the procedure in any class, but in scripter itself, using DefineMethod method. The

example below illustrates how to add QuotedStr and StringOfChar methods:

SCRIPT:

CODE:

ShowMessage('Today is ' + DateToStr(Date) + ' in old short date format');

ShortDateFormat := 'dd-mmmm-yyyy';

ShowMessage('Now today is ' + DateToStr(Date) + ' in new short date format');

ShowMessage('My var value was "' + MyVar + '"');

MyVar := 'My new var value';

ShowMessage('Old Zip code is ' + ZipCode);

ZipCode := '109020';

ShowMessage('Application tag is ' + IntToStr(Application.Tag));

ShowMessage(QuotedStr(StringOfChar('+', 3)));

{ TSomeLibrary }

procedure TSomeLibrary.Init;

begin

 Scripter.DefineMethod('QuotedStr', 1, tkString, nil, QuotedStrProc);

 Scripter.DefineMethod('StringOfChar', 2, tkString, nil, StringOfCharProc);

end;

procedure TSomeLibrary.QuotedStrProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(QuotedStr(GetInputArgAsString(0)));

end;

procedure TSomeLibrary.StringOfCharProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(StringOfChar(GetInputArgAsString(0)[1],

GetInputArgAsInteger(1)));

end;

procedure TForm1.Run1Click(Sender: TObject);

begin

 Scripter.AddLibrary(TSomeLibrary);

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

end;

TMS Workflow Studio 2.20.0.1 Page 57 of 16

Since there is no big difference from defining methods, the example above introduces an extra

concept: libraries. Note that the way methods are defined didn't change (a call to DefineMethod)

and neither the way wrapper are implemented (QuotedStrProc and StringOfCharProc). The only

difference is the way they are located: instead of TForm1 class, they belong to a different class

named TSomeLibrary. The following topic covers the use of libraries.

Using libraries
Libraries are just a concept of extending scripter by adding more components, methods,

properties, classes to be available from script. You can do that by manually registering a single

component, class or method. A library is just a way of doing that in a more organized way.

Delphi-based libraries

In script, you can use libraries for registered methods and properties. Look at the two codes

below, the first one uses libraries and the second use the mechanism used in this doc until now:

CODE 1:

type

 TExampleLibrary = class(TatScripterLibrary)

 protected

 procedure CurrToStrProc(AMachine: TatVirtualMachine);

 procedure Init; override;

 class function LibraryName: string; override;

 end;

class function TExampleLibrary.LibraryName: string;

begin

 result := 'Example';

end;

procedure TExampleLibrary.Init;

begin

 Scripter.DefineMethod('CurrToStr', 1, tkInteger, nil, CurrToStrProc);

end;

procedure TExampleLibrary.CurrToStrProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(CurrToStr(GetInputArgAsFloat(0)));

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 Scripter.AddLibrary(TExampleLibrary);

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

end;

TMS Workflow Studio 2.20.0.1 Page 58 of 16

CODE 2:

Both codes do the same: add CurrToStr procedure to script. Note that scripter initialization

method (Init in Code 1 and PrepareScript in Code 2) is the same in both codes. And so is

CurrToStrProc method - no difference. The two differences between the code are:

The class where the methods belong to. In Code 1, methods belong to a special class

named TExampleLibrary, which descends from TatScripterLibrary. In Code 2, the belong to

the current form (TForm1).

In Code 1, scripter preparation is done adding TExampleLibrary class to scripter, using

AddLibrary method. In Code 2, PrepareScript method is called directly.

So when to use one way or another? There is no rule - use the way you feel more confortable.

Here are pros and cons of each:

Declaring wrapper and preparing methods in an existing class and object

Pros: More convenient. Just create a method inside form, or datamodule, or any object.

Cons: When running script, you must be sure that object is instantiated. It's more difficult

to reuse code (wrapper and preparation methods).

Using libraries, declaring wrapper and preparing methods in a TatScripterLibrary class

descendant

Pros: No need to check if class is instantiated - scripter does it automatically. It is easy to

port code - all methods are inside a class library, so you can add it in any scripter you

want, put it in a separate unit, etc..

Cons: Just the extra work of declaring the new class.

In addition to using AddLibrary method, you can use RegisterScripterLibrary procedure. For

example:

procedure TForm1.PrepareScript;

begin

 Scripter.DefineMethod('CurrToStr', 1, tkInteger, nil, CurrToStrProc);

end;

procedure TForm1.CurrToStrProc(AMachine: TatVirtualMachine);

begin

 with AMachine do

 ReturnOutputArg(CurrToStr(GetInputArgAsFloat(0)));

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 PrepareScript;

 Scripter.SourceCode := Memo1.Lines;

 Scripter.Execute;

end;

•

•

•

•

•

•

RegisterScripterLibrary(TExampleLibrary);

RegisterScripterLibrary(TAnotherLibrary, True);

TMS Workflow Studio 2.20.0.1 Page 59 of 16

RegisterScripterLibrary is a global procedure that registers the library in a global list, so all scripter

components are aware of that library. The second parameter of RegisterScripterLibrary indicates

if the library is load automatically or not. In the example above, TAnotherLibrary is called with

Explicit Load (True), while TExampleLibrary is called with Explicit Load false (default is false).

When explicit load is false (case of TExampleLibrary), every scripter that is instantiated in

application will automatically load the library.

When explicit load is true (case of TAnotherLibrary), user can load the library dinamically by using

uses directive:

SCRIPT:

Note that "Another" name is informed by TatAnotherLibrary.LibraryName class method.

The TatSystemLibrary library

There is a library that is added by default to all scripter components, it is the TatSystemLibrary.

This library is declared in the uSystemLibrary unit. It adds commonly used routines and

functions to scripter, such like ShowMessage and IntToStr.

Functions added by TatSystemLibrary

The following functions are added by the TatSystemLibrary (refer to Delphi documentation for an

explanation of each function):

Abs

AnsiCompareStr

AnsiCompareText

AnsiLowerCase

AnsiUpperCase

Append

ArcTan

Assigned

AssignFile

Beep

Chdir

Chr

CloseFile

CompareStr

CompareText

Copy

Cos

CreateOleObject

Date

DateTimeToStr

uses Another;

// Do something with objects and procedures register by TatAnotherLibrary

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 60 of 16

DateToStr

DayOfWeek

Dec

DecodeDate

DecodeTime

Delete

EncodeDate

EncodeTime

EOF

Exp

FilePos

FileSize

FloatToStr

Format

FormatDateTime

FormatFloat

Frac

GetActiveOleObject

High

Inc

IncMonth

InputQuery

Insert

Int

Interpret (*)

IntToHex

IntToStr

IsLeapYear

IsValidIdent

Length

Ln

Low

LowerCase

Machine (*)

Now

Odd

Ord

Pos

Raise

Random

ReadLn

Reset

Rewrite

Round

Scripter (*)

SetOf (*)

ShowMessage

Sin

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 61 of 16

Sqr

Sqrt

StrToDate

StrToDateTime

StrToFloat

StrToInt

StrToIntDef

StrToTime

Time

TimeToStr

Trim

TrimLeft

TrimRight

Trunc

UpperCase

VarArrayCreate

VarArrayHighBound

VarArrayLowBound

VarIsNull

VarToStr

Write

WriteLn

All functions/procedures added are similar to the Delphi ones, with the exception of those

marked with a "*", explained below:

Executes the script source code specified by Ascript parameter

Returns the current virtual machine executing the script.

Returns the current scripter component.

Returns a set from the array passed. For example:

Removing functions from the System library

To remove a function from the system library, avoiding the end-user to use the function from the

script, you just need to destroy the associated method object in the SystemLibrary class:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

procedure Interpret(AScript: string);

function Machine: TatVirtualMachine;

function Scripter: TatCustomScripter;

function SetOf(array): integer;

MyFontStyle := SetOf([fsBold, fsItalic]);

TMS Workflow Studio 2.20.0.1 Page 62 of 16

MyScripter.SystemLibrary.MethodByName('ShowMessage').Free;

TMS Workflow Studio 2.20.0.1 Page 63 of 16

About
This documentation is for TMS Workflow Studio.

In this section:

Copyright Notice

What's New

Getting Support

Breaking Changes

TMS Workflow Studio 2.20.0.1 Page 64 of 1

Copyright Notice
TMS Workflow Studio components trial version are free for use in non-commercial applications,

that is any software that is not being sold in one or another way or that does not generate

income in any way by the use of the application.

For use in commercial applications, you must purchase a single license or a site license of TMS

Workflow Studio. A site license allows an unlimited number of developers within the company

holding the license to use the components for commercial application development and to

obtain free updates for a full version cycle and priority email support. A single developer license

allows ONE developer within a company to use the components for commercial application

development, to obtain free updates and priority email support. A single developer license is

NOT transferable to another developer within the company or to a developer from another

company. Both licenses allow royalty free use of the components when used in binary compiled

applications.

IMPORTANT

TMS Workflow Studio components, trial or registered versions, cannot be used to create a

commercial general purpose workflow application. The main purpose of applications created

using TMS Workflow Studio components must as such be different from the generic workflow

capabilities offered by the components.

The component cannot be distributed in any other way except through free accessible Internet

Web pages or ftp servers. The component can only be distributed on CD-ROM or other media

with written autorization of the author.

Online registration for TMS Workflow Studio is available at https://www.tmssoftware.com/site/

orders.asp. Source code & license is sent immediately upon receipt of check or registration by

email.

TMS Workflow Studio is Copyright © 2002-2025 TMS Software. ALL RIGHTS RESERVED.

No part of this help may be reproduced, stored in any retrieval system, copied or modified,

transmitted in any form or by any means electronic or mechanical, including photocopying and

recording for purposes others than the purchaser's personal use.

TMS Workflow Studio 2.20.0.1 Page 65 of 1

https://www.tmssoftware.com/site/orders.asp
https://www.tmssoftware.com/site/orders.asp

What's New

Version 2.20 (Nov-2023)
New: Delphi 12 Support.

Version 2.19 (Feb-2023)
Improved: Dutch translation updated.

Fixed: Opening attachments was rarely opening the wrong file.

Improved: Temporary attachment file now deleted after being edited/viewed.

Version 2.18 (Apr-2022)
New: SendMail block now allows to setup the From field.

New: SDAC driver and PostgreSQL script to create required tables and fields (both kind

contributions from Adan).

Fixed: Errors raised while executing script transitions were being ignore by the engine or

error block not being executed when present.

Version 2.17 (Sep-2021)
New: Delphi 11 / RAD Studio 11 support.

Fixed: Task list taking too much memory for workflow definitions with many script blocks.

Version 2.16 (Mar-2021)
Improved: Updated Dutch translation.

Fixed: Setting ThreadedExecution to True by default to return to previous default

behavior (regression).

Version 2.15 (Aug-2020)
Improved: Workflow dialogs are now presented in correct size in HDPI and scaled forms.

Version 2.14 (Jun-2020)
New: Support for RAD Studio 10.4 Sydney.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 66 of 10

Improved: In task view dialog, the combo to update task status was moved to the bottom

panel, being accessible at all time, regardless of the tab selected in the dialog.

Version 2.13 (Jan-2020)
New: Czech language translation.

New: French language translation.

Improved: Updates in Dutch translation.

Fixed: Task expiration in hours, minutes or seconds was causing workflow definition error.

Fixed: Workflow editor could not remove all attachments or all variables in a workflow

definition.

Fixed: Units in drivers folder caused Delphi IDE to hang due to include files.

Version 2.12 (Dec-2018)
New: Support for Delphi/C++Builder 10.3 Rio.

New: ShowUserTasksDlg and similar functions now have an option "wfmNonModal"

that allows showing the task window as non-modal.

Version 2.11 (Mar-2018)
New: TWorkflowStudio.EnableAssignmentExpression for custom group assignment

any(group), all(group).

If you set this property to True (it's False by default), you can choose the Group

Assignment Mode in each task, using an expression in the "Assignment" field in Task

definition properties dialog. For example, suppose you have a group named "developers".

Filling "developers" in Assignment will either create a task for each member in

"developers" group, or will create a single task for any member in the group to

handle it. It willl depend on value of GroupAssignmentMode.

Filling "any(developers)" will create a single task for any member in the group to

handle (regardless of GroupAssignmentMode)

Filling "all(developers)" will create one task for each member in the group to handle

(regardless of GroupAssignmentMode)

New: TaskListKeySortMode global config allows changing the way task lists are

ordered when sorting by the (task) "Key" column.

This actually fixes a bug in task list order. When sorted by key, the task list was keeping

the order of records retrieved by the database. This sometimes would not be the ideal

order. Now you can change it using this global config. For example, use the code below to

make sure tasks are listed by the actual integer value of the "Key" column (correct

ordering):

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

•

TMS Workflow Studio 2.20.0.1 Page 67 of 10

New: TTaskListView.OnItemCompare event.

Allows performing custom comparison of task items for ordering when a column is clicked

in the task list view.

Version 2.10 (Oct-2017)
Improved: Dutch translation updated.

Version 2.9 (Jul-2017)
Improved: Workflow validation now shows errors in expressions of task definition, like

expressions in subject, description, assignmentrule, etc.

Improved: Task block validation checks for missing expiration status when there is an

expiration date defined.

Improved: Fork/join paths now can have internal cyclical paths.

Fixed: Next run time (date to check for expired tasks) was being wrongly calculated when

there were task instances with expiration date running in parallel (in fork paths).

Previous Versions

Version 2.8 (Mar-2017)

New: RAD Studio 10.2 Tokyo.

Improved: Added TEmailInformation.Instance property, contains TWorkflowInstance

reference.

Version 2.7 (Mar-2017)

New: Allow reordering of task fields in task definition dialog using Ctrl+Arrow keys or

drag/drop.

New: TTaskListView.SortOnColumnClick property.

New: Task expiration by hours, minutes or seconds.

Improved: Updated German and Spanish translations.

Fixed: Sort order of task list was being reset after the list was refresh (upon task update for

example).

 uses {...}, wsControls;

 TaskListKeySortMode := tsmInteger; // or tsmString;

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 68 of 10

Version 2.6 (Aug-2016)

New: Clickable column titles in task list allows reordering tasks.

Improved: While editing a task, name is truncated to 50 characters at interface level.

Fixed: Task block with a self-transition (leaving from and entering the same task block) was

not creating a new task through that transition.

Fixed: Compilation for AnyDac and FIB Plus drivers.

Version 2.5 (Apr-2016)

New: Support for Delphi/C++Builder 10.1 Berlin

Improved: For better user experience, when there is a version conflict when saving a task,

user is offered the option to refresh the task list right away

Improved: Upgrade Dutch language

Fixed: Tasks/instances that were taking long time to run were causing too much conflicts

when version control was enabled.

Fixed: event TWorkflowStudio.BeforeSaveTaskInstance not being fired when task was

automatically created by workflow execution

Fixed: Fibplus and AnyDac drivers did not compile after latest version

Fixed: Error in resources when using C++ with runtime packages

Fixed: FIBPlus driver causing errors when using blob fields to save workflow data

Version 2.4 (Nov-2015)

New: TWorkflowStudio.VersionControlEnabled allows version control on workflow and task

instances.

New: FireDAC database adapter.

New: Refresh (F5) popup menu option in task list dialog.

Improved: Transition editor now only being displayed automatically when the source block

has output options to be selected from.

Improved: Updated German and Spanish languages.

Fixed: Transition script indicator icon was being displayed even when the transition script

was not supposed to be executed.

Fixed: Date-time editor not working when bound to variables with empty values.

Fixed: Regression error when using Database Block.

Version 2.3.1 (Sep-2015)

New: RAD Studio 10 Seattle support.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 69 of 10

Version 2.3 (Aug-2015)

New: Dutch translation.

New: MySQL script for workflow tables.

New: TWorkflowStudio.OnDesignerCreated allows direct access to the designer form for

low-level customization.

Improved: Workflow verification now warns if a task block has a completion status that

doesn't have a corresponding transition.

Improved: Updated translations for German, Spanish and Portuguese languages.

Improved: User interface tweaks for better handling of non-English text.

Improved: Status templates button disabled if no templates are available.

Improved: A warning is displayed if user changes a task status and tries to leave the form

without saving.

Fixed: In expiration tab of task/approval block, list of completion status were not being

listed.

Fixed: "Send Mail Notification" check box state was not being saved when editing

Approval Task Block.

Fixed: Text block not displaying text in workflow instance if text was edited directly in the

block (not using editor).

Version 2.2 (May-2015)

New: Editor types allow choosing the control used to edit a task field.

New: Workflow validation panel shows all erros and warnings when checking a workflow

definition.

New: Descriptions in workflow variables allow better documentation and understanding

the purpose of a variable

New: TWorkflowUserInterface.WorkflowEditorWidth and WorkflowEditorHeight properties

allow setting default workflow definition editor size.

New: Delphi/C++Builder XE8 support (2.1.1).

Improved: Warning on duplicated variable names in workflow definition.

Improved: Transition scripts now allowed in any transition (previously only task transitions

could have scripts).

Improved: German translation updated.

Fixed: Error when using scripts in definitions with duplicated variable names.

Fixed: TTaskInstance.CreatedOn property not being saved when task was inserted (2.1.1).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 70 of 10

Version 2.1 (Mar-2015)

New: Variables Dialog helps creating variable expressions in several parameter controls.

New: Database SQL block to execute an SQL statement in the database.

New: Send Mail block to easily send an e-mail message.

New: Scripts in transitions allow adding custom logic whenever the workflow execution

goes through a specific transition.

New: Comment and Text blocks improves visual indications in the workflow diagram.

New: Status templates for predefined set of status makes it fast to create new task blocks

with same status items.

New: Popup menu with "Copy as Image" option when visualizing the diagram in task list.

Improved: Variables are now sorted by name in the Workflow Variables form.

Version 2.0 (Mar-2015)

New: Full TMS Diagram Studio now included in TMS Workflow Studio.

New: Packages structure changed. Now it allows using runtime packages with 64-bit

applications. It's a breaking change.

Version 1.9.3 (Sep-2014)

New: RAD Studio XE7 support.

Fixed: "Save as.." menu option should not be visible in workflow definition editor.

Fixed: Field values in task list were not being updated in some situations.

Version 1.9.2 (Apr-2014)

New: RAD Studio XE6 support.

version 1.9.1 (Mar-2014)

New: Diagram Navigator in workflow editor.

New: TWorkflowUserInterface.BeforeTaskListShow event allows you to have access to

TaskList form and perform visual modifications in it before it's displayed.

New: TWorkflowDB.UseBase64 property can be used to improve performance in Delphi

XE2 and lower versions.

Fixed: Expiration Combo box items in expiration frame now being properly translated.

Fixed: Issue with loading workflow definitions from sql server using ADO.

Fixed: Error Handler block now also executed after some internal errors (like script

execution).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 71 of 10

Fixed: Issues when running more than one subworkflow simultaneously and waiting for

both to complete (when using forks for example).

Version 1.9 (Oct-2013)

New: TAttachmentViewMode allow displaying attachments and task info in a single pane

instead of different tabs.

New: Delphi/C++Builder XE5 support.

Improved: Better performance for saving/loading workflow definitions, instances and tasks

when using ADO.

Fixed: Workfklow blocks not displayed when language different than English was used.

Fixed: Empty "Basic" category removed from toolbar.

Version 1.8.1 (Mar-2013)

New: Delphi/C++Builder XE4 support.

Fixed: Wrong text in file filter in open file dialog when adding attachments.

Version 1.8 (Sep-2012)

New: Delphi/C++Builder XE3 support.

Improved: Task list window now refreshes automatically when a workflow execution is

finished.

Fixed: Issue when using ODBC + SQLDirect (parameter order was incorrect).

Fixed: ScriptEngineInitialized not being called when executing workflow validation.

Dropped support for Delphi 5, 6, 2005, 2006 and C++Builder 6, 2006.

Version 1.7 (Apr-2012)

New: 64-bit support for Rad Studio XE2.

New: German, Chinese and Italian translation for Workflow user interface.

Version 1.6 (Sep-2011)

New: Delphi/C++Builder XE2 support.

Improved: Optimization when using blob fiels with ADO.

Version 1.5.0.1 (Oct-2010)

Fixed: Issues installing Workflow Studio on RAD Studio XE.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 72 of 10

Version 1.5 (Oct-2010)

New: Timeout feature for automatic expiration of workflow tasks.

New: "Run workflow" block to run a separated workflow instance.

New: RAD Studio XE support.

New: Option to define hidden status in workflow tasks.

New: Property DisplayTaskStatus in workflow diagram.

New: Administrator privilege in user groups to allow updating of tasks assigned to

different users.

New: High level properties to handle with task status programmatically.

New: Support for AnyDAC components.

New: Event OnInitializeScriptEngine to initialize Script Engine object.

New: Event BeforeSaveTaskInstance in WorkflowStudio.

Improved: User interface for defining status in workflow tasks.

Fixed: Issues with multiple outputs from script blocks.

Fixed: Flickering when moving blocks on Workflow diagram.

Fixed: Issues with wsClasses unit in C++Builder.

Version 1.4.1 (Jul-2010)

New: Event "OnGetNow" to retrieve current date/time.

Improved: Small visual changes in several forms.

Fixed: Error on Redo after undoing a transition line insertion.

Fixed: Field labels are not painted when using XP Manifest (Delphi 7).

Fixed: Error adding attachments to workflow definition.

Version 1.4 (Jan-2010)

Improved: WorkflowStudio global variable removed, allowing multiple instances of the

component to be used.

Improved: TCustomWorkflowDB.ComponentToString and ComponentFromString methods

made protected.

Improved: Several methods in TCustomWorkflowDB made virtual.

Version 1.3 (Feb-2009)

New: Redesigned workflow definition editor now based on internal diagram editor.

New: More modern toolbar in workflow definition editor (Delphi 2005 and up).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 73 of 10

New: Workflow definition editor now support grouping blocks for easier design.

New: "_Workflow" variable available from scripts allowing access to the workflow diagram

and its methods and properties.

New: TWorkflowStudio.OnRunFinished event - being fired when a workflow instance

execution is finished.

Fixed: Minor bug fixes.

Version 1.2 (Oct-2008)

New: Delphi 2009/C++Builder 2009 support.

New: TWorkflowStudio.GroupAssignmentMode property allows to create a single task for

multiple users in group.

Improved: Prevent users from changing tasks assigned to other users.

Fixed: AV happening in threads in some situations.

Version 1.1 (May-2008)

New: Support for C++Builder 6, 2006 and 2007.

New: Support for FIBPlus database components.

New: Spanish translation added.

New: OnTaskCreated and OnTaskFinished events in TWorkflowStudio component.

New: OnBeforeExecuteNode and OnAfterExecuteNode events in TWorkflowStudio

component.

New: TTaskInstance.CreatedOn property.

New: TWorkflowInstance status: wsFinishedWithError.

New: TWorkflowStudio.OnWorkInsError event allows higher control of errors raised from

an workflow execution.

New: It's possible now to use expressions in the "Assigned To" field in a task definition so

that the task is assigned dinamically to an user/group.

New: Task List dialog now can be called in MDI mode, beside the existing modal mode.

You can use, e.g., ShowUserTasksDlg('john', wfmMDI).

Improved: Error handling while executing workflows. An error message is displayed when

workflow is finished with error (can be avoided with OnWorkInsError).

Improved: Thread performance to execute workflow instances.

Fixed: Minor bugs in TWorkflowADODB and TWorkflowDBXDB caused AV when deleting a

connection component at design time.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 74 of 10

Version 1.0 (Oct-2007)

First release.•

TMS Workflow Studio 2.20.0.1 Page 75 of 10

Getting Support

General notes
Before contacting support:

Make sure to read the tips, faq and readme.txt or install.txt files in component

distributions.

Make sure you have the latest version of the component(s).

When contacting support:

Specify with which component you have a problem.

Specify which Delphi or C++Builder version you're using and preferably also on which OS.

In case of IntraWeb or ASP.NET components, specify with which browser the issue occurs.

For registered users, use the special priority support email address (mentioned in

registration email) & provide your registration email & code. This will guarantee the

fastest route to a solution.

Send email from an email account that

allows to receive replies sent from our server;

allows to receive ZIP file attachements;

has a properly specified & working reply address.

Getting support
For general information: info@tmssoftware.com

Fax: +32-56-359696

For all questions, comments, problems and feature request for VCL components :

help@tmssoftware.com.

To improve efficiency and speed of help, refer to the version of Delphi, C++Builder, Visual Studio

.NET you are using as well as the version of the component. In case of problems, always try to

use the latest version available first.

•

•

•

•

•

•

1.

2.

3.

TMS Workflow Studio 2.20.0.1 Page 76 of 1

mailto:info@tmssoftware.com
mailto:help@tmssoftware.com

Breaking Changes
List of changes in each version that breaks backward compatibility.

Version 2.0
There was a big package restructuration in version 2.0. More info in the dedicated topic.

TMS Workflow doesn't use TMS Scripter units anymore. They were replaced by similar

units with different names.

Version 1.5
Workflow Studio version 1.5 include some new features that required small changes in

underlying database structure.

Before upgrading Workflow Studio from previous versions to version 1.5, the

database structure must be updated.

For details about the needed changes, see the section Upgrading database from

previous versions.

Version 1.4
The global variable WorkflowStudio was removed. Replace any reference to

WorkflowStudio by a reference to the component TWorkflowStudio you are using.

The class TWorkflowDiagram was moved to the unit wsDiagram.

Components derived from TListView (like TTaskListView) now have a WorkflowStudio

property that must be set to reference the TWorkflowStudio component being used.

The component TWorkflowDiagram also has a new property WorkflowStudio that must

refer to a TWorkflowStudio component.

Version 2.0 - Package Restructuration
TMS Workflow packages have been restructured. The packages are now separated into runtime

and design-time packages, allowing a better usage of them in an application using runtime

packages (allows it to work with 64-bit applications using runtime packages, for example). Also,

Libsuffix option is now being used so the dcp files are generated with the same name for all

Delphi versions. Here is an overview of what's changed:

Before version 2.0, there was a single package named workflowstudio<version>.dpk (where

<version> is the "name" of delphi version), which generated BPL and DCP with same names:

Previous versions:

•

•

•

◦

◦

•

•

•

•

TMS Workflow Studio 2.20.0.1 Page 77 of 3

Version Package File Name BPL File Name DCP File Name

Delphi 7 workflowstudio7.dpk workflowstudio7.bpl workflowstudio7.dcp

Delphi 2007 workflowstudio2007.dpk workflowstudio2007.bpl workflowstudio2007.dcp

Delphi 2009 workflowstudio2009.dpk workflowstudio2009.bpl workflowstudio2009.dcp

Delphi 2010 workflowstudio2010.dpk workflowstudio2010.bpl workflowstudio2010.dcp

Delphi XE workflowstudio2011.dpk workflowstudio2011.bpl workflowstudio2011.dcp

Delphi XE2 workflowstudioxe2.dpk workflowstudioxe2.bpl workflowstudioxe2.dcp

Delphi XE3 workflowstudioxe3.dpk workflowstudioxe3.bpl workflowstudioxe3.dcp

Delphi XE4 workflowstudioxe4.dpk workflowstudioxe4.bpl workflowstudioxe4.dcp

Delphi XE5 workflowstudioxe5.dpk workflowstudioxe5.bpl workflowstudioxe5.dcp

Delphi XE6 workflowstudioxe6.dpk workflowstudioxe6.bpl workflowstudioxe6.dcp

Delphi XE7 workflowstudioxe7.dpk workflowstudioxe7.bpl workflowstudioxe7.dcp

From version 2.0 and on, there are two packages:

TMSWorkflow.dpk (runtime package)

dclTMSWorkflow.dpk (design-time packages)

DCP files are generated with same name, and only BPL files are generated with the suffix

indicating the Delphi version. The suffix, however, is the same used by the IDE packages (numeric

one indicating IDE version: 160, 170, etc.). The new package structure is as following (note that

when 6.5 was released, latest Delphi version was XE7. Packages for newer versions will follow the

same structure):

Version Package File Name BPL File Name DCP File Name

Delphi 7 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow70.bpl

dclTMSWorkflow70.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi 2007 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow100.bpl

dclTMSWorkflow100.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi 2009 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow120.bpl

dclTMSWorkflow120.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi 2010 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow140.bpl

dclTMSWorkflow140.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi XE TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow150.bpl

dclTMSWorkflow150.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi XE2 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow160.bpl

dclTMSWorkflow160.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi XE3 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow170.bpl

dclTMSWorkflow170.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

•

•

TMS Workflow Studio 2.20.0.1 Page 78 of 3

Version Package File Name BPL File Name DCP File Name

Delphi XE4 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow180.bpl

dclTMSWorkflow180.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi XE5 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow190.bpl

dclTMSWorkflow190.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi XE6 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow200.bpl

dclTMSWorkflow200.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

Delphi XE7 TMSWorkflow.dpk

dclTMSWorkflow.dpk

TMSWorkflow210.bpl

dclTMSWorkflow210.bpl

TMSWorkflow.dcp

dclTMSWorkflow.dcp

TMS Workflow Studio 2.20.0.1 Page 79 of 3

	Overview
	Basic Concepts
	Workflows and Tasks
	Workflow Definition
	Workflow Instance
	Task Definition
	Task Instance
	Workflow Engine
	Workflow Users and Groups
	Version Control

	Getting Started
	Components Overview
	TWorkflowStudio component
	TWorkflowDB component
	TWorkflowADODB component
	TWorkflowDBXDB component
	TWorkflowpFIBDB component
	Installing the component

	TWorkflowFireDACDB component
	Installing the component

	Auxiliary components
	TWorkflowDiagram
	TWorkDefListView
	TTaskListView
	TAttachmentListView
	TTaskStatusCombo
	TTaskLogListView

	"Hello world" tutorial
	E-mail notifications
	Monitoring expired tasks (task timeout)
	Localization

	Database Structure
	Underlying Database Structure
	Table wsattachment
	Table wstaskinstance
	Table wsworkflowdefinition
	Table wsworkflowinstance
	Table wstasklog
	Table wsconfig

	Upgrading database from previous versions
	From previous versions to version 2.4
	From previous versions to version 1.5

	Creating Workflow Definitions
	Workflow diagram objects
	Start block
	End block
	Error block
	Source connector
	Target connector
	Transition
	Fork object
	Join object
	Decision block
	Task block
	Task definition properties
	General
	Status
	Attachment permissions
	Fields
	Expiration

	Approval block
	Script block
	Run workflow block
	Database SQL Block
	Send Mail Block
	Comment Block
	Text Block

	Workflow variables
	Attachments
	Expressions
	Scripts
	Variables Dialog

	User interface windows
	Workflow definitions dialog
	Workflow definition editor
	Adding objects to diagram
	Creating transitions between objects
	Changing visual appearance of diagram objects
	Saving
	Workflow definition options
	Workflow validation
	Other operations

	Task list dialog
	Task list view
	Task tab
	Workflow tab
	Fields tab
	Attachments tab
	Log tab

	Using Workflow Studio programmatically
	Running an instance based on a definition name
	Workflow with workflow instance variables
	Running an instance from code: full example
	Retrieve the list of tasks for a specified user
	Creating and editing a workflow definition
	Running workflow instances for expired tasks
	Status Templates

	Extending the scripting system
	Accessing Delphi objects
	Registering Delphi components
	Access to published properties
	Class registering structure
	Calling methods
	More method calling examples
	Acessing non-published properties
	Registering indexed properties
	Retrieving name of called method or property
	Registering methods with default parameters

	Acessing Delphi functions, variables and constants
	Overview
	Registering global constants
	Acessing global variables
	Calling regular functions and procedures

	Using libraries
	Delphi-based libraries
	The TatSystemLibrary library
	Functions added by TatSystemLibrary

	Removing functions from the System library

	About
	Copyright Notice
	Important

	What's New
	Version 2.20 (Nov-2023)
	Version 2.19 (Feb-2023)
	Version 2.18 (Apr-2022)
	Version 2.17 (Sep-2021)
	Version 2.16 (Mar-2021)
	Version 2.15 (Aug-2020)
	Version 2.14 (Jun-2020)
	Version 2.13 (Jan-2020)
	Version 2.12 (Dec-2018)
	Version 2.11 (Mar-2018)
	Version 2.10 (Oct-2017)
	Version 2.9 (Jul-2017)
	Previous Versions
	Version 2.8 (Mar-2017)
	Version 2.7 (Mar-2017)
	Version 2.6 (Aug-2016)
	Version 2.5 (Apr-2016)
	Version 2.4 (Nov-2015)
	Version 2.3.1 (Sep-2015)
	Version 2.3 (Aug-2015)
	Version 2.2 (May-2015)
	Version 2.1 (Mar-2015)
	Version 2.0 (Mar-2015)
	Version 1.9.3 (Sep-2014)
	Version 1.9.2 (Apr-2014)
	version 1.9.1 (Mar-2014)
	Version 1.9 (Oct-2013)
	Version 1.8.1 (Mar-2013)
	Version 1.8 (Sep-2012)
	Version 1.7 (Apr-2012)
	Version 1.6 (Sep-2011)
	Version 1.5.0.1 (Oct-2010)
	Version 1.5 (Oct-2010)
	Version 1.4.1 (Jul-2010)
	Version 1.4 (Jan-2010)
	Version 1.3 (Feb-2009)
	Version 1.2 (Oct-2008)
	Version 1.1 (May-2008)
	Version 1.0 (Oct-2007)

	Getting Support
	General notes
	Getting support

	Breaking Changes
	Version 2.0
	Version 1.5
	Version 1.4
	Version 2.0 - Package Restructuration

