
Overview
TMS XData is a Delphi framework that allows you to create HTTP/HTTPS servers that expose

data through REST/JSON.

By using the concept of Service Operations, you create server-side methods (business logic) that

are mapped to endpoints in your API. Whenever an endpoint is requested, your method is

executed. XData has a very high-level and smooth learning curve allowing you to build the

service operations without having to worry about HTTP communication, HTTP methods, JSON

handling, among other low-level mechanisms. You just declare your methods using regular

Delphi types, tag them with attributes to properly bind the endpoints to it, define authorization

and authentication, multitenancy information, and everything is done automatically, including

full Swagger documentation output.

It is also optionally integrated with TMS Aurelius ORM in a way that creating automatic CRUD

endpoints based on applications with existing Aurelius mappings are just a matter of a few lines

of code. For the automatic CRUD endpoints XData defines URL conventions for adressing

resources, and it specifies the JSON format of message payloads. It is inspired on the OData

standard. Such conventions, with the benefit of existing Aurelius mapping, allow building a full

REST/JSON server with minimum writing of code. TMS XData uses TMS Sparkle as its core

communication library.

TMS XData supports Delphi XE2 and up.

TMS XData product page: https://www.tmssoftware.com/site/xdata.asp

TMS Software site: https://www.tmssoftware.com

TMS XData is a full-featured Delphi framework that allows you to create REST/JSON servers,

using server-side actions named service operations, and optionally exposing TMS Aurelius

entities through REST endpoints. Consider that you have an Aurelius class mapped as follows:

[Entity, Automapping]

TCustomer = class

strict private

 FId: integer;

 FName: string;

 FTitle: string;

 FBirthday: TDateTime;

 FCountry: TCountry;

public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property Title: string read FTitle write FTitle;

 property Birthday: TDateTime read FDateTime write FDateTime;

 property Country: TCountry read FCountry write FCountry;

end;

TMS XData 5.16.1.1 Page 1 of 5

https://download.tmssoftware.com/business/aurelius/doc/web
https://www.odata.org/
https://www.odata.org/
https://www.tmssoftware.com/site/sparkle.asp
https://www.tmssoftware.com/site/xdata.asp
https://www.tmssoftware.com
https://download.tmssoftware.com/business/aurelius/doc/web

With a few lines of code you can create an XData server to expose these objects. You can retrieve

an existing TCustomer with an id equal to 3 using the following HTTP request, for example:

And the JSON representation of the customer will be returned in the body of the HTTP response:

You can perform changes to objects through the REST interface, using a POST method to create

new objects, DELETE to remove objects, and PUT or PATCH to update the objects. The following

example will change the value of the FTitle property of the customer resource specified in the

previous example:

You can also perform queries on existing objects. The following example will retrieve all

customers with a country name equal to "USA", ordered by the customer's name.

The server will return a JSON array of objects containing all the filtered objects. You can use

query paging to restrict the number of objects returned in each request.

Also, you can use service operations to implement custom business logic that uses Aurelius

objects. By defining an interface and an implementation...

GET /tms/xdata/Customer(3) HTTP/1.1

Host: server:2001

{

 "$id": 1,

 "@xdata.type": "XData.Default.Customer",

 "Id": 3,

 "Name": "Maria Anders",

 "Title": "Sales Representative",

 "Birthday": "1980-05-20",

 "Country": null

}

PATCH /tms/xdata/Customer(1) HTTP/1.1

Host: server:2001

{

 "Title": "Marketing Manager"

}

GET /tms/xdata/Customer?$filter=Country/Name eq 'USA'&$orderby=Name&$top=10 HTTP/

1.1

Host: server:2001

TMS XData 5.16.1.1 Page 2 of 5

...you can easily invoke them from a Delphi client...

...or from an HTTP client:

Please refer to the Introduction topic of this manual which lists all major topics to learn more

about XData and its features.

Features

Here is a list of main features of the TMS XData framework:

Server based on the REST/JSON architecture.

Easily accessible from different client platforms. For example: .NET, Java, JavaScript (since it

is based on REST/JSON).

Uses standard POST, GET, PUT and DELETE HTTP methods for data request and data

modification operations.

Service Operations for custom server-side business logic.

Partial update of objects (PATCH).

Full-featured query mechanism.

type

 [ServiceContract]

 IMyService = interface(IInvokable)

 ['{F0BADD7E-D4AE-4521-8869-8E1860B0A4A0}']

 function GetTopCustomersByState(const State: string): TList<TCustomer>;

 end;

{...}

function TMyService.GetTopCustomersByState(const State: string): TList<TCustome>;

begin

 Result := TXDataOperationContext.Current.GetManager.Find<TTCustomer>

 .Where(TLinq.Eq('State', State) and TLinq.Eq('Category', TStatus.VIP))

 .List;

end;

Client := TXDataClient.Create;

Client.Uri := 'http://server:2001/tms/xdata';

MyService := Client.Service<IMyService>;

TopNYCustomers := MyService.GetTopCustomersByState('NY');

// process customers

POST /tms/xdata/MyService/GetTopCustomersByState HTTP/1.1

Host: server:2001

{

 "State": "NY"

}

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 3 of 5

Well-defined JSON representation of resources including entities, associations, streams

and proxies.

Support for streams (blobs).

Several databases supported at the back end: SQL Server, MySQL, PostgreSQL, Oracle,

Firebird, etc. (using TMS Aurelius).

HTTP/HTTPS server architecture based on TMS Sparkle which provides:

HTTP server based on the Windows http.sys stack;

Built-in authentication mechanism with JWT (JSON Web Token) or Basic methods;

Support for HTTP Secure (HTTPS);

Kernel-mode caching and kernel-mode request queuing (less overhead in context

switching);

Multiple applications/processes can share (respond to) the same port (at different

addresses/endpoints);

Secure Sockets Layer (SSL) support in kernel-mode.

In this section:

Getting Started

Getting your first XData server and client applications running.

Service Operations

How to implement and use service operations to add business logic to your server and invoke it

from clients.

TMS Aurelius CRUD Endpoints

CRUD endpoints defined by XData for applications using TMS Aurelius.

TXDataClient

Using TXDataClient object to send and receive objects to/from a XData server in a

straightforward way.

JSON Format

XData representation of different structures in JSON format.

Design-Time Components

Overview about XData components for design-time usage.

•

•

•

•

◦

◦

◦

◦

◦

◦

TMS XData 5.16.1.1 Page 4 of 5

https://www.tmssoftware.com/site/aurelius.asp
https://www.tmssoftware.com/site/sparkle.asp

XData Model

TXDataAureliusModel: description of the available service operations and entities published from

the CRUD endpoints.

Server-Side Events

Events that can be used to implement additional server-side logic, customize XData behavior,

among other tasks.

Authentication and Authorization

How to implement authentication and authorization to protect your API from unauthorized

access.

OpenAPI Support

Explains full XData support for OpenAPI and related tools like SwaggerUI and Redoc.

OpenAPI Importer

Generating client for 3rd party APIs using the OpenAPI importer.

Other Tasks

How-tos and examples about basic tasks you can do with XData in code.

Web Applications with TMS Web Core

The TMS XData Web-Client Framework: using XData servers from TMS Web Core applications.

TMS XData 5.16.1.1 Page 5 of 5

Getting Started
It's very easy to get your first XData server and client applications running:

Create and run an "empty" server

Add your server-side logic using service operations

Send requests to the server from clients

(Optional) Automatically publish your existing Aurelius entities

1. Create and run an "empty" server

a. From Delphi IDE, choose File > New > Other;

b. From the dialog that appears, navigate to Delphi Projects > TMS XData;

c. Double click "TMS XData VCL Server" to create the server.

Done: a new project will be created, run it, and your server will be running at the address "http://

localhost:2001/tms".

You have several different options for this step:

Creating the Server Using the XData Server Wizards

Creating the Server Using Design-Time Components

Creating the Server Manually

Using the "XData Server Wizards" is just the more straightforward way to create a new server.

If you don't like wizards, you can simply create a new blank application and drop a couple of

design-time components to create your server.

If you don't like design-time components and you want to do it 100% from code, just create the

server manually.

2. Add your server-side logic using service operations

a. From Delphi IDE, choose File > New > Other;

b. From the dialog that appears, navigate to Delphi Projects > TMS XData;

c. Double click "TMS XData Service" to create a new service. Use the default settings for now.

Done: Two new units will be created, including two server-side sample methods: Sum and

EchoString. Your server is doing something!

Using "XData Service Wizard" is just the more straightforward way to add server-side logic.

If you don't like wizards, you can simply create your service operations manually from code,

creating a ServiceContract interface and ServiceImplementation class.

Your server is ready! Let's connect to it now!

1.

2.

3.

4.

•

•

•

TMS XData 5.16.1.1 Page 6 of 11

3. Send requests to the server from clients

Connecting from Delphi client applications

If you are connecting to server from a Delphi application, accessing your server could not be

easier. All you need is to use the TXDataClient object:

And that's it! You invoke XData methods as if they were regular procedures in your client

application. The MyInterface unit and IMyService interface were created in the previous step

above. You just reuse the same code so that in client you don't have to do anything else but call

the interface method.

Of course, there are much more advanced features you can use, so you can learn more about

TXDataClient.

Connecting from non-Delphi client applications

To invoke the same Sum operation above without TXDataClient, just perform an HTTP request:

And you will get your response in JSON format:

Of course you can simply go to your web browser and navigate to address "http://localhost:

2001/tms/xdata/myservice/sum?a=10&b=5" to test it.

XData server is a standard REST/JSON server. Meaning you can access it from any client

application that can simply handle JSON and perform HTTP applications. That means virtually all

kinds of applications: desktop, web, mobile, IoT, etc., regardless if those applications were built in

C# .NET, Java, PHP, JavaScript, TypeScript, C/C++, Swift, etc.

uses {...}, MyService, XData.Client;

var

 Client: TXDataClient;

 MyService: IMyService;

 SumResult: Double;

begin

 Client := TXDataClient.Create;

 Client.Uri := 'http://localhost:2001/tms/xdata';

 SumResult := Client.Service<IMyService>.Sum(10, 5);

 Client.Free;

end;

GET /tms/xdata/myservice/sum?a=10&b=5 HTTP/1.1

Host: localhost:2001

{

 "value": 15

}

TMS XData 5.16.1.1 Page 7 of 11

4. (Optional) Automatically publish your existing

Aurelius entities

If you use TMS Aurelius, then TMS XData can automatically create CRUD endpoints for some or

all of your Aurelius entities. It's a nice feature that saves you time. Note that this is optional, TMS

XData doesn't require you to use TMS Aurelius at all.

How to continue from this

Now you can implement your real server. Of course XData allows you to create complex service

operations, not just simple ones like the Sum above.

You can receive and return parameters of many different types: primitive types like integers,

doubles, strings, guids, dates; complex types like object and arrays; and several specific

supported types like strings, streams, etc..

When using non-Delphi clients, it's interesting to learn how routing and parameter binding

works, so you know exactly how to invoke a service operation from a non-Delphi application. It's

also important to understand how JSON serialization works (how each Delphi type is represented

as JSON) to know how to build the JSON to be sent, and how to interpret the received JSON.

NOTE

Any XData HTTP server is based on the TMS Sparkle framework. According to the Sparkle

documentation, to use the Windows (http.sys) based server, you must first reserve the URL

your service will process its requests from. If you have installed TMS Sparkle on your computer,

the URL "http://+:2001/tms" is already reserved, so you can create your XData server under

that address (all examples in this documentation use the base address "http://server:2001/tms/

xdata". If you change your base URL to a different port, or to a URL that doesn't start with

"tms", you must reserve that URL otherwise your server might fail to start.

Creating the Server Using the XData Server

Wizards

The easiest and more straightforward way to get started with XData is using the wizards.

Choose File > New > Other and then look for the TMS XData category under "Delphi

Projects".

There you find several wizards to create a new XData Server Application:

TMS XData VCL Server: Creates a VCL application that runs an XData server using

http.sys

Choose the wizard you want, double-click and the application will be created.

As soon as you execute your application, the server is run. The application generated uses the

design-time components. Simply learn about the components to configure them. For example,

you can drop a TFDConnection component and set it to the

TAureliusConnection.AdaptedConnection property to associate a database connection with the

XData server.

1.

2.

◦

3.

TMS XData 5.16.1.1 Page 8 of 11

https://download.tmssoftware.com/business/sparkle/doc/web
https://download.tmssoftware.com/business/sparkle/doc/web/url_namespace_and_reservation.htm

You can also create the server manually. The wizard is not mandatory and it is one way to get

started quickly.

Creating the Server Using Design-Time

Components

If you don't want to use the XData Server Wizard, another way to create a XData Server is by

manually dropping the design-time components. If you want the RAD, component dropping

approach, this is the way to go.

1. Drop a dispatcher component on the form/data module (for example,

TSparkeHttpSysDispatcher).

2. Drop a TXDataDBServer component on the form/data module.

3. Associate the TXDataDBServer component with the dispatcher through the Dispatcher

property.

4. Specify the BaseUrl property of the server (for example, http://+:2001/tms/xdata).

5. Set the Active property of the dispatcher component to true.

That's all you need. If you want to have a ready-to-use database connection pool, you can use

the following extra steps:

6. Drop a TAureliusConnection component on the form/data module and configure it so

that it connects to your database (you will need to drop additional database-access

components, e.g. TFDConnection if you want to use FireDac, and then associate it to the

TAureliusConnection.AdaptedConnection).

7. Drop a TXDataConnectionPool component on the form/data module and associate it to

the TAureliusConnection component through the Connection property.

8. Associate the TXDataServer component to the TXDataConnectionPool component

through the Pool property.

Creating the Server Manually

Here we describe the steps to create the XData server manually, from code, without using XData

Server Wizard or the design-time components:

Create an IDBConnectionFactory interface

Create an IDBConnectionPool interface

Create a TXDataServerModule object

Create a THttpSysServer, add the module to it and start the server

1.

2.

3.

4.

TMS XData 5.16.1.1 Page 9 of 11

https://download.tmssoftware.com/business/aurelius/doc/web/taureliusconnection.html

1. Create an IDBConnectionFactory interface

The IDBConnectionFactory interface is used to create TMS Aurelius IDBConnection interfaces

which will be used by the server to connect to the desired database (in that database Aurelius

objects will be persisted). You can read more details on the specific topic here:

IDBConnectionFactory interface.

Below we provide a code example that creates an IDBConnectionFactory interface which

produces IDBConnection interfaces that connect to an MS SQL Server database, based on an

existing TSQLConnection component named SQLConnection1 in a data module

TMyConnectionDataModule.

2. Create an IDBConnectionPool interface

The IDBConnectionPool interface is used by the server to retrieve an IDBConnection interface

when it is needed. It holds a list of such interfaces, and if there is none available, it uses the

IDBConnectionFactory interface to create a new one. Example:

uses

 {...}, Aurelius.Drivers.Interfaces, Aurelius.Drivers.Base,

 Aurelius.Drivers.dbExpress;

var

 ConnectionFactory: IDBConnectionFactory;

begin

 ConnectionFactory := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 MyDataModule: TMyConnectionDataModule;

 begin

 MyDataModule := TMyConnectionDataModule.Create(nil);

 Result := TDBExpressConnectionAdapter.Create(MyDataModule.SQLConnection1, M

yDataModule);

 end

));

 // Use the ConnectionFactory interface to create an IDBConnectionPool interface

end;

TMS XData 5.16.1.1 Page 10 of 11

https://download.tmssoftware.com/business/aurelius/doc/web/idbconnection.htm

3. Create a TXDataServerModule object

The TXDataServerModule is the main class of the XData server. It is a Sparkle server module that

is added to the Sparkle server for a specific address. Example:

4. Create a THttpSysServer, add the module to it and start the server

Finally, create a TMS Sparkle THttpSysServer object, add the XData module to it, and start the

server. Example:

Later on, do not forget to destroy the Server object instance when the application finishes.

uses

 {...}, Aurelius.Drivers.Interfaces, XData.Aurelius.ConnectionPool;

var

 ConnectionPool: IDBConnectionPool;

 ConnectionFactory: IDBConnectionFactory;

begin

 {...}

 ConnectionPool := TDBConnectionPool.Create(

 50, // maximum of 50 connections available in the pool

 // Define a number that best fits your needs

 ConnectionFactory

);

 // Use the IDBConnectionPool interface to create the XData server module

end;

uses

 {...}, XData.Server.Module;

var

 XDataModule: TXDataServerModule;

 ConnectionPool: IDBConnectionPool;

begin

 {...}

 XDataModule := TXDataServerModule.Create('http://+:2001/tms/xdata', ConnectionP

ool);

uses

 {...}, Sparkle.HttpSys.Server, XData.Server.Module;

var

 XDataModule: TXDataServerModule;

 Server: THttpSysServer;

begin

 Server := THttpSysServer.Create;

 Server.AddModule(XDataModule);

 Server.Start;

end;

TMS XData 5.16.1.1 Page 11 of 11

https://download.tmssoftware.com/business/sparkle/doc/web/server_modules.htm
https://download.tmssoftware.com/business/sparkle/doc/web/httpsysserver.htm

Example 1: In-memory SQLite for testing/development

The following example is a minimum console application that illustrates how to start an XData

server at address "http://localhost:2001/tms/music" using an in-memory SQLite database. It uses

an unit named AureliusEntities which is not shown here for simplification. Such a unit should

just contain the Aurelius mapped classes that will be exposed by the server.

An extra note about this example: Since it is an in-memory database, the database will be empty

every time the server starts. Thus, before the server starts, the method

"UpdateDatabase(Connection)", which is declared in unit DatabaseUtils (also not listed here),

will be called to create the required tables and data. Such a thing is a regular TMS Aurelius

procedure and is out of the scope of this example as well. The purpose of this example is to

show how to start an XData server.

program SQLiteConsoleServer;

{$APPTYPE CONSOLE}

uses

 System.SysUtils,

 Aurelius.Drivers.Interfaces,

 Aurelius.Drivers.SQLite,

 Aurelius.Sql.SQLite,

 Aurelius.Schema.SQLite,

 Sparkle.HttpSys.Server,

 XData.Aurelius.ConnectionPool,

 XData.Server.Module,

 AureliusEntities,

 DatabaseUtils;

procedure StartServer;

var

 Server: THttpSysServer;

 Connection: IDBConnection;

begin

 Server := THttpSysServer.Create;

 try

 Connection := TSQLiteNativeConnectionAdapter.Create(':memory:');

 UpdateDatabase(Connection);

 Server.AddModule(TXDataServerModule.Create('http://localhost:2001/tms/music',

 TDBConnectionPool.Create(1,

 function: IDBConnection

 begin

 Result := Connection;

 end)));

 Server.Start;

TMS XData 5.16.1.1 Page 12 of 11

Example 2: MySQL Server with dbExpress (from Delphi

code)

The following example is a minimum console application that illustrates how to start an XData

server at address "http://localhost:2001/tms/music" using dbExpress to connect to a MySQL

database. It is configured in code. It uses an unit named AureliusEntities which is not shown

here for simplification. Such a unit should just contain the Aurelius mapped classes that will be

exposed by the server.

The connection pool is configured to hold up to 25 connections to the database.

 WriteLn('Server started. Press ENTER to stop.');

 ReadLn;

 finally

 Server.Free;

 end;

end;

begin

 StartServer;

end.

program DBExpressConsoleServer;

{$APPTYPE CONSOLE}

uses

 System.SysUtils, SqlExpr, DBXMySQL,

 Aurelius.Drivers.Base,

 Aurelius.Drivers.Interfaces,

 Aurelius.Drivers.dbExpress,

 Aurelius.Sql.MySQL,

 Aurelius.Schema.MySQL,

 Sparkle.HttpSys.Server,

 XData.Aurelius.ConnectionPool,

 XData.Server.Module,

 AureliusEntities in '..\common\AureliusEntities.pas';

procedure StartServer;

var

 Server: THttpSysServer;

 ConnFactory: IDBConnectionFactory;

begin

 Server := THttpSysServer.Create;

 try

 // Example using dbExpress. Create a connection factory to use later

 ConnFactory := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 SqlConn: TSQLConnection;

TMS XData 5.16.1.1 Page 13 of 11

Example 3: MS SQL Server with FireDAC (using

TDataModule)

The following example illustrates how to start an XData server at address "http://localhost:2001/

tms/music" using FireDac to connect to any database (in the example, a MS SQL Server

database). Compared to Example 2, this example uses a TFDConnection dropped onto a

TDataModule to configure the database connection at design-time. It uses an unit named

AureliusEntities which is not shown here for simplification. Such a unit should just contain

the Aurelius mapped classes that will be exposed by the server. The connection pool is

configured to hold up to 15 connections to the database.

Thus, consider you have a data module with an existing configured database connection using

FireDac:

 begin

 SqlConn := TSQLConnection.Create(nil);

 SqlConn.DriverName := 'MySQL';

 SqlConn.GetDriverFunc := 'getSQLDriverMySQL';

 SqlConn.VendorLib := 'libmysql.dll';

 SqlConn.LibraryName := 'dbxmys.dll';

 SqlConn.Params.Values['HostName'] := 'dbserver';

 SqlConn.Params.Values['Database'] := 'xdata';

 SqlConn.Params.Values['User_Name'] := 'user';

 SqlConn.Params.Values['Password'] := 'mysql';

 SqlConn.LoginPrompt := false;

 Result := TDBExpressConnectionAdapter.Create(SqlConn, true);

 end

);

 Server.AddModule(TXDataServerModule.Create(

 'http://localhost:2001/tms/music',

 TDBConnectionPool.Create(25, ConnFactory)

));

 Server.Start;

 WriteLn('Server started. Press ENTER to stop.');

 ReadLn;

 finally

 Server.Free;

 end;

end;

begin

 StartServer;

end.

TMS XData 5.16.1.1 Page 14 of 11

You can use such a configuration and create one instance of that data module when required by

the server. You can use the TFDConnection component from it.

program FireDacConsoleServer;

{$APPTYPE CONSOLE}

uses

 System.SysUtils,

 Aurelius.Drivers.Base,

 Aurelius.Drivers.Interfaces,

 Aurelius.Drivers.FireDac,

 Aurelius.Sql.MSSQL,

 Aurelius.Schema.MSSQL,

 Sparkle.HttpSys.Server,

 XData.Aurelius.ConnectionPool,

 XData.Server.Module,

 AureliusEntities in '..\common\AureliusEntities.pas',

 DBDataModuleUnit in 'DBDataModuleUnit.pas' {DBDataModule: TDataModule};

procedure StartServer;

var

 Server: THttpSysServer;

begin

 Server := THttpSysServer.Create;

 try

 Server.AddModule(TXDataServerModule.Create('http://localhost:2001/tms/music',

 TDBConnectionPool.Create(15, TDBConnectionFactory.Create(

 function: IDBConnection

 var

 DBDataModule: TDBDataModule;

 begin

 // Example using FireDac and Data Module

 DBDataModule := TDBDataModule.Create(nil);

 Result := TFireDacConnectionAdapter.Create(DBDataModule.FDConnection1,

DBDataModule);

 end

))));

 Server.Start;

TMS XData 5.16.1.1 Page 15 of 11

 WriteLn('Server started. Press ENTER to stop.');

 ReadLn;

 finally

 Server.Free;

 end;

end;

begin

 StartServer;

end.

TMS XData 5.16.1.1 Page 16 of 11

Service Operations
Service operations are the core mechanism you use in XData to add business logic to your server

and later invoke it from clients.

Service operations are invoked via HTTP requests, providing the correct URL and sending/

receiving data via JSON payloads. This chapter explain hows to implement and use service

operations.

XData Service Wizard

Easiest way to create service operations is by using the XData Service wizard.

From the Delphi IDE, choose File > New > Other...

From the dialog that appears, navigate to Delphi Projects > TMS Business and choose the wizard

TMS XData Service.

That will launch the "New XData Service" dialog, which will provide you with the following

options:

Service Name: Specifies the base name for the service contract interface and service

implementation class, as well the unit names to be generated.

Generate interface and implementation in separated units: If checked, service contract

interface and service implementation classes will be created in two different units. This

makes it easy to reuse the interface for use in client applications using TXDataClient. This

is true by default. If you are not going to use interfaces at client-side or if you simply

prefer to put all code in a single unit, uncheck this option.

Add sample methods: If checked, the wizard will add some sample methods (service

operations) as an example.

Use a specific model: If checked, adds a Model attribute to the service contract/

implementation with the name specified in the edit box.

After options are set, click Finish and the full source code with the service contract and service

implementation will be generated for you.

If you prefer to create the source code manually, or simply want to learn more about the

generated source code, refer to the following topics:

Service Operations Tutorial

Creating Service Contract

Service Implementation

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 17 of 28

Service Operations Overview

This chapter describes basic steps you need to follow to implement service operations at server

side and invoke them from Delphi side. For detailed information about the steps, please refer to

Service Operations main topic.

The presented source code samples are not complete units and only display the relevant piece of

code for understanding service operations usage. Some obvious code and keywords might have

been removed to improve readability. Here we will implement two server operations, one using

scalar types (Sum), and another using entities (FindOverduePayments).

This tutorial also assumes that you have already created your XData Server application.

A service operation is built by creating two elements:

a. A Service Contract interface, which describes the methods and how they will be accessible

from clients. This interface can be shared between server and client applications;

b. A Service Implementation class, which effectively implement the service contract. This is used

only by the server app.

The following steps explains how to use service operations, including the creation of mentioned

types. The XData Service Wizard automates steps 1 and 2 for you.

1. Define a service contract interface and declare the operations (methods) in it.

This will add the contract to the XData model. You can use the Model attribute to specify the

model where the contract belongs to:

unit MyServiceInterface;

uses

 {...}, XData.Service.Common;

type

 [ServiceContract]

 IMyService = interface(IInvokable)

 ['{F0BADD7E-D4AE-4521-8869-8E1860B0A4A0}']

 function Sum(A, B: double): double;

 function FindOverduePayments(CustomerId: integer): TList<TPayment>;

 end;

initialization

 RegisterServiceType(TypeInfo(IMyService));

end.

uses {...}, Aurelius.Mapping.Attributes;

{...}

[ServiceContract]

[Model('Sample')] // adds interface to "Sample" model

IMyService = interface(IInvokable)

{...}

TMS XData 5.16.1.1 Page 18 of 28

https://download.tmssoftware.com/business/aurelius/doc/web/model_attribute.htm

2. Create a service implementation class that implements the interface.

3. Run the XData server.

It will automatically detect the service interfaces and implementations declared in the

application. Your operations can now be invoked from clients. When the operation is invoked,

the server creates an instance of the service implementation class, and invokes the proper

method passing the parameters sent by the client.

4. If using Delphi applications: invoke the operation using XData client.

This tutorial assumes you created the xdata server at base address "http://server:2001/tms/

xdata".

uses

 {...}, MyServiceInterface,

 XData.Server.Module,

 XData.Service.Common;

type

 [ServiceImplementation]

 TMyService = class(TInterfacedObject, IMyService)

 private

 function Sum(A, B: double): double;

 function FindOverduePayments(CustomerId: integer): TList<TPayment>;

 end;

implementation

function TMyService.Sum(A, B: double): double;

begin

 Result := A + B;

end;

function TMyService.FindOverduePayments(CustomerId: integer): TList<TPayment>;

begin

 Result := TList<TPayment>.Create;

 TXDataOperationContext.Current.Handler.ManagedObjects.Add(Result);

 // go to the database, instantiate TPayment objects,

 // add to the list and fill the properties.

end;

initialization

 RegisterServiceType(TMyService);

end.

TMS XData 5.16.1.1 Page 19 of 28

5. If using non-Delphi applications: invoke the operation using HTTP, from any platform and/or

development tool.

Perform an HTTP Request:

And get the response:

uses

 {...}

 MyServiceInterface,

 XData.Client;

var

 Client: TXDataClient;

 MyService: IMyService;

 SumResult: double;

 Payments: TList<TPayment>;

begin

 Client := TXDataClient.Create;

 Client.Uri := 'http://server:2001/tms/xdata';

 MyService := Client.Service<IMyService>;

 SumResult := MyService.Sum(5, 10);

 try

 Payments := MyService.FindOverduePayments(5142);

 finally

 // process payments

 Payments.Free;

 end;

 Client.Free;

end;

POST /tms/xdata/MyService/Sum HTTP/1.1

Host: localhost:2001

{

 "a": 5,

 "b": 8

}

HTTP/1.1 200 OK

{

 "value": 13

}

TMS XData 5.16.1.1 Page 20 of 28

Creating Service Contract

Service operations are grouped in service contracts, or service interfaces. You can define multiple

service interfaces in your XData server, and each interface can define multiple operations

(methods). You create a service contract by defining the service interface (a regular interface type

to your Delphi application). The following topics in this chapter describes the steps and options

you have to create such contract.

Defining Service Interface

These are the basic steps you need to follow to create an initial service contract interface:

Declare an interface inheriting from IInvokable.

Create a GUID for the interface (Delphi IDE creates a GUID automatically for you using

Shift+Ctrl+G shortcut key).

Add XData.Service.Common unit to your unit uses clause.

Add [ServiceContract] attribute to your interface.

Declare methods in your interface.

Call RegisterServiceType method passing the typeinfo of your interface (usually you can do

that in initialization section of your unit).

When you add the unit where interface is declared to either your server or client application,

XData will automatically detect it and add it to the XData model as a service contract, and define

all interface methods as service operations. The client will be able to perform calls to the server,

and the server just needs to implement the interface. The source code below illustrates how to

implement the service interface.

1.

2.

3.

4.

5.

6.

TMS XData 5.16.1.1 Page 21 of 28

You can use the Model attribute to specify the model where the contract belongs to. This way

you can have a server with multiple server modules and models.

Routing

Each service operation is associated with an endpoint URL and an HTTP method. In other words,

from clients you invoke a service by performing an HTTP method in a specific URL. The server

mechanism of receiving an HTTP request and deciding which service operation to invoke is

called routing.

NOTE

In all the examples here, the server base URL is assumed to be http://localhost:2001. Of course,

use your own base URL if you use a different one.

Default Routing

By default, to invoke a service operation you would perform a POST request to the URL

<service>/<action>, where <service> is the interface name without the leading "I" and <action>

is the method name. For example, with the following service interface declaration:

unit MyServiceInterface;

interface

uses

 System.Classes, Generics.Collections,

 XData.Service.Common;

type

 [ServiceContract]

 IMyService = interface(IInvokable)

 ['{BAD477A2-86EC-45B9-A1B1-C896C58DD5E0}']

 function Sum(A, B: double): double;

 function HelloWorld: string;

 end;

implementation

initialization

 RegisterServiceType(TypeInfo(IMyService));

end.

uses {...}, Aurelius.Mapping.Attributes;

{...}

[ServiceContract]

[Model('Sample')] // adds interface to "Sample" model

IMyService = interface(IInvokable)

{...}

TMS XData 5.16.1.1 Page 22 of 28

https://download.tmssoftware.com/business/aurelius/doc/web/model_attribute.htm

you use the following request to invoke the Sum method:

Note that the parameters follow a specific rule, they might be part of the routing, or not,

depending on routing settings and parameter binding settings.

Modifying the HTTP method

The method can respond to a different HTTP method than the default POST. You can change

that by using adding an attribute to method specifying the HTTP method the operation should

respond to. For example:

The above declaration will define that Sum method should be invoked using a GET request

instead of a POST request:

You can use attributes for other HTTP methods as well. You can use attributes: HttpGet, HttpPut,

HttpDelete, HttpPatch and HttpPost (although this is not needed since it's default method).

Using Route attribute to modify the URL Path

By using the Route attribute, you can modify the URL path used to invoke the service operation:

which will change the way to invoke the method:

You can use multiple segments in the route, in both interface and method. For example:

will change the way to invoke the method:

IMyService = interface(IInvokable)

 function Sum(A, B: double): double;

POST /MyService/Sum

IMyService = interface(IInvokable)

 [HttpGet] function Sum(A, B: double): double;

GET /MyService/Sum

[Route('Math')]

IMyService = interface(IInvokable)

 [Route('Add')]

 function Sum(A, B: double): double;

POST /Math/Add

[Route('Math/Arithmetic')]

IMyService = interface(IInvokable)

 [Route('Operations/Add')]

 function Sum(A, B: double): double;

TMS XData 5.16.1.1 Page 23 of 28

An empty string is also allowed in both interface and method Route attributes:

The above method will be invoked this way:

And also, the way you bind parameters can affect the endpoint URL as well. For example, the

Route attribute can include parameters placeholders:

In this case, the parameters will be part of the URL:

Replacing the root URL

By default XData returns a service document if a GET request is performed in the root URL. You

can replace such behavior by simply using the Route attribute as usual, just passing empty

strings to it:

A quest to the root URL will invoke the IRootService.Root method:

You can of course use other HTTP methods like PUT, POST, and the TArray<string> return is just

an example, you can return any type supported by XData, just like with any other service

operation.

POST /Math/Arithmetic/Operations/Add

[Route('Math/Arithmetic')]

IMyService = interface(IInvokable)

 [Route('')]

 function Sum(A, B: double): double;

POST /Math/Arithmetic

[Route('Math')]

IMyService = interface(IInvokable)

 [Route('{A}/Plus/{B}')]

 function Sum(A, B: double): double;

POST /Math/10/Plus/5

[ServiceContract]

[Route('')]

IRootService = interface(IInvokable)

['{80A69E6E-CA89-41B5-A854-DFC412503FEA}']

 [HttpGet, Route('')]

 function Root: TArray<string>;

end;

GET /

TMS XData 5.16.1.1 Page 24 of 28

Conflict with Automatic CRUD Endpoints

TMS XData also provides endpoints when you use Aurelius automatic CRUD endpoints.

Depending on how you define your service operation routing, you might end up with service

operations responding to same endpoint URL as automatic CRUD endpoints. This might happen

inadvertently, or even on purporse.

When that happens XData will take into account the value specified in the RoutingPrecedence

property to decide if the endpoint should invoke the service operation, or behave as the

automatic CRUD endpoint.

By default, the automatic CRUD endpoints always have precedence, starting with the entity set

name. This means that if there is an entity set at URL Customers/ , any subpath under that path

will be handled by the automatic CRUD endpoint processor, even if it doesn't exist. For example,

Customers/Dummy/ URL will return a 404 error.

Setting RoutingPrecedence to TRoutingPrecedence.Service will change this behavior and

allow you to override such endpoints from service operations. Any endpoint routing URL you

define in service operations will be invoked, even if it conflicts with automatic CRUD endpoints.

Parameter Binding

Service operation parameters can be received from the HTTP request in three different modes:

From a property of a JSON object in request body (FromBody);

From the query part of the request URL (FromQuery);

From a path segment of the request URL (FromPath).

In the method declaration of the service contract interface, you can specify, for each parameter,

how they should be received, using the proper attributes. If you don't, XData will use the default

binding.

Default binding modes

This are the rules used by XData to determine the default binding for the method parameters

that do not have an explicity binding mode:

1. If the parameter is explicitly used in a Route attribute, the default mode will be FromPath,

regardless of HTTP method used:

Year and Month parameters should be passed in the URL itself, in proper placeholders:

2. Otherwise, if the HTTP method is GET, the default mode will be FromQuery:

•

•

•

[Route('orders')]

IOrdersService = interface(IInvokable)

 [Route('approved/{Year}/{Month}')]

 [HttpGet] function GetApprovedOrdersByMonth(Year, Month: Integer):

TList<TOrder>;

GET orders/approved/2020/6

TMS XData 5.16.1.1 Page 25 of 28

Meaning Year and Month parameters should be passed as URL query parameters:

3. Otherwise, for all other HTTP methods, the default mode will be FromBody:

In this case, Year and Month parameters should be passed as properties of a JSON object in

request body:

FromBody parameters

FromBody parameters are retrieved from a JSON object in the request body, where each name/

value pair corresponds to one parameter. The pair name must contain the parameter name (the

one declared in the method), and value contains the JSON representation of the parameter

value, which can be either scalar property values, the representation of an entity, or the

representation of a collection of entities.

As specified above, FromBody parameters are the default behavior if the HTTP method is not

GET and no parameter is explicitly declared in the Route attribute.

Example:

How to invoke:

[Route('orders')]

IOrdersService = interface(IInvokable)

 [Route('approved')]

 [HttpGet] function GetApprovedOrdersByMonth(Year, Month: Integer):

TList<TOrder>;

GET orders/approved/?Year=2020&Month=6

[Route('orders')]

IOrdersService = interface(IInvokable)

 [Route('approved')]

 [HttpPost] function GetApprovedOrdersByMonth(Year, Month: Integer): TList<TOrde

r>;

POST orders/approved/

{

 "Year": 2020,

 "Month": 6

}

[HttpPost] function Multiply([FromBody] A: double; [FromBody] B: double): double;

TMS XData 5.16.1.1 Page 26 of 28

FromQuery parameters

FromQuery parameters are retrieved from the query part of the request URL, using name=value

pairs separated by "&" character, and the parameter value must be represented as URI literal.

NOTE

You can only use scalar property values, or objects that only have properties of scalar value

types.

If the Multiply operation of previous example was modified to respond to a GET request, the

binding mode would default to FromQuery, according to the following example.

You can add the [FromQuery] attribute to the parameter to override the default behavior.

Example:

How to invoke:

FromQuery is the default parameter binding mode for GET requests.

You can also use DTOs as query parameters, as long the DTO only have properties of scalar types.

In this case, each DTO property will be a separated query param. Suppose you have a class

TCustomerDTO which has properties Id and Name , then you can declare the method like this:

You can invoke the method like this:

WARNING

Using objects as parameters in query strings might introduce a breaking change in TMS Web

Core applications using your XData server. If your TMS Web Core application was built a

version of TMS XData below 5.2, the connection to the XData server will fail.

POST /tms/xdata/MathService/Multiply HTTP/1.1

Host: server:2001

{

 "a": 5,

 "b": 8

}

[HttpPost] function Multiply([FromQuery] A: double; [FromQuery] B: double): doubl

e;

POST /tms/xdata/MathService/Multiply?a=5&b=8 HTTP/1.1

 [HttpGet] function FindByIdOrName(Customer: TCustomerDTO): TList<TCustomer>;

GET /tms/xdata/CustomerService/FindByIdOrName?Id=10&Name='Paul' HTTP/1.1

TMS XData 5.16.1.1 Page 27 of 28

If you have TMS Web Core client applications accessing your XData server, and you want to use

DTOs in queries, recompile your web client applications using TMS XData 5.2 or later.

FromPath parameters

FromPath parameters are retrieved from path segments of the request URL. Each segment is a

parameter value, retrieved in the same order where the FromPath parameters are declared in the

method signature. As a consequence, it modifies the URL address used to invoke the operation.

The following example modified the Multiply method parameters to be received from path.

Example:

How to invoke:

Parameter "A" was the first declared, thus it will receive value 5. Parameter "B" value will be 8. If

the parameters are explicitly declared in the Route attribute, FromPath mode is the default

mode. All the remaining parameters flagged with FromPath that were not included in the Route

attribute must be added as additional segments.

Example:

How to invoke:

Mixing binding modes

You can mix binding modes in the same method operation, as illustrated in the following

example.

Method declaration:

How to invoke:

[HttpGet] function Multiply([FromPath] A: double; [FromPath] B: double): double;

GET /tms/xdata/MathService/Multiply/5/8 HTTP/1.1

[Route('{A}/Multiply')]

[HttpGet] function Multiply(A: double; [FromPath] B: double): double;

GET /tms/xdata/MathService/5/Multiply/8 HTTP/1.1

procedure Process(

 [FromPath] PathA: Integer;

 [FromQuery] QueryA: string;

 BodyA, BodyB: string;

 [FromQuery] QueryB: Boolean;

 [FromPath] PathB: string;

): double;

TMS XData 5.16.1.1 Page 28 of 28

Here are the values of each parameter received:

PathA: 5

QueryA: queryvalue

BodyA: one

BodyB: two

QueryB: true

PathB: value

Methods with a single FromBody object parameter

If the method has a single FromBody parameter (parameters with other binding type can exist)

and that parameter is an object, for example:

then clients must send the JSON entity representation of the customer directly in request body,

without the need to wrap it with the parameter name (C, for example).

Methods with a single FromBody scalar parameter

If the method receives a single scalar parameter, for example:

In this case, clients can send the value of Version parameter in a name/value pair named "value",

in addition to the original "Version" name/value pair. Both can be used.

Supported Types

When defining service interfaces, there are several types you can use for both parameter and

return types of the operations.

Scalar types

You can use the regular simple Delphi types, such as Integer, String, Double, Boolean, TDateTime

and TGUID, and its variations (like Longint, Int64, TDate, etc.). The server will marshal such values

using the regular JSON representation of simple types. Variant type is also supported as long the

variant value is one of the supported simple types (String, Integer, etc.).

Examples:

POST /tms/xdata/MyService/Process/5/value?QueryA=queryvalue&QueryB=true HTTP/1.1

{

 "BodyA": "one",

 "BodyB": "two"

}

•

•

•

•

•

•

procedure UpdateCustomer(C: TCustomer);

procedure ChangeVersion(const Version: string);

TMS XData 5.16.1.1 Page 29 of 28

Enumerated and Set Types

Enumerated types and set types are also supported. For example:

Enumeration values are represented in JSON as strings containing the name of the value ("First",

"Second", according to the example above). Sets are represented as a JSON array of enumeration

values (strings).

Simple objects - PODO (Plain Old Delphi Objects)

Any Delphi object can be received and returned. The objects will be marshaled in the HTTP

request using object representation in JSON format. One common case for simple objects is to

use it as structure input/output parameters, or to use them as DTO classes.

Aurelius Entities

If you use Aurelius, then you can also use Aurelius entities. Aurelius entities are a special case of

simple objects. The mechanism is actually very similar to entity representation, with only minor

differences (like representation of proxies and associated entities). The entities will be marshaled

in the HTTP request using entity representation in JSON Format.

Examples:

Generic Lists: TList<T>

You can use TList<T> types when declaring parameters and result types of operations. The

generic type T can be of any supported type. If T in an Aurelius entity, the the list will be

marshaled in the HTTP request using the JSON representation for a collection of entities.

Otherwise, it will simply be a JSON array containing the JSON representation of each array item.

function Sum(A, B: double): double;

function GetWorld: string;

type

 TMyEnum = (First, Second, Third);

 TMyEnums = set of TMyEnum;

procedure ReceiveEnums(Value: TMyEnums);

function ReturnClientDTO(Id: Integer): TClientDTO;

function FunctionWithComplexParameters(Input: TMyInputParam): TMyOutputParam;

function ProcessInvoiceAndReturnDueDate(Invoice: TInvoice): TDateTime;

function AnimalByName(const Name: string): TAnimal;

TMS XData 5.16.1.1 Page 30 of 28

Generics arrays: TArray<T>

Values of type TArray<T> are supported and will be serialized as a JSON array of values. The

generic type T can be of any supported type.

TJSONAncestor (XE6 and up)

For a low-level transfer of JSON data between client and server, you can use any TJSONAncestor

descendant: TJSONObject, TJSONArray, TJSONString, TJSONNumber, TJSONBool, TJSONTrue,

TJSONFalse and TJSONNull. The content of the object will be serialized/deserialized direct in

JSON format.

Example:

TCriteriaResult

If you use Aurelius, you can return Aurelius TCriteriaResult objects, or of course a

TList<TCriteriaResult> as a result type of a service operation. This is very handy to implement

service operations using Aurelius projections.

For example:

The JSON representation for each TCriteriaResult object is a JSON object which one property for

each projected value. The following JSON is a possible representation of an item of the list

returned by the method above:

procedure HandleAnimals(Animals: TList<TAnimal>);

function GetActiveCustomers: TList<TCustomer>;

function ReturnItems: TList<string>;

procedure ProcessIds(Ids: TArray<Integer>);

procedure GenericFunction(Input: TJSONObject): TJSONArray;

function TTestService.ProjectedCustomers(NameContains: string): TList<TCriteriaRe

sult>;

begin

 Result := TXDataOperationContext.Current.GetManager

 .Find<TCustomer>

 .CreateAlias('Country', 'c')

 .SetProjections(TProjections.ProjectionList

 .Add(TProjections.Prop('Id').As_('Id'))

 .Add(TProjections.Prop('Name').As_('Name'))

 .Add(TProjections.Prop('c.Name').As_('Country'))

)

 .Where(TLinq.Contains('Name', NameContains))

 .OrderBy('Name')

 .ListValues;

end;

TMS XData 5.16.1.1 Page 31 of 28

https://download.tmssoftware.com/business/aurelius/doc/web/index.html?projections.htm

TStrings

Values of type TStrings are supported and will be serialized as JSON array of strings. Since

TStrings is an abstract type, you should only use it as property type in objects and you should

make sure the instance is already created by the object. Or, you can use it as function result, and

when implementing you should also create an instance and return it. You cannot receive TStrings

in service operation parameters.

TStream

You can also use TStream as param/result types in service operations. When you do that, XData

server won't perform any binding of the parameter or result value. Instead, the TStream object

will contain the raw content of the request (or response) message body. Thus, if you declare your

method parameter as TStream, you will receive the raw message body of the client request in the

server. If you use TStream as the result type of your method, the message body of the HTTP

response send back to the client will contain the exact value of the TStream. This gives you

higher flexibility in case you want to receive/send custom or binary data from/to client, such as

images, documents, or just a custom JSON format.

For obvious reasons, when declaring a parameter as TStream type, it must be the only input

parameter in method to be received in the body, otherwise XData won't be able to marshal the

remaining parameters. For example, the following method declaration is invalid:

Since the method is Post, then NumPages will by default be considered to be received in the

request body (FromBody attribute), which is not allowed. You can, however, receive the

NumPages in the query part of from url path:

Value will contain the raw request body, and NumPages will be received from the URL query

string.

{

 "Id": 4,

 "Name": "John",

 "Country": "United States"

}

function BuildCustomDocument(CustomerId: integer): TStream;

procedure ReceiveDocument(Value: TStream);

// INVALID declaration

[HttpPost] procedure ReceiveDocument(Value: TStream; NumPages: Integer);

// This is valid declaration

[HttpPost] procedure ReceiveDocument(Value: TStream; [FromQuery] NumPages: Intege

r);

TMS XData 5.16.1.1 Page 32 of 28

Return Values

When a service operation executes succesfully, the response is 200 OK for operations that return

results or 204 No Content for operations without a return type. If the operation returns a value, it

will also be in the same JSON format used for parameters. The value is sent by the server

wrapped by a JSON object with a name/value pair named "value". The value of the "value" pair is

the result of the operation. In the Multiply example, it would be like this:

There are some exceptions for the general rule above:

Methods with parameters passed by reference

In this case, the result will be a JSON object where each property relates to a parameter passed

by reference. If the method is also a function (returns a value), then an additional property with

name "result" will be included. For example, suppose the following method:

This will be a possible HTTP response from a call to that method:

Method which returns a single object

If the method returns a single object parameter, for example:

then the server will return the JSON entity representation of the customer in the response body,

without wrapping it in the "value" name/value pair.

Default Parameters

You can declare service operations with default parameters. For example:

HTTP/1.1 200 OK

{

 "value": 40

}

function TMyService.DoSomething(const Input: string; var Param1, Param2:

Integer): Boolean;

HTTP/1.1 200 OK

{

 "result": True,

 "Param1": 50,

 "Param2": 30

}

function FindCustomer(const Name: string): TCustomer;

function Hello(const Name: string = 'World'): string;

TMS XData 5.16.1.1 Page 33 of 28

This will work automatically if you are invoking this service operation from Delphi clients.

However, it will not work if you invoke this service operation directly performing an HTTP

request. In this case you would have to provide all the parameter values otherwise a server error

will be raised informing that a parameter is missing.

This is because the default value declared in the function prototype above is not available at

runtime, but at compile time. That's why it works when calling from Delphi clients: the compiler

will provide the default value automatically in the client call - but that's a client feature: the HTTP

request will always have all parameter values.

To make the above method also work from raw HTTP requests and do not complain about

missing parameters, you will need to inform (again) the default value using the [XDefault]

attribute. This way XData server will know what is the default value to be used in case the client

did not provide it:

For more than one parameter, just add one Default attribute for each default parameter:

You only have to add attributes to the method declaration in the service contact interface.

Attributes in methods in service implementation class will be ignored.

Parameters validation

You can apply validation attributes to parameters and DTO classes to make sure you receive

parameters and classes with the expected values. This saves you from needing to manually add

validation code and returning error messages to the clients.

For example:

The method above adds validation attributes Required and MaxLength to the State

parameter. If a client invokes the endpoint without providing the State parameter, or passing it

as empty (null string), or even passing a value longer than 2 characters, XData will reject the

request and answer with a status code 400. Also a detailed error message will be provided for

the client in JSON format in request body indicating what's wrong and what should be fixed.

When implementing your method, you can safely rely that the State parameter will have the

valid value and won't need to worry about checking for wrong values.

function Hello([XDefault('World')] const Name: string = 'World'): string;

procedure DoSomething(

 [XDefault('Default')] Name: string = 'Default';

 [XDefault(0)] Value: Integer = 0

);

 [ValidateParams]

 [HttpGet] function ListCitiesByState(const [Required, MaxLength(2)] State: stri

ng): TList<TCity>;

TMS XData 5.16.1.1 Page 34 of 28

https://doc.tmssoftware.com/biz/aurelius/guide/validation.html

NOTE

The validation attributes will only be applied if the ValidateParams attribute is applied to the

method. Alternatively you can apply the ValidateParams attribute to the interface, which will

make all parameters for all methods in the interface to be validated.

When a parameter is class, then the object itself will also be validated, i.e., all the mapped

members will also have the validation attributes applied:

In the above example, when AcceptFoo is invoked, XData will apply the Required validation to

it. If Foo is nil , the request will be rejected. But also, even if Foo object is provided, the

request will only be accepted if the Id property is positive, and Name property is not longer

than 10 characters.

For example, if the following JSON is sent to the endpoint:

The endpoint will answer with a 400 Bad Request response including the following detailed

content:

 TFoo = class

 strict private

 [Range(1, MaxInt)] FId: Integer;

 [MaxLength(10)] FName: string;

 public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 end;

{...}

 [ValidateParams] procedure AcceptFoo([Required] Foo: TFoo);

{

 "Id": 0,

 "Name": "ABCDEFGHIJKL"

}

TMS XData 5.16.1.1 Page 35 of 28

For the complete reference of available validation attributes, please refer to the Data Validation

chapter in TMS Aurelius documentation.

Service Implementation

Once you have defined the service interface, you need to write the server-side implementation of

the service. To do this you must:

Create a class implementing the service interface.

Inherit the class from TInterfacedObject, or be sure the class implement automatic

referencing counting for the interface.

Add XData.Service.Common unit to your unit uses clause.

Add [ServiceImplementation] attribute to your interface.

Implement in your class all methods declared in the interface.

Call RegisterServiceType method passing the implementation class (usually you can do that

in initialization section of your unit).

When you create a TXDataServerModule to build your XData server, it will automatically find all

classes that implement interfaces in the model and use them when operations are invoked by

the client. When a client invokes the operation, the server will find the class and method

implementing the requested service through routing, will create an instance of the class, bind

input parameters, and invoke the method. If the method returns a value, the server will bind the

return values and send it back to the client. The instance of the implementation class will then be

destroyed.

The following source code illustrates how to implement the MyService interface defined in the

topic "Defining Service Interface":

{

 "error": {

 "code": "ValidationFailed",

 "message": "Validation failed",

 "errors": [

 {

 "code": "OutOfRange",

 "message": "Field Id must be between 1 and 2147483647"

 },

 {

 "code": "ValueTooLong",

 "message": "Field Name must have no more than 10 character(s)"

 }

]

 }

}

1.

2.

3.

4.

5.

6.

TMS XData 5.16.1.1 Page 36 of 28

https://doc.tmssoftware.com/biz/aurelius/guide/validation.html
https://doc.tmssoftware.com/biz/aurelius/guide/validation.html

Server Memory Management

When executing service operations, XData provides a nice automatic memory management

mechanism that destroy all objects involved in the service operation execution. This makes it

easier for you to implement your methods (since you mostly don't need to worry about object

destruction) and avoid memory leaks, something that is critical at the server-side.

In general, all objects are automatically destroyed by XData at server-side. This means that when

implementing the service, you don't need to worry to destroy any object. However, it's important

to know how this happens, so you implement your code correctly, and also knowing that in

some specific situations of advanced operations, the previous statement might not be

completely true. So strictly speaking, the objects automatically destroyed by XData are the

following:

Any object passed as parameter or returned in a function result (called param object or

result object);

unit MyService;

interface

uses

 System.Classes, Generics.Collections,

 MyServiceInterface,

 XData.Service.Common;

type

 [ServiceImplementation]

 TMyService = class(TInterfacedObject, IMyService)

 private

 function Sum(A, B: double): double;

 function HelloWorld: string;

 end;

implementation

function TMyService.Sum(A, B: double): double;

begin

 Result := A + B;

end;

function TMyService.GetWorld: string;

begin

 Result := 'Hello, World';

end;

initialization

 RegisterServiceType(TMyService);

end.

•

TMS XData 5.16.1.1 Page 37 of 28

Any object managed by the context TObjectManager;

The context TObjectManager is also destroyed after the operation method returns;

Any associated object that is also deserialized or serialized together with the param object

or result object.

Example

Suppose the following meaningless service implementation:

You have three objects involved here:

Param, of type TMyParam and was created by XData;

function Result, of type TMyResult, being created and returned in the last line of service

implementation;

Entity, of type TMyEntity, being created and then passed to context TObjectManager to be

saved in the database.

You don't need to destroy any of those objects. Whatever objects are passed as param (Param)

of function result are always destroyed by XData automatically. The context manager is

automatically destroyed by XData, and since you have added an entity to it, it will be destroyed

as well upon manager destruction (this is a TMS Aurelius feature, not XData).

Managed objects

To control what will be destroyed and avoid double destruction of same object instance (for

example, if the same object is received as parameter and returned as function result), XData

keeps a collection of object instances in a property named ManagedObjects, available in the

TXDataRequestHandler object. You can access that property using the operation context:

You can also add object to that collection in advance, to make sure the object you are creating is

going to be destroyed eventually by XData. This can help you out in some cases. For example,

instead of using a construction like this:

•

•

•

function TMyService.DoSomething(Param: TMyParam): TMyResult;

var

 Entity: TMyEntity;

begin

 Entity := TMyEntity.Create;

 Entity.SomeProperty := Param.OtherProperty;

 TXDataOperationContext.Current.GetManager.Save(Entity);

 Result := TMyResult.Create('test');

end;

•

•

•

TXDataOperationContext.Current.Handler.ManagedObjects

TMS XData 5.16.1.1 Page 38 of 28

You could write it this way:

Specific cases

As stated before, in general you just don't need to worry, since the above rules cover pretty

much all of your service implementation, especially if you use the context TObjectManager to

perform database operations instead of creating your own manager. The situations where

something might go wrong are the following:

1. If you create your own TObjectManager and save/retrieve entities with it that were also passed

as parameter or are being returned in function result.

This will cause an Access Violation because when you destroy your object manager, the entities

managed by it will be destroyed. But then XData server will also try to destroy those objects

because they were passed as parameter or are being returned. To avoid this, you must set your

TObjectManager.OwnsObjects property to false, or use the context TObjectManager so XData

knows that the objects are in the manager and don't need to be destroyed. The latter option is

preferred because it's more straightforward and more integrated with XData behavior.

2. If you are creating associated objects that are not serialized/deserialized together with your

object

For example, suppose your method returns an object TCustomer. This TCustomer class has a

property Foo: TFoo, but such property is not mapped in Aurelius as an association (or not

marked to be serialized if TCustomer is a PODO). You then create a TFoo object, assign it to Foo

property and return:

function TMyService.DoSomething: TMyResult;

begin

 Result := TMyResult.Create;

 try

 // do complex operation with Result object

 except

 Result.Free;

 raise;

 end;

end;

function TMyService.DoSomething: TMyResult;

begin

 Result := TMyResult.Create;

 // Make sure Result will be eventually destroyed no matter what

 TXDataOperationContext.Current.Handler.ManagedObjects.Add(Result);

 // now do complex operation with Result object

end;

Result := TCustomer.Create;

Result.Foo := TFoo.Create;

TMS XData 5.16.1.1 Page 39 of 28

Since the Foo property will not be serialized by the server, XData will not know about such

object, and it will not be destroyed. So you must be sure to destroy temporary/non-mapped/

non-serializable objects if you create them (or add them to ManagedObjects collection as

explained above). This is a very rare situation but it's important that developers be aware of it.

There is a specific topic for client-side memory management using TXDataClient.

TXDataOperationContext

To help you implement your service operations, XData provides you some information under the

context of the operation being executed. Such information is provided in a

TXDataOperationContext object (declared in unit XData.Server.Module). The simplified

declaration of such object is as followed.

To retrieve the current instance of the context, use the class function Current.

Then you can use the context to retrieve useful info, like a ready-to-use, in-context

TObjectManager to manipulate Aurelius entities (using the GetManager function) or the

connection pool in case you want to acquire a database connection and use it directly (using

GetConnectionPool method).

This way your service implementation doesn't need to worry about how to connect to the

database or even to create a TObjectManager (if you use Aurelius) with proper configuration and

destroy it at the end of process. All is being handled by XData and the context object. Another

interesting thing is that when you use the TObjectManager provided by the context object, it

makes it easier to manage memory (destruction) of entity objects manipulated by the server,

since it can tell what objects will be destroyed automatically by the manager and what objects

need to be destroyed manually. See Memory Management topic for more information.

The example is an example of an operation implementation that uses context manager to

retrieve payments from the database.

TXDataOperationContext = class

public

 class function Current: TXDataOperationContext;

 function GetConnectionPool: IDBConnectionPool;

 function Connection: IDBConnection;

 function GetManager: TObjectManager;

 function CreateManager: TObjectManager; overload;

 function CreateManager(Connection: IDBConnection): TObjectManager; overload;

 function CreateManager(Connection: IDBConnection; Explorer: TMappingExplorer):

TObjectManager; overload;

 function CreateManager(Explorer: TMappingExplorer): TObjectManager; overload;

 procedure AddManager(AManager: TObjectManager);

 function Request: THttpServerRequest;

 function Response: THttpServerResponse;

end;

Context := TXDataOperationContext.Current.GetManager;

TMS XData 5.16.1.1 Page 40 of 28

Note that the database connection to be used will be the one provided when you created the

TXDataServerModule. This allows you keep your business logic separated from database

connection. You can even have several modules in your server pointing to different databases,

using the same service implementations.

Inspecting request and customizing response

The context also provides you with the request and response objects provided by the TMS

Sparkle framework.

You can, for example, set the content-type of a stream binary response:

Or you can check for a specific header in the request to build some custom authentication

system:

uses

 {...}

 XData.Server.Module;

function TCustomerService.FindOverduePayments(CustomerId: integer): TList<TPaymen

t>;

begin

 Result := TXDataOperationContext.Current.GetManager.Find<TPayment>

 .CreateAlias('Customer', 'c')

 .Where(TLinq.Eq('c.Id', CustomerId) and TLinq.LowerThan('DueDate', Now))

 .List;

end;

function TMyService.GetPdfReport: TStream;

begin

 TXDataOperationContext.Current.Response.Headers.SetValue('content-type', 'appli

cation/pdf');

 Result := InternalGetMyPdfReport;

end;

function TMyService.GetAppointment(const Id: integer): TVetAppointment;

var

 AuthHeaderValue: string;

begin

 AuthHeaderValue := TXDataOperationContext.Current.Request.Headers.Get('custom-

auth');

 if not CheckAuthorized(AuthHeaderValue) then

 raise EXDataHttpException.Create(401, 'Unauthorized'); // unauthorized

 // Proceed to normal request processing.

 Result := TXDataOperationContext.Current.GetManager.Find<TVetAppointment>(Id);

end;

TMS XData 5.16.1.1 Page 41 of 28

https://download.tmssoftware.com/business/sparkle/doc/web/examining_the_request.htm
https://download.tmssoftware.com/business/sparkle/doc/web/building_the_response.htm
https://download.tmssoftware.com/business/sparkle/doc/web
https://download.tmssoftware.com/business/sparkle/doc/web

The default connection

The default database connection interface (IDBConnection) is provided in the property

Connection:

It's the same connection used by the default manager, and it's retrieved from the pool when

needed.

Additional managers

You might need to create more Aurelius managers in a service operation. You can of course do it

manually, but if by any chance you want to return one entity inside one of those managers, you

can't destroy the manager you've created because otherwise the object you want to return will

also be destroyed.

In these scenario, you can use the context methods CreateManager or AddManager. The former

will create a new instance of a TObjectManager for you, and you can use it just like the default

manager: find objects, save, flush, and don't worry about releasing it.

To create the manager you can optionally pass an IDBConnection (for the database connection),

or the model (TMappingExplorer), or both, or none. It will use the default Connection if not

specified, and it will use the model specified in the XData server (module) if model is not

specified.

If you want to create the manager yourself, you can still tell XData to destroy it when the request

processing is finished, by using AddManager.

DefConnection := TXDataOperationContext.Current.Connection;

function TSomeService.AnimalByName(const Name: string): TAnimal;

var

 Manager: TObjectManager;

begin

 Manager := TXDataOperationContext.Current.CreateManager(TMappingExplorer.Get('O

therModel'));

 Result := Manager.Find<TAnimal>

 .Where(TLinq.Eq('Name', Name)).UniqueResult;

end;

function TSomeService.AnimalByName(const Name: string): TAnimal;

var

 Manager: TObjectManager;

begin

 Manager := TObjectManager.Create(SomeConnection, TMappingExplorer.Get('OtherMod

el'));

 TXDataOperationContext.Current.AddManager(Manager);

 Result := Manager.Find<TAnimal>

 .Where(TLinq.Eq('Name', Name)).UniqueResult;

end;

TMS XData 5.16.1.1 Page 42 of 28

XData Query

XData offers full query syntax to query entities from automatic CRUD endpoints. But you can also

benefit from XData query mechanism in service operations. You can receive query information

sent from the client and create an Aurelius criteria from it to retrieve data from database.

Receiving query data

To allow a service operation to receive query data like the automatic CRUD endpoint, declare a

parameter of type TXDataQuery (declared in unit XData.Query):

The class TXDataQuery is declared like this (partial):

Which means clients can invoke the endpoint passing the same $filter , $orderby , $top and

$skip parameters accepted also by the automatic CRUD endpoint, like this:

/MyService/List/?$filter=Name eq 'Foo'&$orderby=Name&$top=10&$skip=30

Or, of course, using the TXDataClient passing the raw string:

Or using the XData query builder:

 IMyService = interface(IInvokable)

 [HttpGet] function List(Query: TXDataQuery): TList<TCustomer>;

 TXDataQuery = class

 strict private

 [JsonProperty('$filter')]

 FFilter: string;

 [JsonProperty('$orderby')]

 FOrderBy: string;

 [JsonProperty('$top')]

 FTop: Integer;

 [JsonProperty('$skip')]

 FSkip: Integer;

 Customer := Client.Service<IMyService>

 .List('$filter=Name eq 'Foo'&$orderby=Name&$top=10&$skip=30');

 Customer := Client.Service<IMyService>.List(

 CreateQuery.From(TCustomer)

 .Filter(Linq['Name'] eq 'Foo')

 .OrderBy('Name')

 .Top(10).Skip(30)

 .QueryString

);

TMS XData 5.16.1.1 Page 43 of 28

Creating a criteria

From your service operation, you can then use the received TXDataQuery object to create an

Aurelius criteria, using the CreateCriteria method of the current TXDataOperationContext :

You can of course create the criteria and then modify it as you wish. Since you are implementing

a service operation, instead of using an automatic CRUD endpoint, you have full control of the

business logic you want to implement. You could even, for example, create a criteria based on a

query on a DTO object:

In the example above, even though you are creating a criteria for the TCustomer class, the query

will be validated from the TCustomerDTO class. This means XData will only accept queries that

use properties from TCustomerDTO . For example, if the filter string is $filter=Status eq 2 ,

even if the Status property exists in TCustomer , if it does not exist in class TCustomerDTO the

query will not be accepted and an error "property Status does not exist" will return to the client.

function TMyService.List(Query: TXDataQuery): TList<TCustomer>;

begin

 Result := TXDataOperationContext.Current

 .CreateCriteria<TCustomer>(Query).List;

end;

function TMyService.List(Query: TXDataQuery): TList<TCustomer>;

begin

 Result := TXDataOperationContext.Current

 .CreateCriteria<TCustomer>(Query, TCustomerDTO).List;

end;

TMS XData 5.16.1.1 Page 44 of 28

TMS Aurelius CRUD Endpoints
XData can be run completely independent of TMS Aurelius. It is a different product. You can

simply declare your service operations and implement any custom logic, you want, including, of

course, database operations. However, in conjunction with TMS Aurelius it offers certain

advantages. If you use TMS Aurelius, XData offers a nice integration feature named TMS Aurelius

CRUD endpoints.

This chapter assumes you have existing, basic knowledge about TMS Aurelius and your

application already has some objects mapped to the database. Please refer to the TMS Aurelius

documentation, "Quick Start" section for a brief introduction.

The following are the topics related to automatic TMS Aurelius CRUD Endpoints.

Overview of Aurelius CRUD Endpoints

If you have TMS Aurelius entities declared in your application, once your server is running,

Aurelius entities are accessible through a REST/JSON architecture. The XData server defines URL

conventions for the CRUD enpoints so you know how to build the URL to access the resources

you need. The message payload in HTTP requests and responses must be in JSON format that

also follows an XData specification. Then, XData clients can retrieve Aurelius entities by

requesting data from the server or request data modification on Aurelius entities.

To illustrate this, suppose you have an Aurelius entity TCustomer associated with a TCountry

entity, both declared in your application, you will have the following URL addresses published by

TMS XData:

http://server:2001/tms/xdata/Customer (lists all TCustomer entities)

http://server:2001/tms/xdata/Country (lists all TCountry entities)

http://server:2001/tms/xdata/Customer(1) (retrieves TCustomer entity with id = 1)

http://server:2001/tms/xdata/Customer(2)/Country (retrieves the TCountry object

associated to the customer with id = 2 via Country property)

http://server:2001/tms/xdata/Customer?$filter=Country/Name eq

'USA'&$orderby=Name&$top=10 (retrieves top 10 customers in the USA, ordered by

name)

Furthermore, you can perform GET requests to retrieve entities, POST to create new entities,

PUT/PATCH to update existing entities, and DELETE to remove entities.

You can also easily execute service operations from Delphi code through the service interfaces

using a TXDataClient object instance:

•

•

•

•

•

TMS XData 5.16.1.1 Page 45 of 27

https://download.tmssoftware.com/business/aurelius/doc/web
https://download.tmssoftware.com/business/aurelius/doc/web

Do not forget that you have to use those Aurelius entities anywhere in your server application

otherwise they will be removed by the linker, at the very least, you should call

RegisterEntity(TCustomer), for example, to make sure TCustomer will not be removed.

Aurelius Equivalence to XData Model

When you create the XData server module, the CRUD endpoints are automatically created from

the current Aurelius mapping, using a default entity model builder, and you don't need to define

it yourself. This topic describes the rules used by the model builder to create the model based on

Aurelius mapping.

Note that the XData server module creates the EM based on a TMappingExplorer object, which

contains all the Aurelius mapping information.

Classes become entity types

Every mapped class in Aurelius becomes an entity type. By default, the name of entity type is the

class name. So, if for example your mapping has classes TCustomer, TOrder and TCountry, each

of those classes become an entity type in the EM.

Entity sets

XData creates an entity set for each entitytype, so that all entities can be easily accessible from

the server. The entity set associated with the class contains all entities (objects) of that class. By

default the name of the entity set is the name of the entity type associated to it. Thus, if you have

a mapped class named "TCustomer", XData will define an entity type "Customer" in the EM, and

will also define an entity set "Customer" that represents all entities of that type. You can prevent

the "T" from being removed from class name by using the entity model builder.

Properties

Every mapped property or field in an Aurelius class becomes either a property or navigation

property in the entity type. If the class property/field is an association, it becomes a navigation

property. If it's a scalar property, it becomes a single property. It's important to note that only

mapped class members become an entity type property. The name of the property in the EM will

be the name of the mapped class property or the name of mapped class field with the "F" prefix

removed. As an example, consider the following Aurelius mapping:

uses {...}, MyServiceInterface, XData.Client;

var

 Client: TXDataClient;

 MyService: IMyService;

 Customer: TCustomer;

begin

 Client := TXDataClient.Create;

 Client.Uri := 'http://server:2001/tms/xdata';

 MyService := Client.Service<IMyService>;

 Customer := Client.CustomerByName('Joe');

 {...}

end;

TMS XData 5.16.1.1 Page 46 of 27

The above class will become an entity type named "TCustomer", with the following named

properties: Id, Name, Birthday, Country, Description, Sex and Photo. Fields like FId and FName

are considered because the class is marked with [Automapping] attribute, so all fields are

included (with "F" prefix removed). Also, properties Sex and Photo are also included because

they are explicitly mapped. Finally, fields FSex, FPhoto and FPhoto2 are not included because

they were excluded from Aurelius mapping because of the [Transient] attribute usage. You can

prevent the "F" from being removed of field names by using the entity model builder.

All properties will be created as simple properties, except "Country" which will be a navigation

property associated with the "TCountry" that is also an entity type created from TCountry class.

Entity Sets Permissions

By default, all entity sets defined in the XData model will be published by the server with full

permissions. This means the clients can list, retrieve, modify, delete, create entities using the

entity sets (see Requesting Data and Data Modification for more information).

You can change those permissions individually by each entity set, by choosing which operations

can be performed in each entity set.

[Entity]

[Automapping]

TCustomer = class

strict private

 FId: Integer;

 FName: string;

 [Transient]

 FSex: Nullable<TSex>;

 [Column('BIRTHDAY', [])]

 FBirthday: Nullable<TDate>;

 FCountry: TTC_Country;

 [Column('Description', [])]

 FDescription: TBlob;

 [Transient]

 FPhoto: TBlob;

 [Transient]

 FPhoto2: TBlob;

public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 [Column('SEX', [])]

 property Sex: Nullable<TSex> read FSex write FSex;

 property Birthday: Nullable<TDate> read FBirthday write FBirthday;

 property Country: TCountry read FCountry write FCountry;

 property Description: TBlob read FDescription write FDescription;

 [Column('Photo', [TColumnProp.Lazy])]

 property Photo: TBlob read FPhoto write FPhoto;

 property Photo2: TBlob read FPhoto2 write FPhoto2;

end;

TMS XData 5.16.1.1 Page 47 of 27

This is accomplished using the SetEntitySetPermissions method of the TXDataServerModule

object, declared as following:

The EntitySetName parameter specifies the name of the entity set (note that it's not necessarily

the name of the class), or '*' for all entity sets and Permissions parameter defines the allowed

operations in that entity set. Valid values are (declared in unit XData.Module.Base):

So you can use constants EntitySetPermissionsAll (all operations), EntitySetPermissionsRead (read-

only operations), EntitySetPermissionsWrite (write-only operations), or any combination of

TEntitySetPermission enumerated value, which mean:

TEntitySetPermission values

Name Description

TEntitySetPermission.List Allows clients to query entities from the entity set using query

criteria.

TEntitySetPermission.Get Allows clients to retrieve a single entity and its subproperties and

associated entities.

TEntitySetPermission.Insert Allows clients to create a new entity in the entity set.

TEntitySetPermission.Modify Allows clients to modify an entity, by either method (PUT, PATCH,

etc.) or even modifying properties or collection properties.

TEntitySetPermission.Delete Allows clients to delete an entity from the entity set.

Examples

Allows all operations in entity set Country, except deleting an entity:

Allows read-only operatiosn in City entity set:

procedure SetEntitySetPermissions(const EntitySetName: string;

 Permissions: TEntitySetPermissions);

type

 TEntitySetPermission = (List, Get, Insert, Modify, Delete);

 TEntitySetPermissions = set of TEntitySetPermission;

const

 EntitySetPermissionsAll =

[Low(TEntitySetPermission)..High(TEntitySetPermission)];

 EntitySetPermissionsRead = [TEntitySetPermission.List,

TEntitySetPermission.Get];

 EntitySetPermissionsWrite = [TEntitySetPermission.Insert,

TEntitySetPermission.Modify,

 TEntitySetPermission.Delete];

Module.SetEntitySetPermissions('Country',

 EntitySetPermissionsAll - [TEntitySetPermission.Delete]);

TMS XData 5.16.1.1 Page 48 of 27

For the History entity set, allows only querying entities, retrieve a single entity, or create a new

one:

Allows all entities to be read-only by default (list and get only). You can override this setting by

setting permissions for a specific entity set:

URL Conventions

This chapter describes what URL addresses are made available by the XData Server based on the

entity model. It explains the rules for constructing URL address that identify data and metadata

exposed by the server.

When you create the XData server, the root URL must be specified. Following the root URL part,

additional URL constructions might be added, like path segments, query or fragment parts. In

this manual, all examples consider the server root URL to be http://server:2001/tms/xdata/.

The URL used by the XData server for entity resources has three significant parts: root URL,

resource path and query options, according to the example below.

For service operations, the URL uses the following format:

The following topics describe in details the parts of the URL as understood by the XData Server.

Resource Path

This topic defines the rules for resource path construction according to XData URL conventions.

Resources exposed by the XData server are addressable by corresponding resource path URL

components to enable interaction of the client with that resource aspect. To illustrate the

concept, some examples for resources might be: customers, a single customer, orders related to

a single customer, and so forth. Examples of addressable aspects of these resources as exposed

by the data model might be: collections of entities, a single entity, properties, and so on.

Module.SetEntitySetPermissions('City', EntitySetPermissionsRead);

Module.SetEntitySetPermissions('History',

 [TEntitySetPermission.List, TEntitySetPermission.Get, TEntitySetPermission.Inse

rt]);

Module.SetEntitySetPermissions('*', EntitySetPermissionsRead);

http://server:2001/tms/xdata/Customer?$top=2&$orderby=Name

___________________________/______/ __________________/

 | | |

 Root URL resource path query options

http://server:2001/tms/xdata/MathService/Multiply

___________________________/__________/______/

 | | |

 Root URL service operation

TMS XData 5.16.1.1 Page 49 of 27

The following topics explain several different ways to access data through an URL.

Addressing Entity Sets

An entity set can be addressed by using the name of entity set after the server root. As a general

rule, the name of the entity set is the name of the base entity type of all entities belonging to

that entity set (see Aurelius Equivalence to Entity Model for more information). So, for example,

the entity set "Customer" will contain all entities of type "Customer" and its descendants. The

collection of all Customer entities, for example, can be accessed with the following URL:

http://server:2001/tms/xdata/Customer

A query part can be appended to the URL address of an entity set, so entities in an entity set can

be filtered, ordered, etc., for example:

http://server:2001/tms/xdata/Customer?$order=Name

There is a specific chapter about all the query options you can use in the query part of the URL.

XData uses JSON Format to represent the entity set resources available in such addresses. To

know more about the format specification, please refer to the topic that explains JSON format

representation of a collection of entities.

You can suffix the address with $count segment to return the number of entities:

http://server:2001/tms/xdata/Customer/$count

By default the name of entity set is the name of the associated Aurelius class name without the

leading "T". Thus, if the class name is TCustomer, the entity set path will be "Customer". You can

change that name explicitly by adding URIPath attribute to the class:

When the attribute is applied, the entity set for TCustomer entities will be accessible in the

following address (considering server base url is server:2001/tms/xdata):

http://server:2001/tms/xdata/Customers

Addressing Single Entity

A single entity in an entity set can be addressed by passing the entity key between parenthesis

after the entity set name. The following example represents a specified Customer object with id

(key) equals to 3.

http://server:2001/tms/xdata/Customer(3)

The literals in key predicates can also represent other types than integer, such as strings or guids.

The following example retrieves the employee with id equals to "XYZ".

http://server:2001/tms/xdata/Employee('XYZ')

uses {...}, XData.Service.Common;

type

 [URIPath('Customers')]

 TCustomer = class

TMS XData 5.16.1.1 Page 50 of 27

If you have entity types with compound keys (not recommended, actually), you can access it by

naming each value and separate them using commas. The order is not significant. The next

example represents the URL address of a Person entity identified by a compounded key made up

of two properties, LastName and FirstName, which values are "Doe" and "John", respectively.

http://server:2001/tms/xdata/Person('Doe','John')

http://server:2001/tms/xdata/Person(LastName='Doe',FirstName='John')

XData uses JSON Format to represent the entity resources available in such URL addresses. To

know more about the format specification, please refer to the topic that explains JSON format

representation of a single entity.

Key as segments

If property TXDataServerModule.EnableKeyAsSegment is True (same property is available in

TXDataServer), single entities can also be addresses by the name of the entity followed by a slash

and the id, as the following examples:

http://server:2001/tms/xdata/Customer/3

http://server:2001/tms/xdata/Employee/XYZ

Compound keys can be passed one after order, each also separated by slashes:

http://server:2001/tms/xdata/Person/Doe/John

Addressing Navigation Properties

From a single entitiy, you can access associated entities through navigation properties. For

example, if a customer type has a country associated to it, you can access it using the name of

navigation property. The following example retrieves the country object associated with

customer 3:

http://server:2001/tms/xdata/Customer(3)/Country

You can only have a maximum of one level of nested navigation property. The next address, for

example, trying to request the country associated with a customer that is associated to an order,

is not valid. To request such country, you should use the address in previous example

(Customer()/Country) or access the country directly using Country(<key>).

http://server:2001/tms/xdata/Order(41)/Customer/Country (invalid address)

Note that it's also possible to retrieve collection of entities if the navigation property is a

collection. For example, the following URL addresses the collection of order items for a specific

order:

http://server:2001/tms/xdata/Order(41)/OrderItems

For such navigation properties that represents collections (many-valued associations), it's not

possible to use key predicates (to identify a single entity in the collection), or query options (to

filter or order the collection).

XData uses JSON Format to represent the entity resources available in such URL addresses. To

know more about the format specification, please refer to the topic that explains JSON format

representation of a single entity.

TMS XData 5.16.1.1 Page 51 of 27

Addressing Individual Properties

It's also possible to directly access a simple property. In the example below, the URL represents

the Name property of customer 3. Note there is a specific behavior for streams (blob) properties.

http://server:2001/tms/xdata/Customer(3)/Name

When accessing a simple property resource, it contains a JSON representation of the property

value. You can also alternatively access the raw value of property using $value suffix:

http://server:2001/tms/xdata/Customer(3)/Name/$value

The difference between the two address is that the latter ($value) contains the property value in

raw format (plain text), while the former, contains the property value wrapped in JSON format.

The only exception is a property address that represents a named stream (blob). In this case, the

resource will contain the raw value of the blob, without needing to add the "$value" suffix. As an

example, the following URL address contains the raw binary data representing the photo of a

customer:

http://server:2001/tms/xdata/Customer(3)/Photo

XData uses JSON Format to represent the individual property resources available in such URL

addresses. To know more about the format specification, please refer to the topic that explains

JSON format representation of an individual property.

Addressing Streams (Blobs)

You can access a stream (blob) property directly using the property name. In the example below,

the URL represents the Photo property of customer 3.

http://server:2001/tms/xdata/Customer(3)/Photo

The stream property resource contains the raw (binary) value of the blob content. Content-type

is not specified. Unlike addressing individual properties, stream properties do not support the

$value suffix, since the stream property resource already provides the raw value of the property.

Counting Entities

You can append "$count" path segment to a url that retrieves an entity set or a navigation

property that returns a list of entities. That will retrieve the number of entities in that resource, in

text/plain format, instead of the entities themselves.

For example, the following url will return the total number of Customer entities:

http://server:2001/tms/xdata/Customer/$count

While the following url will return the number of Customer entities with name is equal to "John":

http://server:2001/tms/xdata/Customer/$count?$filter=Name eq 'John'

You can also use $count with associated entities:

http://server:2001/tms/xdata/Order(41)/OrderItems/$count

TMS XData 5.16.1.1 Page 52 of 27

Model Metadata

Any XData module provides the $model URL that returns the metadata for the API model. It lists

the entities, service operations, parameters, etc. For now the model metadata is used by XData

tools (like clients) and is subject to modification.

http://server:2001/tms/xdata/$model

Query Options

When addressing resources, it's possible to include a query string in the URL to perform extra

operations on the resource being addressed, like filtering or ordering entities. Query options

start with ? character and can be provided in the format name=value, separated by the &

character. Many query options can be applied in a single URL. For example, the URL below

retrieves the first 10 customers which country is USA, ordered by name:

http://server:2001/tms/xdata/Customer?$filter=Country/Name eq

'USA'&$orderby=Name&$top=10

The following table lists all the query options that can be used in a query string:

Query

option Description

$filter Allows filtering the entities in an entity set by a specified condition.

$orderby Specifies the order of retrieved entities, by one or more properties or

expression.

$top Specifies the maximum number of entities to be returned by the server.

$skip Specifies the number of entities that the server should skip before returning

the requested entities.

$inlinecount Includes the total number of entities (without paging) in the JSON response.

$expand Expands associated objects in by forcing the server to include them inline in

JSON response.

$select Allows selecting the fields to be present in the JSON response

$filter

The $filter query option can be used in a URI query string to specify a predicate by which entities

will be filtered from an entity set. The $filter option only applies when addressing entity sets. The

filter format is the following:

$filter=<boolean expression>

where <boolean expression> is a boolean expression with the predicate. Example:

http://server:2001/tms/xdata/Customer?$filter=Name eq 'John'

TMS XData 5.16.1.1 Page 53 of 27

Properties can be accessed through their name, as in the previous example. The properties

available are the ones from the entity type of the specified entity set. In the previous example,

the entity set being retrieved contains instances of entity type Customer, which means properties

of Customer are directly accessible in the boolean expression.

To access a property of an associated entity (navigation property), you can use slashes to build

the path to the property name. The following example retrieves all customers which country is

USA:

http://server:2001/tms/xdata/Customer?$filter=Country/Name eq 'USA'

You can use logical operators and parenthesis to define multiple expressions and change

evaluation order:

http://server:2001/tms/xdata/Customer?$filter=(Name eq 'John' or Name eq 'Jack') and

Country/Name eq 'USA'

The previous examples use string literals in the expressions. String literals are always defined

using single quotes. You can have literals of other types in the expression. Since the filter query

option is part of URL, you must always format the literals according to the rules defined in

Literals in URI section.

The following table lists the operators supported in filter expressions, and the order of

precedence from highest to lowest. Operators in the same category have equal precedence.

Category Expression Description

Grouping (x) Enclosing parenthesis - expressions are evaluated with

higher precedence

Primary Name/

SubName

Slash, allowing access to a sub property (navigation

property)

Unary -x Negate x

Unary not x Logical not applied to x

Multiplicative x mul y Multiplies x by y

Multiplicative x div y Divides x by y

Additive x add y Adds x and y

Additive x sub y Subtracts y from x

Relational x lt y Evaluates true if x is lower than y

Relational x gt y Evaluates true is x is greater than y

Relational x le y Evaluates true if x is lower than or equal to y

Relational x ge y Evaluates true if x is greater than or equal to y

Equality x eq y Evaluates true if x is equal to y

Equality x ne y Evaluates true is x is not equal to y

TMS XData 5.16.1.1 Page 54 of 27

Category Expression Description

AND

Condition

x and y Evaluates true is both x and y are true

OR Condition x or y Evaluates true is either x or y are true

$orderby

The $orderby query option can be used in a URL query string to determine which values are used

to order the entities in the entity set. The $orderby option only applies for URI addressing entity

sets. The format is the following:

$orderby=<expression> [asc/desc]

$orderby=<expression> [asc/desc],<expression> [asc/

desc],...,<expression> [asc/desc]

Where <expression> must contain the value by which the entities must be order, which is mostly

the name of a property of sub property. Example:

http://server:2001/tms/xdata/Customer?$orderby=Name

The asc/desc identifier is optional and indicates if the entities must be sorted by the specified

expression values in ascending or descending order. If not specified, ascending order is used.

You can use slashes to access associations (navigation properties) and sort by values of such

associations. As an example, the following URI will retrieve all invoices sorted by the name of the

customer's country associated with that invoice, in descending order:

http://server:2001/tms/xdata/Invoice?$orderby=Customer/Country/Name desc

You can also order by multiple values, separated by comma. The following example lists all

customers by last name and for customers with the same last name, by first name:

http://server:2001/tms/xdata/Customer?$orderby=LastName,FirstName

$top

The $top query option can be used in a URI query string to specify the maximum number of

entities that will be returned by the server. The $top option only applies for URI addressing entity

sets. The format is the following:

$top=<integer>

The returned entities are always the first entities in the result set. Usually $top is used together

with $orderby query option so that the order by which the entities are returned are known. It is

also often used together with $skip query option to perform paging of results. In the following

example, the server will return the first 10 invoice entities ordered by Date, even if there are

more than 10 invoices in the server:

TMS XData 5.16.1.1 Page 55 of 27

http://server:2001/tms/xdata/Order?$orderby=Date&$top=10

$skip

The $skip query option can be used in a URI query string to specify the number of entities that

will be skipped by the server before returning the results. The $skip option only applies for URI

addressing entity sets. The format is the following:

$skip=<integer>

The skipped entities are always the first entities in the result set. Usually $skip is used together

with $orderby query option so that the order by which the entities are returned are known. It is

also often used together with $top query option to perform paging of results. In the following

URI example, the server will return invoice entities ordered by Date in descending order, buy

skipping the 10 first invoices and starting in the 11th one:

http://server:2001/tms/xdata/Order?$orderby=Date desc&$skip=10

$inlinecount

The $inlinecount query option allows including the total number of entities in the JSON response

representing a collection of objects. The counting of entities ignores paging query options like

$top and $skip. It's useful when paging results, so you can get a single page but also retrieve the

total number of entities so the client can know in a single request how many entities are in total

even when requesting only a page.

The $inline option only applies for URI addressing entity sets. The format is the following:

$inlinecount=none|allpages

When using "none" (the default), no info is included. When using "allpages", the total number of

entities for all pages will be included in the JSON response, in a property named $xdata.count.

In the following example, the server will return the first 10 invoice entities ordered by Date, and

ask for the total number of entities available.

http://server:2001/tms/xdata/Order?$orderby=Date&$top=10&$inlinecount=allpages

The JSON result would be something like this (supposing the total number of entities is 142):

{

 "@xdata.count": 142,

 "value": [

 <_list_of_Order_objects_here_>

]

}

TMS XData 5.16.1.1 Page 56 of 27

$expand

The $expand query option allows fine-grain control about how associations will be represented

in JSON response sent by the server or how blobs will be represented.

Expanding associations

By default, the server will represent any associated object in a JSON response using the reference

convention. For example, suppose a request for a Customer object:

http://server:2001/tms/xdata/Customer(3)

will return a JSON response like this:

Note the associated Country is represented as a reference (Country with Id = 10). This is very

handy when using Delphi client (TXDataClient) or even non-Delphi client where you just want to

modify the country reference without needing to retrieve the whole object.

However, in some cases you might want to have the full Country object inline. With the $expand

query option you can explicitly indicate which associated properties you want to be inline:

http://server:2001/tms/xdata/Customer(3)?$expand=Country

Response will be:

$expand applies to both single association and lists. It also forces any server-side proxy to be

loaded, so even if Country is lazy-loaded, $expand will retrieve the entity inline. XData optimizes

this retrieval process by forcing the proxy to be loaded eagerly in a single SQL statement (except

for lists).

Expanding blob properties

You can also use $expand to ask for the server to bring blob content inline in object

representation. By default, blob properties will be represented as a proxy reference:

{

 "$id": 1,

 "@xdata.type": "XData.Default.Customer",

 "Id": 3,

 "Name": "Bill",

 "Country@xdata.ref": "Country(10)"

}

{

 "$id": 1,

 "@xdata.type": "XData.Default.Customer",

 "Id": 3,

 "Name": "Bill",

 "Country": {

 "$id": 2,

 "@xdata.type": "XData.Default.Country",

 "Id": 10,

 "Name": "Germany",

 }

}

TMS XData 5.16.1.1 Page 57 of 27

If you want the blob content to be retrieved together with the object, you can ask to $expand

the property:

http://server:2001/tms/xdata/Invoice(3)?$expand=Data

Then the blob content will be inline as a base64 string:

Expanding multiple properties

You can expand multiple properties by separating them using comma. The following example

expands properties Customer, Seller and Products:

http://server:2001/tms/xdata/Invoice(10)?$expand=Customer,Seller,Products

You can also expand subproperties (deeper levels) by using slash to specify subproperties. The

following example expands property Customer and also the Country property of such customer

(and Seller) property:

http://server:2001/tms/xdata/Invoice(10)?$expand=Customer/Country,Seller

$select

The $select query option allows fine-grained control on the fields present in the JSON response

of the XData server. You can specify the fields to be present using a comma-separated.

Considering the following request:

http://server:2001/tms/xdata/Customer(3)

Ends up with the following response:

You can use $select query option to include just a few fields in response:

http://server:2001/tms/xdata/Customer(3)?$select=Id,FirstName,Birthday

Results in:

"Data@xdata.proxy": "Customer(55)/Data"

"Data": "T0RhdGE"

{

 "Id": 3,

 "FirstName": "Bill",

 "LastName": "Smith",

 "Birthday": "1980-01-01",

 "Country@xdata.ref": "Country(15)"

}

{

 "Id": 3,

 "FirstName": "Bill",

 "Birthday": "1980-01-01"

}

TMS XData 5.16.1.1 Page 58 of 27

This option not only saves bandwidth by reducing the JSON response size, but it also effectively

optimizes the server execution, by not including the missing fields in the SQL request. You can

specify associations and its subproperties as well:

http://server:2001/tms/xdata/Customer(3)?

$select=Id,FirstName,Birthday,Country,Country/Name&$expand=Country

Results in:

Built-in Functions

In addition to operators, a set of functions is also defined for use with the $filter or $orderby

system query options. The following sections describe the available functions.

Upper

The upper function returns the input parameter string value with all characters converted to

uppercase.

Example:

http://server:2001/tms/xdata/Customer?$filter=upper(Name) eq 'PAUL'

Lower

The lower function returns the input parameter string value with all characters converted to

lowercase.

Example:

http://server:2001/tms/xdata/Customer?$filter=lower(Name) eq 'paul'

Length

The length function returns the number of characters in the parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=length(Name) eq 15

{

 "Id": 3,

 "FirstName": "Bill",

 "Birthday": "1980-01-01",

 "Country": {

 "Name": "USA"

 }

}

TMS XData 5.16.1.1 Page 59 of 27

Substring

The substring function returns a substring of the first parameter string value identified by

selecting M characters starting at the Nth character (where N is the second parameter integer

value and M is the third parameter integer value). N parameter is 1-based, thus N = 1 means the

first character.

Example:

http://server:2001/tms/xdata/Customer?$filter=substring(CompanyName, 2, 4) eq 'oogl'

Position

The position function returns the 1-based character position of the first occurrence of the first

parameter value in the second parameter value. If the string in first parameter is not found in the

string in second parameter, it returns zero.

Example:

http://server:2001/tms/xdata/Customer?$filter=position('jr', Name) gt 0

Concat

The concat function returns the string concatenation of the two string input parameters passed

to it.

Example:

http://server:2001/tms/xdata/Customer?$filter=concat(concat(Name, ' '), LastName) eq

'PAUL SMITH'

Contains

The contains function returns True if the first string parameter contains the string specified by the

second string parameter. False otherwise.

The following example will return all customers which Name contains the string "Walker":

http://server:2001/tms/xdata/Customer?$filter=contains(Name, 'Walker')

StartsWith

The startswith function returns True if the first string parameter starts with the string specified by

the second string parameter. False otherwise.

The following example will return all customers which Name starts with the string "Paul":

http://server:2001/tms/xdata/Customer?$filter=startswith(Name, 'Paul')

EndsWith

The endswith function returns True if the first string parameter ends with the string specified by

the second string parameter. False otherwise.

TMS XData 5.16.1.1 Page 60 of 27

The following example will return all customers which Name ends with the string "Smith":

http://server:2001/tms/xdata/Customer?$filter=endswith(Name, 'Smith')

Year

The year function returns the year component of a single date/time parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=year(BirthDate) eq 1971

Month

The month function returns the month component of a single date/time parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=month(BirthDate) eq 12

Day

The day function returns the day component of a single date/time parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=day(BirthDate) eq 31

Hour

The hour function returns the hour component of a single date/time parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=hour(BirthDate) eq 14

Minute

The minute function returns the minute component of a single date/time parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=minute(BirthDate) eq 45

Second

The second function returns the second component of a single date/time parameter value.

Example:

http://server:2001/tms/xdata/Customer?$filter=second(BirthDate) eq 30

TMS XData 5.16.1.1 Page 61 of 27

Literals in URI

When building an URI to perform a request to the server, you sometimes need to include literal

values in it. You might need to use literals, for example, when addresing a single entity, where

you need to pass the key value in the URI. Or when you use query options like $filter, where you

usually include boolean expressions that compare property values to literal values. The following

table indicates how to build literal values of several different data types.

Data Type Examples Description

null null Null value

Boolean true

false

Boolean values

DateTime 2013-12-25

2013-12-25T12:12

2013-12-25T12:12:20.125

Date time value must be in the ISO 8601

format (YYYY-MM-DDTdd:mm:ss.zzz). Parts

of time can be omitted, for example, you can

omit the milliseconds part (zzz) and seconds

part (ss), or the full time and provide only

the date part.

Float 3.14

1.2e-5

Float number values. Exponential format is

also supported.

Guid E314E4B3-

ECE5-4BD5-9D41-65B7E74F7CC8

Guid value must not have enclosing

brackets, must have the hyphens separating

the five guid blocks (8 char, 4 char, 4 char, 4

char, 12 char). Each guid block is composed

by hexadecimal digits.

Integer 1234 Integer values

String 'John' Strings must be enclosed in single quotes.

Enumerated csActive

TCustomerStatus.csActive

Values of enumerated types can be directly

referred by their name, without any quotes.

To avoid ambiguity, you can prefix the

enumeration name with the type name and

a dot.

Custom Functions

Besides the built-in functions you can use in $filter and $orderby query options, you can also

register your own custom functions. Such functions will then be translated into Aurelius' LINQ

"SQL functions" that also need to be previously registered for the query to work.

For example, to register a function named "unaccent":

uses {...}, XData.Query.Parser;

TQueryParser.AddMethod('unaccent', TQueryMethod.Create('unaccent', 1));

TMS XData 5.16.1.1 Page 62 of 27

The numeric parameter (1) indicates the number of parameters the function receives.

Then to use the function from query API:

http://server:2001/tms/xdata/Customer?$filter=unaccent(Name) eq 'Andre'

Requesting Data

XData server support requests for data via HTTP GET requests. You can follow URL conventions

to determine the correct URL to be requested according to data needed.

The resource path of the URL specifies the target of the request (for example, collection of

entities, entity, associated entity (navigation property), etc.). Additional query operators, such as

filter, sort, page are specified through query options. The format of returned data depends on

the data being requested but usually follows the specified XData JSON Format.

The following topics describe the types of data requests defined by XData and related

information.

Querying Collections

XData server supports querying collections of entities. The target collection is specified through a

URL that addresses an entity set (or an URL that addresses navigation properties representing a

collection of items, like items of an order for example), and query operations such as filter, sort,

paging are specified as system query options provided as query options. The names of all system

query options are prefixed with a dollar ($) character.

For example, to query all the existing Country objects in the server, you perform a GET request to

the respective entity set URL:

You can add query options to the URL to filter the collection of entities. The following GET

request returns the first 10 customers which country name is equals to "USA", ordered by

customer name:

The following example retrieves the items of order with id equals to 10.

NOTE

You can only use query options on entity sets. When addressing navigation properties that

represent a collection (like the previous example), query options are not available.

GET http://server:2001/tms/xdata/Country HTTP/1.1

GET http://server:2001/tms/xdata/Customer?$filter=Country/Name eq

'USA'&$orderby=Name&$top=10 HTTP/1.1

GET http://server:2001/tms/xdata/Order(10)/Items HTTP/1.1

TMS XData 5.16.1.1 Page 63 of 27

Requesting Associated Entities

To request associated entities according to a particular relationship, the client issues a GET

request to the source entity's request URL, followed by a forward slash and the name of the

navigation property representing the relationship, according to URL conventions for addressing

associated entities.

If the navigation property does not exist on the entity indicated by the request URL, the service

returns 404 Not Found.

If the association terminates on a collection (many-valued association), then behavior is similar

as described in topic "Querying Collections", without the exception that query options (filtering,

ordering, etc.) cannot be applied.

If the association terminates on a single entity (single-valued association), then behavior is the

same as described in topic "Requesting Single Entities". If no entity is related, the service returns

204 No Content.

Examples

Retrieving the customer associated with order 10 (single entity):

Retrieving items associated with order 10 (collection of entities):

Requesting Individual Properties

To retrieve an individual property, the client issues a GET request to the property URL. The

property URL is the entity read URL with "/" and the property name appended, according to URL

conventions for addressing simple properties. For example:

The result format following the JSON format specification for individual properties, i.e., a JSON

object with a name/value pair which name is "value" and the value contains the actual property

value. The result for the above request might be, for example:

If the property has the null value, the service responds with 204 No Content.

If the property doesn't exist the service responds with 404 Not Found.

You can alternatively request the raw value of the property. To retrieve the raw value of a

primitive type property, the client sends a GET request to the property value URL, which is the

property value URL suffixed with "$value":

GET http://server:2001/tms/xdata/Order(10)/Customer HTTP/1.1

GET http://server:2001/tms/xdata/Order(10)/Items HTTP/1.1

GET http://server:2001/tms/xdata/Product(1)/Name HTTP/1.1

{

 "value": "Silver Hammer XYZ"

}

TMS XData 5.16.1.1 Page 64 of 27

The Content-Type of the response is text/plain and the response content is the property value in

plain text, formatted according to the JSON format specification for property values. The

response content of the above request might something like the following:

A $value request for a property that is null results in a 204 No Content response.

If the property doesn't exist the service responds with 404 Not Found.

Requesting Streams (Blobs)

To retrieve the content of a stream (blob) property, the client issues a GET request to a URL that

addresses a stream (blob) resource. For example:

The server will provide the binary blob content in response body, without specifying the content

type. It's up to your client application to determine the type of content and process it

accordingly. Note that this behavior is different from when you request individual properties,

which in this case provide a JSON representation of the property value.

If the property has the null value, or the stream content is empty, the service responds with 204

No Content, otherwise a sucessful 200 OK response is provided.

If the property doesn't exist the service responds with 404 Not Found.

HTTP Request Headers

XData defines semantics around the following HTTP request and response headers. Additional

headers may be specified, but have no unique semantics defined in XData.

The following are the available request headers.

xdata-expand-level

Clients can optionally include this header in the request to define the maximum depth for which

the associated entities will be expanded (serialized inline) in an entity JSON representation.

xdata-expand-level: 3

An associated entity (navigation property) can be represented as an association reference, or

inline object.

If XData-ExpandLevel is notpresent, the value 0 (zero) is assumed, which means all direct

associated entities will be represented as references. When the header is present and value is

higher, then all associated entities will be serialized inline, until the depth level specified by the

GET http://server:2001/tms/xdata/Product(1)/Name/$value HTTP/1.1

Silver Hammer XYZ

GET http://server:2001/tms/xdata/Customer(1)/Photo HTTP/1.1

TMS XData 5.16.1.1 Page 65 of 27

header. The higher the expand level, the bigger the response payload will be, since more objects

will be serialized. But if client will need those objects anyway, this will minimize the need of

further server requests to retrieve associated objects. Proxies are not affected by this.

xdata-put-mode

Overrides the value of TXDataServerModule.PutMode property for the request. Please refer to

the property documentation for more info. Example:

xdata-put-mode: update

Valid values are "update" and "merge".

xdata-serialize-instance-ref

Overrides the value of TXDataServerModule.SerializeInstanceRef property for the request. Please

refer to the property documentation for more info. Example:

xdata-serialize-instance-ref: ifrecursive

Valid values are "always" and "ifrecursive".

xdata-serialize-instance-type

Overrides the value of TXDataServerModule.SerializeInstanceType property for the request.

Please refer to the property documentation for more info. Example:

xdata-serialize-instance-type: ifneeded

Valid values are "always" and "ifneeded".

Requesting Single Entities

To retrieve a single entity, the client makes a GET request to the read URL of an entity.

The read URL can be obtained by following the URL conventions, either that addresses a single

entity, or associated entities. The read URL can be also obtained from a response payload in

JSON format containing information about associated entities (through navigation properties of

the entity represented in the payload).

If no entity exists with the key values specified in the request URL, the service responds with 404

Not Found.

Examples

Retrieving a customer with id equals to 3:

Retrieving the customer associated with order 10:

GET /tms/xdata/Customer(3) HTTP/1.1

Host: server:2001

TMS XData 5.16.1.1 Page 66 of 27

In both examples above, the response content might be:

Data Modification

XData Server supports Create, Update, and Delete operations for some or all exposed resources

(entities, individual properties, etc.). You can follow URL conventions to determine the correct

URL address of the resource path in order to perform the data modification operation.

Since XData Server follows REST/JSON architecture, such data modification operations are

performed by sending HTTP requests to the server using POST, PUT, PATCH or DELETE methods,

and when applicable, providing data in message payload using JSON format.

The following topics explains the several different methods of performing data modification in a

XData Server.

Create an Entity

To create an entity in a collection, clients must perform a POST request to that collection's URL,

which can be either the entity set URL address or a navigation property URL address that

represents a collection. The POST body must contain a single valid JSON representation of the

entity. The entity representation can be full (all possible properties) or partial (a subset of all

available properties for the entity type).

Properties in entity representation must be valid properties or navigation properties of the entity

type as specified in the entity model. Additional property values beyond those specified in the

entity type should not be sent in the request body. The request will fail if unable to persist all

property values specified in the request. Missing properties will be set to their default value. If a

missing property is required and does not have a default value in the database server, the

request will fail.

The following example creates a new Country entity in the server.

GET /tms/xdata/Order(10)/Customer HTTP/1.1

Host: server:2001

{

 "$id": 1,

 "@xdata.type": "XData.Default.Customer",

 "Id": 55,

 "Name": "Joseph",

 "Birthday": "1980-05-20",

 "Sex": "tsMale",

 "Picture": null

}

TMS XData 5.16.1.1 Page 67 of 27

When creating an entity, the "xdata.type" annotation is not required. If present, it indicates the

type of the entity which should be created by the server. It can be useful when creating derived

entities, for example, even though you POST to an URL representing an entity set of base types

(for example, Animal), the entity being created might be a type inherited from the base type.

In the following example the request will create a Cat entity in entity set Animal. It's a valid

request. If the provided xdata.type annotation indicates a type that is different or not inherited

from the type of entity set being POST'ed, the request will fail.

If "xdata.type" is not present, the created entity will have the same type as the base entity type of

the collection addressed by the URL. For example, if client POST to the url "Cat" without

"xdata.type" annotation present in payload, an entity of type Cat wil be created.

The entity representation in request payload must not contain associated entities as inline

content. If values for navigation properties should be specified, then they must be represented

as an association reference. For single-valued (single entity) navigation properties, this will

update the relationship (set the value of property to reference the associated object represented

in the association reference) after entity is created.

The following example creates a new City entity which is associated with a Country object of id 2.

Proxy values can be present in the entity payload (for example, when you are sending back a

modified JSON representation previously retrieved from the server, it's possible that proxy values

are present), but they are ignored by the server and navigation properties with proxy values that

were not modified.

POST /tms/xdata/Country HTTP/1.1

Host: server:2001

{

 "@xdata.type": "XData.Default.Country",

 "Name": "Brazil"

}

POST /tms/xdata/Animal HTTP/1.1

Host: server:2001

{

 "@xdata.type": "XData.Default.Cat",

 "Name": "Wilbur",

 "CatBreed": "Persian"

}

POST /tms/xdata/City HTTP/1.1

Host: server:2001

{

 "$id": 1,

 "Name": "Frankfurt",

 "Country@xdata.ref": "Country(2)"

}

TMS XData 5.16.1.1 Page 68 of 27

When perform POST request to a navigation property URL that represents a collection property,

for example, Order(1)/Items which represent items of a specific order, the newly created entity

will be automatically associated with (added to) that collection.

On successful update, the server returns with a 201 Created success response and the JSON

representation of the updated entity in the message payload. The response will also contain a

Location header that contains the URL of the created entity. Note that the returned entity might

be different from the one sent by the client, since some properties might have been updated

automatically by XData Server and/or the database server.

Update an Entity

To update an entity, clients must perform a PATCH or PUT request to a single entity URL address,

providing the JSON representation of the entity in message payload of the request. The entity

representation can be full (all possible properties) or partial (a subset of all available properties

for the entity type).

PATCH method should be preferred for updating an entity as it provides more resiliency between

clients and services by directly modifying only those values specified by the client. The semantics

of PATCH, as defined in [RFC5789], are to merge the content in the request payload with the

entity's current state, applying the update only to those components specified in the request

body. Thus, properties provided in the payload will replace the value of the corresponding

property in the entity or complex type. Missing properties of the containing entity will not be

altered.

In the following example, only properties Name and DogBreed of resource Dog(1) will be

updated in the server.

PUT method can also be used, but you should be aware of the potential for data-loss for missing

properties in the message payload. When using PUT, all property values will be modified with

those specified in the request body. Missing properties will be set to their default values.

In the following example, properties Name and DogBreed will be updated, and any other existing

property of Dog will be set to its default value (strings will be blank, associations will be nil, etc.).

If one of missing properties is required and not present, the server might raise an error indicating

a required property should have a value.

PATCH /tms/xdata/Dog(1) HTTP/1.1

Host: server:2001

{

 "@xdata.type": "XData.Default.Dog",

 "Id": 1,

 "Name": "Willy",

 "DogBreed": "Yorkshire"

}

TMS XData 5.16.1.1 Page 69 of 27

https://tools.ietf.org/html/rfc5789

Key and other non-updatable properties can be omitted from the request. If the request contains

a value for one of these properties the server will ignore that value when applying the update.

That's the reason why Id property is not updated in the above examples.

The entity must not contain associated entities as inline content. If values for navigation

properties should be specified, then they must be represented as an association reference. For

single-valued (single entity) navigation properties, this will update the relationship (set the value

of property to reference the associated object represented in the association reference).

The following example updates the Country association of a City object to the country with id

equals to 2.

Proxy values can be present in the entity payload (for example, when you are sending back a

JSON representation previously retrieved from the server, it's possible that proxy values are

present), but they are ignored by the server and navigation properties with proxy values are not

modified.

For update operations (PUT and PATCH), the "xdata.type" annotation is not required. Since you

are updating an existing server resource, the type of resource is already known. Actually,

including "xdata.type" annotation will force the server to perform a type check, if the type

declared in the request doesn't match the type of server resource, an error occurs. So if you

include xdata.type annotation in payload, be sure it matches the type of server resource you are

trying to update.

On successful update, the server returns with a success response and the JSON representation of

the updated entity in the message payload. Note that the returned entity might be different

from the one sent by the client, since some properties might have been updated automatically

by XData Server and/or the database server.

PUT /tms/xdata/Dog(1) HTTP/1.1

Host: server:2001

{

 "@xdata.type": "XData.Default.Dog",

 "Id": 1,

 "Name": "Willy",

 "DogBreed": "Yorkshire"

}

PATCH /tms/xdata/City(1) HTTP/1.1

Host: server:2001

{

 "$id": 1,

 "@xdata.type": "XData.Default.City",

 "Country@xdata.ref": "Country(2)"

}

TMS XData 5.16.1.1 Page 70 of 27

Delete an Entity

To delete an entity, clients must perform a DELETE request to a single entity URL address. The

request body must be empty. The entity represented by that address will be removed from

server.

The following example will delete the entity resource at address /tms/xdata/Dog(1) - which is a

Dog entity with id equals to 1:

Note that depending on cascades configured in the server, associated entities might also be

removed. If the entity being removed is associated by another entity that can't be removed in a

cascade operation, a constraint enforcement will fail and the server will return an error without

actually removing the entity.

On successful delete, the server responds with a 204 No Content response and no content in

message payload.

Managing Streams (Blobs)

To update the content of a stream (blob) property, clients must perform a PATCH or PUT request

to a stream property URL address, providing stream content in message body. You don't need to

specify content-type and if you do, it will be ignored. Using either PATCH or PUT method results

in same server behavior.

The request is an example of how to update the content of Photo property of the customer

identified by id equals to 3.

You can also use DELETE method to clear the blob content (remove any data):

On successful UPDATE or DELETE calls, the server will respond with a 204 No Content status code.

DELETE /tms/xdata/Dog(1) HTTP/1.1

Host: server:2001

PUT /tms/xdata/Customer(1)/Photo HTTP/1.1

Host: server:2001

<binary photo content>

DELETE /tms/xdata/Customer(1)/Photo HTTP/1.1

Host: server:2001

TMS XData 5.16.1.1 Page 71 of 27

TXDataClient
The TXDataClient object (declared in unit XData.Client) allows you to send and receive objects

to/from a XData server in a high-level, easy-to-use, strong-typed way. From any platform, any

development environment, any language, you can always access XData just by using HTTP and

JSON, but if you are coding from Delphi client, TXDataClient makes it much easier to write client

applications that communicate with XData server.

To start using a TXDataClient, you just need to instantiate it and set the Uri property to point to

root URL of the XData server:

The following topics explain how to use TXDataClient in details.

Invoking Service Operations

You can easily invoke service operations from a Delphi application using the TXDataClient class.

Even though XData implements service operations using standards HTTP and JSON, which allows

you to easily invoke service operations using HTTP from any client or platform, the TXDataClient

makes it even easier by providing strong typing and direct method calls that in turn perform the

HTTP requests under the hood.

Another advantage is that you don't need to deal building or finding out the endpoint URL

(routing), with binding parameters or even create client-side proxy classes (when you use

Aurelius entities). The same service interface you defined for the server can be used in the client.

You can share the units containing the service interfaces between client and server and avoid

code duplication.

To invoke service operations, you just need to:

Retrieve an interface using Service<I> method.

Call methods from the interface.

Here is an example of invoking the method Sum of interface IMyService, declaring in the topic

"defining service interface":

uses {...}, XData.Client;

{...}

Client := TXDataClient.Create;

Client.Uri := 'http://server:2001/tms/xdata';

// <use client>

Client.Free;

1.

2.

TMS XData 5.16.1.1 Page 72 of 10

Note that the client won't destroy any object passed as parameters, and will only destroy entities

created by it (that were returned from the server), but no regular objects (like TList<T> or

TStream). See "Memory Management" topic for detailed information.

Client Memory Management

Since method operations can deal with several types of objects, either Aurelius entities, plain old

Delphi objects or even normal classes like TList<T> or TStream, it's important to know exactly

how XData handles the lifetime of those objects, in order to avoid memory leaks or access

violation exceptions due to releasing the same object multiple times.

This is the behavior or TXDataClient when it comes to receiving/sending objects (there is a

separated topic for server-side memory management).

Any object sent to the server (passed as a parameter) is not destroyed. You must handle

the lifetime of those objects yourself.

Any object of type TStream or TList<T> returned from the server is not destroyed. You

must handle the lifetime of those objects yourself.

Any other object returned from the server which type is not the ones mentioned in the

previous item is automatically destroyed by default.

So consider the example below:

uses

 {...}

 MyServiceInterface,

 XData.Client;

var

 Client: TXDataClient;

 MyService: IMyService;

 SumResult: double;

begin

 // Instantiate TXDataClient

 Client := TXDataClient.Create;

 // Set server Uri

 Client.Uri := 'http://server:2001/tms/xdata';

 // Retrieve IMyService inteface

 MyService := Client.Service<IMyService>;

 // call inteface methods

 SumResult := MyService.Sum(5, 10);

end;

•

•

•

TMS XData 5.16.1.1 Page 73 of 10

Customer object is being passed as parameter. It will not be destroyed by the client and you

must destroy it yourself. This is the same if you call Post, Put or Delete methods.

Items object (TList<T>) is being returned from the function. You must destroy the list yourself,

it's not destroyed by the client. It's the same behavior for List method.

The TInvoice objects that are inside the list will be destroyed automatically by the client. You

must not destroy them. Also, the same behavior for Get and List methods - entities are also

destroyed by the client.

Alternatively, you can disable automatic management of entity instances at the client side, by

using the ReturnedInstancesOwnership property:

The code above will prevent the client from destroying the object instances. You can also retrieve

the list of all objects created by the client (that are supposed to be destroyed automatically)

using property ReturnedEntities, in case you need to destroy them manually:

Working With CRUD Endpoints

The following topics describe how to use TXDataClient to deal with TMS Aurelius CRUD

Endpoints.

Requesting a Single Entity

To request a single entity, use the Get generic method passing the Id of the object as parameter:

The Id parameter is of type TValue, which has implicit conversions from some types like integer

and string in the examples above. If there is no implicit conversion from the type of the id, you

can use an overloaded method where you pass the type of Id parameter:

var

 Customer: TCustomer;

 Invoices: TList<TInvoice>;

{...}

Invoices := Client.Service<ISomeService>.DoSomething(Customer);

Customer.Free;

Invoices.Free;

Client.ReturnedInstancesOwnership := TInstanceOwnership.None;

for Entity in Client.ReturnedEntities do {...}

Customer := Client.Get<TCustomer>(10);

State := Client.Get<TState>('FL');

TMS XData 5.16.1.1 Page 74 of 10

You can use the non-generic version of Get in case you only know the entity type at runtime (it

returns a TObject and you need to typecast it to the desired type):

Requesting an Entity List

Use the List method to query and retrieve a list of entities from the server:

The TXDataClient.List<T> function will always create and retrieve an object of type TList<T>. By

default you must manually destroy that list object later, as explained in memory management

topic.

Optionally you can provide a query string to send to the server to perform filtering, order, etc.,

using the XData query options syntax:

Use the non-generic version in case you only know the type of the entity class at runtime. In this

case, the function will create and return an object of type TList<TObject>:

You also can use Count method to retrieve only the total number of entities without needing to

retrieve the full entity list:

var

 InvoiceId: TGuid;

begin

 { ... get invoice Id }

 Invoice := Client.Get<TInvoice, TGuid>(InvoiceId);

end;

Customer := TCustomer(Client.Get(TCustomer, 10)));

var

 Fishes: TList<TFish>;

begin

 Fishes := Client.List<TFish>;

Customers := Client.List<TCustomer>('$filter=(Name eq ''Paul'') or (Birthday lt

1940-08-01)&$orderby=Name desc');

var

 Fishes: TList<TObject>;

begin

 Fishes := XClient.List(TFish);

TMS XData 5.16.1.1 Page 75 of 10

Creating Entities

Use TXDataClient.Post to create a new object in the server.

Pay attention to client memory management to learn which objects you need to manually

destroy. In this case, the client won't destroy the TCountry object automatically so you need to

destroy it yourself.

The client makes sure that after a successful Post call, the Id of the object is properly set (if

generated by the server).

Updating Entities

Use TXDataClient.Put to update an existing object in the server.

Pay attention to client memory management to learn which objects you need to manually

destroy. Client won't destroy objects passed to Put method. In the above example, though, the

object doesn't need to be destroyed because it was previously retrieved with Get, and in this

case (for objects retrieved from the server), the client will manage and destroy it.

Removing Entities

Use TXDataClient.Delete to delete an object from the server. The parameter must be the object

itself:

var

 TotalFishes: Integer;

 TotalCustomers: Integer;

begin

 TotalFishes := Client.Count(TFish);

 TotalCustomers := Client.Count(TCustomer, '$filter=(Name eq ''Paul'') or

(Birthday lt 1940-08-01)&$orderby=Name desc');

end;

C := TCountry.Create;

try

 C.Name := 'Germany';

 Client.Post(C);

finally

 C.Free;

end;

Customer := Client.Get<TCustomer>(10);

Customer.City := 'London'; // change city

Client.Put(Customer); // send changes

Customer := Client.Get<TCustomer>(10);

Client.Delete(Customer); // delete customer

TMS XData 5.16.1.1 Page 76 of 10

Pay attention to client memory management to learn which objects you need to manually

destroy. Client won't destroy objects passed to Delete method. In the above example, though,

the object doesn't need to be destroyed because it was previously retrieved with Get, and in this

case (for objects retrieved from the server), the client will manage and destroy it.

Using the Query Builder

XData allows you to easily query entities using a full query syntax, either by directly sending

HTTP requests to entity set endpoints, or using the List method of TXDataClient .

For example, to query for customers which name is "Paul" or birthday date is lower then August

1st, 1940, ordered by name in descending order, you can write a code like this:

Alternatively to manually writing the raw query string yourself, you can use the XData Query

Builder. The above code equivalent would be something like this:

Filter and FilterRaw

The Filter method receives an Aurelius criteria expression to later convert it to the syntax of

XData $filter query parameter. Please refer to Aurelius criteria documentation to learn more

about how to build such queries. A quick example:

Will result in $filter=Name eq Paul . You can also write the raw query string directly using

FilterRaw method:

Customers := Client.List<TCustomer>('$filter=(Name eq ''Paul'') or (Birthday lt

1940-08-01)&$orderby=Name desc');

uses {...}, XData.QueryBuilder, Aurelius.Criteria.Linq;

Customers := Client.List<TCustomer>(

 CreateQuery

 .From(TCustomer)

 .Filter(

 (Linq['Name'] = 'Paul')

 or (Linq['Birthday'] < EncodeDate(1940, 8, 1))

)

 .OrderBy('Name', False)

 .QueryString

);

 CreateQuery.From(TCustomer)

 .Filter(Linq['Name'] = 'Paul')

 .QueryString

 CreateQuery.From(TCustomer)

 .FilterRaw('Name eq Paul')

 .QueryString

TMS XData 5.16.1.1 Page 77 of 10

https://doc.tmssoftware.com/biz/aurelius/guide/queries.html#filtering-results

OrderBy and OrderByRaw

Method OrderBy receives either a property name in string format, or an Aurelius projection. A

second optional boolean parameter indicates if the order must be ascending (True , the default)

or descending (False). For example:

Results in $orderby=Name,Id desc . The overload using Aurelius project allows for more complex

expressions, like:

Which results in $orderby=year(Birthday) . You can also write the raw order by expression

directly using OrderByRaw method:

Top and Skip

Use Top and Skip methods to specify the values of $top and $skip query options:

Results in $top=10&$skip=30 .

Expand

Specifies the properties to be added to $expand query option:

Results in $expand=Customer,Product .

 CreateQuery.From(TCustomer)

 .OrderBy('Name')

 .OrderBy('Id', False)

 .QueryString

 CreateQuery.From(TCustomer)

 .OrderBy(Linq['Birthday'].Year)

 .QueryString

 CreateQuery.From(TCustomer)

 .OrderByRaw('year(Birthday)')

 .QueryString

 CreateQuery.Top(10).Skip(30)

 .QueryString

 CreateQuery.From(TInvoice)

 .Expand('Customer')

 .Expand('Product')

 .QueryString

TMS XData 5.16.1.1 Page 78 of 10

Subproperties

If you need to refer to a subproperty in either Filter , OrderBy or Expand methods, just

separate the property names using dot (.):

Results in $filter=Country/Name eq 'Germany' .

From

If your query refers to property names, you need to use the From method to specify the base

type being queried. This way the query builder will validate the property names and check their

types to build the query string properly. There are two ways to do so: passing the class of the

object being queries, or the entity type name:

Note that you can also specify the name of an instance type, ie., an object that is not necessarily

an Aurelius entity, but any Delphi object that you might be passing as a DTO parameter.

When you pass a class name, the query builder will validate agains the names of field and

properties of the class, not the final JSON value. For example, suppose you have a class mapped

like this:

The following query will work ok:

While the following query will fail:

Because the_name is not a valid property name for TCustomerDTO class. The correct query

should be:

Which will then result in the query string $filter=the_name eq 'Paul' .

 CreateQuery.From(TCustomer)

 .Filter(Linq['Country.Name'] = 'Germany')

 .QueryString

 CreateQuery.From(TCustomer) {...}

 CreateQuery.From('Customer') {...}

 TCustomerDTO = class

 strict private

 FId: Integer;

 [JsonProperty('the_name')]

 FName: string;

{...}

 CreateQuery.From('Customer').Filter(Linq['the_name'] = 'Paul')

 CreateQuery.From(TCustomerDTO).Filter(Linq['the_name'] = 'Paul')

 CreateQuery.From(TCustomerDTO).Filter(Linq['Name'] = 'Paul')

TMS XData 5.16.1.1 Page 79 of 10

Client and Multi-Model

When you create the TXDataClient object, it uses the default entity model to retrieve the

available entity types and service operations that can be retrieved/invoked from the server.

When your server has multiple models, though, you need to specify the model you are using

when accessing the server. This is useful for the client to know which service interface contracts it

can invoke, and of course, the classes of entities it can retrieve from the server. To do that, you

pass the instance of the desired model to the client constructor:

See topic "Multiple servers and models" for more information.

Authentication Settings

For the HTTP communication, TXDataClient uses under the hood the Sparkle THttpClient. Such

object is accessible through the TXDataClient.HttpClient property. You can use all properties and

events of THttpClient class there, and the most common is the OnSendingRequest event, which

you can use to set custom headers for the request. One common usage is to set the

Authorization header with credentials, for example, a JSON Web Token retrieved from the server:

Legacy Basic authentication

TXDataClient class provides you with the following properties for accessing servers protected

with basic authentication.

Defines the UserName and Password to be used to connect to the server. These properties are

empty by default, meaning the client won't send any basic authentication info. This is equivalent

to set the Authorization header with property basic authentication value.

Ignoring Unknown Properties

TMS XData allows you work with the entity and DTO classes at client-side. Your client application

can be compiled with the same class used in the server, and when a response is received from

the server, the class will be deserialized at client-side.

However, it might happen that your server and client classes get out of sync. Suppose you have a

class TCustomer both server and client-side. The server serializes the TCustomer, and client

deserializes it. At some point, you update your server adding a new property TCustomer.Foo. The

Client := TXDataClient.Create(TXDataAureliusModel.Get('Security'));

XDataClient.HttpClient.OnSendingRequest :=

 procedure(Req: THttpRequest)

 begin

 Req.Headers.SetValue('Authorization', 'Bearer ' + vToken);

 end;

property UserName: string;

property Password: string;

TMS XData 5.16.1.1 Page 80 of 10

https://download.tmssoftware.com/business/sparkle/doc/web/thttpclient_events.html
https://download.tmssoftware.com/business/sparkle/doc/web/thttpclient_events.html

server then sends the JSON with an additional Foo property, but the client was not updated and

it doesn't recognize such property, because it was compiled with an old version of TCustomer

class.

By default, the client will raise an exception saying Foo property is not known. This is the safest

approach since if the client ignore the property, it might at some point send the TCustomer back

to the server without Foo, and such property might get cleared in an update, for example.

On the other hand, this will require you to keep your clientes updated and in sync with the server

to work. If you don't want that behavior, you can simply tell the client to ignore properties

unknown by the client. To do this, use the IgnoreUnknownProperties property from TXDataClient:

XDataClient1.IgnoreUnknownProperties := True;

TMS XData 5.16.1.1 Page 81 of 10

JSON Format
XData server uses JSON format in message payloads when receiving and sending HTTP

messages to represent several different structures like entities, collection of entities or individual

properties. Although JSON specification is very simple and describes completely how to use

JSON format, the meaning of each JSON structure (especially name/value pairs) depend on the

application and server behavior.

The following topics describes how each different structure is represented in JSON format by

XData, and additional useful info about it.

Entity and Object Representation

Any Aurelius entity or simple Delphi object is serialized as a JSON object. Each property is

represented as a name/value pair within the object.

The name of the properties in JSON for a simple Delphi object will be the field names of the

object class, with the leading "F" removed from the name, if it exists.

The name of the properties in JSON for an Aurelius entity will be the same as property names

defined in the XData Model according to Aurelius Equivalence to Entity Model.

A Delphi object in payload will always have all properties, unless you explicitly change this

behavior by using JSON attributes to customize the serialization.

An Aurelius entity in a payload may be a complete entity, with all existing properties for that

entity type, or a partial entity update (for partial update operations), which do not list all

properties of the entity.

The following text illustrates how XData represents a simple Customer object (TCustomer class).

In above JSON representation, Customer entity type contains simple properties Id (integer),

Name (string), Birthday (date), Sex (enumeration) and Picture (blob). The property values are

represented as direct JSON values. Note that XData also includes some metadata information in

the JSON object, like "$id" name which represents the object reference id. In some cases, XData

might include the "xdata.type" annotation which is needed for it to work properly with

polymorphism. The following topics describe more specific details about how entities and its

properties are represented in XData.

{

 "$id": 1,

 "Id": 55,

 "Name": "Joseph",

 "Birthday": "1980-05-20",

 "Sex": "tsMale",

 "Picture": null

}

TMS XData 5.16.1.1 Page 82 of 16

https://www.json.org

Property Values

Simple (scalar) properties of an entity/object are represented in as name/value pairs in the JSON

object. The JSON name contains the property name, and value contains a JSON value that can be

either a JSON string, number, boolean or null, depending on the property type. The format of

most types are very straightforward (a string property is represented as a string JSON, an integer

property as integer JSON, and so on), but a few types have some specific representation. The

following table explains the JSON representation of the most common property types.

Data

Type Examples Description

<null

values>

null Represented as JSON null literal.

Binary "T0RhdGE" Represented as JSON string, whose content

must be the binary value encoding as Base64.

Boolean true

false

Represented as JSON true or false literals.

DateTime "2013-12-25"

"2013-12-25T12:12"

"2013-12-25T12:12:20.050"

Represented as JSON string, whose content

must be the date/time in ISO 8601 format

(YYYY-MM-DDTdd:mm:ss.zzz). The time part

can be completely omitted. If time part is

present, hour and minutes are required, and

seconds and milliseconds parts can also

optionally be omitted.

Enum

types

"tsMale"

"Yellow"

Represented as JSON string, whose content is

the name corresponding to the ordinal value

of the enumerated property.

Float 3.14

1.2e-5

Represented as JSON number.

Guid "E314E4B3-

ECE5-4BD5-9D41-65B7E74F7CC8"

Represented as JSON string, whose content

must be the string representation of the

GUID, must not have enclosing brackets and

must have the hyphens separating the five

guid blocks (8 char, 4 char, 4 char, 4 char, 12

char). Each guid block is composed by

hexadecimal digits.

Integer 1234 Represented as a JSON number.

String "John" Represented as JSON string, using JSON

string escaping rules.

TMS XData 5.16.1.1 Page 83 of 16

Object References

XData provides the concept of object referencing in JSON. This is useful to indicate which objects

are the same object instance, and also to avoid circular references.

When serializing objects, XData attributes an "instance id" for that object and serializes it. The

instance id is serialized as the first property of the object, with the name "$id". If during

serialization the serializer finds another reference to the same object, it won't serialize the object

again, but instead, will create a "instance reference" that refers to the instance id of the object

previously serialized.

For example, consider you have Product entity type which has a Category property that points to

a Category entity type. Suppose you have a list of two Product entities "Ball" and "Doll" that

point to the same "Toys" category. This is how such list would be serialized:

The TXDataClient deserializer also uses such notation to avoid duplicating objects and using the

same object instance for multiple references. When the deserializer finds a JSON object with a

"$ref" property it will try to find the object instance with the same "$id" value as the "$ref"

property value. Then it will use the reference to that object instead of creating a new one.

In the JSON example above, when creating the second Product instance and setting the

Category property, the deserializer will not create a new Category object. Instead, it will use the

same Category object created in the first product. Thus, the Category property of both Product

objects will point to the same Category object instance.

If the deserializer can't find an instance pointed by the "$ref" property, an error will be raised. All

other properties of a JSON object containing a "$ref" property will be ignored.

[

 {

 "$id": 1,

 "@xdata.type": "XData.Default.Product",

 "Id": 10,

 "Name": "Ball",

 "Category": {

 "$id": 2,

 "@xdata.type": "XData.Default.Category",

 "Id": 5,

 "Name": "Toys"

 }

 },

 {

 "$id": 2,

 "@xdata.type": "XData.Default.Product",

 "Id": 12,

 "Name": "Doll",

 "Category": {

 "$ref": 2,

 }

 }

]

TMS XData 5.16.1.1 Page 84 of 16

Although the XData serializers adds an "$id" property to all objects, such property is not required

in XData notation, thus the deserializer won't raise an error if an object doesn't have an instance

id. But if present, this property must have the very first property (name/value pair) in the JSON

object.

The rule of when object reference ($ref) will be used depend on the

TXDataServerModule.SerializeInstanceRef property. By default, it's always used whenever an

instance appears again. But it can be configured to only appear for recursive ocurrences (thus

avoiding an infinite loop). Please refer to the property documentation for more info. When used

only for recursive ocurrences, the example above will not include $ref, and the Category object

will be repeated in the response:

Annotation "xdata.type"

All JSON objects in XData that represent an object might contain a metadata property named

"@xdata.type". If present it must appear before any regular (non-metadata) property, otherwise

an error is raised while deserializing the object. This property indicates the entity type of the

JSON object. This is used by the deserializer to know which class to be used to instantiate the

object. The value of this property is the name of the object class, or Aurelius entity type, prefixed

by "XData.Default".

An example of an object of type "Customer":

[

 {

 "$id": 1,

 "@xdata.type": "XData.Default.Product",

 "Id": 10,

 "Name": "Ball",

 "Category": {

 "$id": 2,

 "@xdata.type": "XData.Default.Category",

 "Id": 5,

 "Name": "Toys"

 }

 },

 {

 "$id": 2,

 "@xdata.type": "XData.Default.Product",

 "Id": 12,

 "Name": "Doll",

 "Category": {

 "$id": 2,

 "@xdata.type": "XData.Default.Category",

 "Id": 5,

 "Name": "Toys"

 }

 }

]

TMS XData 5.16.1.1 Page 85 of 16

When sending requests to the server, "@xdata.type" annotation is optional. If not present, XData

will try to infer the entity type from the context - for example, if your service operation is

expecting a parameter of type TCustomer then it will deserialize the JSON as a TCustomer

instance, if xdata.type annotation is missing. Thus, this annotation is mostly used when dealing

with polymorphism, so you be sure that the entity will be deserialized as the correct type.

The presence of xdata.type annotation in server responses depend on the configuration of

TXDataServerModule.SerializeInstanceType property. By default, it always send entity/object

representations with the xdata.type, but the server can be configured to only include the

annotation for derived types. Please refer to the property documentation for more info.

Representing Associated Objects

There are several ways to represent an associated entity in a JSON object.

An associated object is any object property that references a regular Delphi object.

An associated entity is any object property that references a TMS Aurelius entity through a

navigation property (association).

For example, you might have an Aurelius entity type Customer with a navigation property

Country, which target is the Country entity type. So the Country object is associated with the

Customer object through the Country property, and might be represented in JSON notation. The

equivalent Aurelius class would be something like this (parts of code removed):

Here we describe the different ways to represent an associated entity/object in JSON format.

Please note that this is not related to representing object references, they are different concepts.

XData server responses will often use entity references when responding to resource requests.

This behavior might be affected by the XData-ExpandLevel request header. Some other classes

might also make use of such header transparently, like TXDataClient which automatically sets an

expand level to 3 (thus all non-proxy entities will be serialized inline until the 3rd level in object

tree).

Note that all the following options are only available for associated entities. For associated

objects, only inline representation is allowed.

{

 "$id": 1,

 "@xdata.type": "XData.Default.Customer",

 "Id": 55,

 "Name": "Joseph"

}

TCustomer = class

 { code stripped }

 property Country: TCountry;

end;

TMS XData 5.16.1.1 Page 86 of 16

Entity Reference

This only applies to associated entities.

This is the most common way to represent an associated entity and should be preferred over any

other method, if possible. It's somehow related to reference to an object instance, in a

programming language. It's represented by annotating the navigation property name with

"xdata.ref" sufix. The value of such property must be the canonical id of the associated object:

In the simplified example above, the property Country is associated to the Country object with id

equals to 10.

Clients can use that value to retrieve further info about the associated object by using the rules

described in "canonical id" topic, performing an extra request to the server. Also, in update/insert

operations, clients can also use this format to tell the server how to update the association. In

the example above, if you send such object to the server in an update operation, the customer

object will have its Country property updated to point to the Country(10) object (country with id

equals to 10).

Entity/Object Inline

In some specific situations, the associated entity might be represented inline (for associated

objects, this is always the case). That would be represented as a JSON object representing the

whole object inline:

Such representation would usually be used by client applications that want to provide associated

entities that still do not have an id, thus can't be represented using the association reference

format. Or can be returned by the server, if the expand level is increased. You can also explicitly

ask for this format using the $expand query option.

To illustrate how association references are different from object references, you can have an

entity represented inline, but using an object reference. For example, if the country object

represented in the previous code (country of id 10 represented inline) was already present in the

JSON tree before, it could be represented as an object reference:

"Country@xdata.ref": "Country(10)"

{

 "Country": {

 "$id": 2,

 "@xdata.type": "XData.Default.Country",

 "Id": 10,

 "Name": "Germany",

 }

}

{

 "Country": {

 "$ref": 2

 }

}

TMS XData 5.16.1.1 Page 87 of 16

Proxy Info

This only applies to associated entities.

For performance reasons, the server might provide an object representation using proxy info

instead of an association reference. The format is similar to the association reference, but the

annotation is "xdata.proxy". The value must contain an URL (relative to server base URL) that

clients can use to retrieve the associated object using a GET request:

Association reference and proxy info are very similar, but they have two differences:

An association reference value has a very specific format (canonical id). Thus, association

references, in addition to be a valid relative URL to retrieve the associated object, it is also

in a specific format so that entity type and id can be parsed from the value, allowing you

to safely know the entity type and id of the associated object without performing a GET

request. Proxy info, in turn, is just a relative URL to retrieve the object, but the URL format

is not standard and no additional metadata info can be safely extracted from the URL.

On data modification requests (insert/update) operations, association references are used

to update the value of the navigation property (the object associated with the main

object). Proxy info, in turn, are completely ignored by the server and do not cause any

modification in the navigation property.

Blob Representation

In general, binary values are represented in JSON notation as base64 value, following the rules

for serializing simple property values. The following JSON name/value pair is an example of a

binary property Data representation:

When the property type in Aurelius is declared as TBlob type, though, the name/value pair in

JSON notation might be declared using the "xdata.proxy" annotation after the property name,

which allows clients to load the blob content in a lazy (deferred) way. The value of such name/

value pair is the URL used to retrieve the blob content:

If the property is a TBlob type, the property will always be represented like that, unless:

1. The object to which the property belongs is a transient object (in the example above, if the

customer object didn't have an id). In this case, the blob content will be represented inline as

base64 string.

2. The blob content is somehow available to the server when the object is retrieved from

database, and the blob content is empty. In this case, the property will be serialized normally

(without annotation), and value is "null":

"Country@xdata.proxy": "$proxy?id=52&classname='Customer'&classmember='Country'"

1.

2.

"Data": "T0RhdGE"

"Data@xdata.proxy": "Customer(55)/Data"

"Data": null

TMS XData 5.16.1.1 Page 88 of 16

https://download.tmssoftware.com/business/aurelius/doc/web/tblob_type.htm

3. If the $expand query option was used to explicit load the content of the blob property. In this

case, the blob content will be represented inline as base64 string.

Including Or Excluding Properties

This is how XData decides what properties to serialize/deserialize in JSON. When we mention

"serialize" here it also implies "deserialize" (meaning that the JSON property will be recognized

as valid and associated field/property will be updated from the JSON value).

For entities, all class members (fields or properites) that are mapped using Aurelius will be

serialized. Any transient field or property will not be serialized.

For objects, all class fields will be serialized. No property will be serialized.

You can override this default and choose, for both your entity and object classes, what property

will be included in JSON. The way to do that is different for entities and objects.

Aurelius Entities

For entities you can use attributes XDataProperty and XDataExcludeProperty (declared in unit

XData.Model.Attributes). They have no arguments, and when put in a class member (field or

property) it imply indicates that such property will be added or removed from the JSON.

In the following example, even though FBirthday is the field being mapped to the database, the

final JSON will not include it, but instead will have three properties: Year, Month and Day.

•

•

uses {...}, XData.Model.Attributes;

 [Entity, Automapping]

 TCustomer = class

 private

 FId: Integer;

 FName: string;

 [XDataExcludeProperty]

 FBirthday: TDateTime;

 function GetDay: Integer;

 function GetMonth: Integer;

 function GetYear: Integer;

 procedure SetDay(const Value: Integer);

 procedure SetMonth(const Value: Integer);

 procedure SetYear(const Value: Integer);

 public

TMS XData 5.16.1.1 Page 89 of 16

PODO (Plain Old Delphi Objects)

JsonProperty and JsonIgnore attributes

For regular objects, you can use similar approach, but using attributes JsonProperty and

JsonIgnore (declared in unit Bcl.Json.Attributes). One small difference is that JsonProperty

can optionally receive a string which is the name of the property in final JSON.

In the following example, final Json will have properties Id, PersonName, Birthday and

YearOfBirth. Field FTransient will not be serialized because of attribute JsonIgnore. Field FName

will be serialized with a different name (PersonName) and property YearOfBirth will also be

serialized because of the presence of attribute JsonProperty.

JsonInclude attribute

You can also use JsonInclude attribute to specify which properties will be serialized to JSON

based on their values. JsonInclude attribute should be added to the class type and receive a

parameter of type TInclusionMode:

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 property Birthday: TDateTime read FBirthday write FBirthday;

 [XDataProperty]

 property Year: Integer read GetYear write SetYear;

 [XDataProperty]

 property Month: Integer read GetMonth write SetMonth;

 [XDataProperty]

 property Day: Integer read GetDay write SetDay;

 end;

uses {...}, Bcl.Json.Attributes

 TDTOPerson = class

 private

 FId: Integer;

 [JsonProperty('PersonName')]

 FName: string;

 FBirthday: TDateTime;

 [JsonIgnore]

 FTransient: string;

 public

 property Id: Integer read FId write FId;

 property Name: string read FName write FName;

 [JsonProperty]

 property YearOfBirth: Integer read GetYearOfBirth;

 property Birthday: TDateTime read FBirthday write FBirthday;

 property Transient: string read FTransient write FTransient;

 end;

TMS XData 5.16.1.1 Page 90 of 16

Valid TInclusionMode values are:

TInclusionMode.Always: Always serialize all DTO fields/properties (default behavior).

TInclusionMode.NonDefault: Only serialize the fields/property if the value is a non-default

value (not "empty", so to speak). Here is the list of checked types and what is considered

their default value:

Object types: Nil pointer;

String types: Empty string;

Numeric types: Zero;

Enumerated Types: First enumerated value (ordinal valueof zero);

Set Types: Empty set;

Array Types: Empty array.

JsonEnumValues attribute

When serializing an enumerated value, by default it's the enumerated name value that will be

serialized. For example:

A property of type TMyEnum could be serialized as following:

You can change that value using the JsonEnumValues property, passing the new values in a

comma-separated string:

That will generate the following JSON:

JsonNamingStrategy attribute

If you have a general rule for naming the properties in the final JSON, you can use

JsonNamingStrategy attribute instead of using a JsonProperty attribute for every single field/

property you want to define a name. You add this attribute to the class informing the naming

strategy to be used:

[JsonInclude(TInclusionMode.NonDefault)]

TDTOAddress = class

private

 {...}

•

•

◦

◦

◦

◦

◦

◦

type

 TMyEnum = (myFirst, mySecond, myThird);

"MyEnumProp": "myFirst"

type

 [JsonEnumValues('first,second,third')]

 TMyEnum = (myFirst, mySecond, myThird);

"MyEnumProp": "first"

[JsonNamingStrategy(TCamelCaseNamingStrategy)]

TMySimpleClass = class

TMS XData 5.16.1.1 Page 91 of 16

Here is the list of available naming strategies, all available from unit

Bcl.Json.NamingStrategies . The JSON examples are based on a class with the following field

and property:

TDefaultNamingStrategy: This is the default strategy to be used in you don't specify one. It

will keep the property name as-is, field names will have leading "F" removed.

TCamelCaseNamingStrategy: Names will be camel case, with first letter in lower case. Field

names will have leading "F" removed before converting.

TSnakeCaseNamingStrategy: Names will be snake case: all lower case with words

separated by underscores. Field names will have leading "F" removed before converting.

TIdentityNamingStrategy: Property and field names will be kept-as is.

TIdentityCamelCaseNamingStrategy: Same as TCamelCaseNamingStrategy, but no leading

"F" will be removed from field name.

TIdentitySnakeCaseNamingStrategy: Same as TSnakeCaseNamingStrategy, but no leading

"F" will be removed from field name.

FFirstName: string;

property LastName: string;

•

{

 "FirstName": "Joe",

 "LastName": "Smith"

}

•

{

 "firstName": "Joe",

 "lastName": "Smith"

}

•

{

 "first_name": "Joe",

 "last_name": "Smith"

}

•

{

 "FFirstName": "Joe",

 "LastName": "Smith"

}

•

{

 "fFirstName": "Joe",

 "lastName": "Smith"

}

•

TMS XData 5.16.1.1 Page 92 of 16

Customizing JSON Serialization

In addition to including and excluding properties from the JSON serialization, you can also

modify the way a field/property is serialized as JSON. XData has its default serialization behavior

for the primitive types, but you can modify it using the JsonConverter attribute.

Creating the converter

The converter must inherit from TCustomJsonConverter class and override methods ReadJson and

WriteJson, which will read and write the serialized JSON value. Here is a small example:

{

 "ffirst_name": "Joe",

 "last_name": "Smith"

}

uses {...}, Bcl.Json.Converters, Bcl.Json.Reader, Bcl.Json.Writer, System.Rtti;

type

 TSampleJsonConverter = class(TCustomJsonConverter)

 protected

 procedure ReadJson(const Reader: TJsonReader; var Value: TValue); override;

 procedure WriteJson(const Writer: TJsonWriter; const Value: TValue);

override;

 end;

{...}

procedure TSampleJsonConverter.ReadJson(const Reader: TJsonReader; var Value: TVa

lue);

var

 S: string;

begin

 S := Reader.ReadString;

 if SameText(S, 'one') then

 Value := 1

 else

 if SameText(S, 'two') then

 Value := 2

 else

 Value := StrToInt(S);

end;

TMS XData 5.16.1.1 Page 93 of 16

The converter above can be applied to an integer property like this:

With the setup above, the following behavior will apply:

If FProp = 1, then it will be serialized as:

If FProp = 2, then it will be serialized as:

For other FProp values, it will be serialized normally as integer:

The converter also handles deserialization properly, i.e., if it reads value "one", it will set FProp as

1, and so on.

Collection of Objects

A collection of objects is represented as JSON array where each element is the representation of

an entity or the representation of an entity reference, or representation of any simple object type

supported by XData. An empty collection is represented as an empty JSON array.

Example of collection of entities with objects inline:

procedure TSampleJsonConverter.WriteJson(const Writer: TJsonWriter; const Value:

TValue);

begin

 case Value.AsOrdinal of

 1: Writer.WriteString('one');

 2: Writer.WriteString('two');

 else

 Writer.WriteString(IntToStr(Value.AsOrdinal));

 end;

end;

uses {...}, Bcl.Json.Attributes;

{...}

type

 TFoo = class

 private

 [JsonConverter(TSampleJsonConverter)]

 FProp: Integer;

•

"FProp": "one"

•

"FProp": "two"

•

"FProp": 5

TMS XData 5.16.1.1 Page 94 of 16

When the server is responding to a request to an entity set resource address or a navigation

property that returns an entity collection, or any service operation that returns a list of arbitrary

objects, it wraps the collection in a JSON object with a name/value pair named "value":

Individual Properties

When performing requests to an URL that represents an individual property, such property is

represented as a JSON object (except for blob properties).

The property is represented as an object with a single name/value pair, whose name is "value"

and whose value is represented according to the XData JSON Format notation for property

values.

For example, when requesting the Name property of a TCustomer object (such as from address

"http://server:2001/tms/xdata/Customer(3)/Name"), result might be:

[

 {

 "$id": 1,

 "@xdata.type": "XData.Default.Country",

 "Id": 10,

 "Name": "Germany",

 },

 {

 "$id": 2,

 "@xdata.type": "XData.Default.Country",

 "Id": 13,

 "Name": "USA",

 }

]

{

 "value": [

 {

 "$id": 1,

 "@xdata.type": "XData.Default.Country",

 "Id": 10,

 "Name": "Germany",

 },

 {

 "$id": 2,

 "@xdata.type": "XData.Default.Country",

 "Id": 13,

 "Name": "USA",

 }

]

}

TMS XData 5.16.1.1 Page 95 of 16

Note that when the URL is suffixed with "$value" segment or the property represents a blob

property, then the content is the raw value of the property (or binary value), not a JSON

representation.

Error Response

When an error happens in the XData server while processing a client request, the server might

provide information about the error in the HTTP message body as a single JSON object, with a

single name/value pair named "error" which value is also a JSON object. Such inline JSON object

might contain the following name/value pairs:

"code", which provides a JSON string representing the error code for the error raised by

the server;

"message", which provides a JSON string with a human-readable text describing the error.

Example:

Canonical Id

The canonical id is a string representation that completely defines and identifies an Aurelius

entity. It's used by XData in several places in JSON format, like when using association

references.

The format of canonical id is "<entityset>(<id>)", where <entityset> is the name of the entity set

which contains the entity, and <id> is the id entity in URL literal representation. The entity set

must be the one which related entity type is the exact type of the entity being identifies. What

this means is that if an entity belongs to more than one entity set, the type of the entity set must

match the type of entity. For example, when dealing with inheritance between entity types, an

entity of type "Dog" might belong to entity sets "Dog", "Mammal" and "Animal". In this case, the

entity set must be "Dog".

Here are some examples of canonical id's:

{

 "value": "John Doe"

}

•

•

{

 "error": {

 "code": "EntityNotFound",

 "message": "Requested entity does not exist."

 }

}

"Invoice(5)"

"Customer('John')"

"InvoiceItem(15)"

TMS XData 5.16.1.1 Page 96 of 16

It's important to note that the canonical id also represents the URI of the associated entity,

relative to the server base URI. In other words, if you append the canonical id to the server base

URI, you will end up with the URI of the associated entity, which you can use to retrieve, update

or delete the entity (depending on the HTTP method used). For example, suppose the server

base URI of the above entities is "http://myserver:2001/tms/xdata", then the resource URI of

those entities are:

http://server:2001/tms/xdata/Invoice(5)

http://server:2001/tms/xdata/Customer('John')

http://server:2001/tms/xdata/InvoiceItem(15)

TMS XData 5.16.1.1 Page 97 of 16

Design-Time Components
TMS XData provides several components for design-time usage. The main purpose is to provide

a RAD experience, by just dropping components in the form and configuring them, allowing

setting up servers with almost no line of code.

Even though you can use the components at runtime, creating them from code, that would

usually be not necessary, as the components are just wrappers for the existing non-component

classes, like TXDataServerModule or IDBConnectionPool.

Since TMS XData is based on TMS Sparkle components, you might want to read about TMS

Sparkle design-time component usage, to learn more details about the architecture, like the

common features and middleware system usage.

General usage is:

1. Drop a dispatcher component in the form (for example, TSparkeHttpSysDispatcher).

2. Drop a TXDataServer component in the form.

3. Associated the TXDataServer component to the dispatcher through the Dispatcher

property.

4. Specify the BaseUrl property of the server (for example, http://+:2001/tms/xdata).

5. Set Active property of dispatcher component to true.

From now on you can already create server-side business logic using service operations.

Optionally, if you wan to use TMS Aurelius and want to publish TMS Aurelius CRUD Endpoints,

follow the next steps:

6. Drop a TAureliusConnection in the form and configure it to connect to your database

(you might need to drop additional database-access components, like TFDConnection if you

want to use FireDac).

7. Drop a TXDataConnectionPool component and associated it to TAureliusConnection

through the Connection property.

8. Associated the TXDataServer component to the pool through the Pool property.

Now your XData server is able to publish database data automatically and you can also use the

TXDataOperationContext to use Aurelius to retrieve data from database.

You can also use the TAureliusConnection component to automatically generate Aurelius classes

from the database, right-clicking the component and choosing "Generate entities from the

database".

TXDataServer Component

TXDataServer component wraps the TXDataServerModule module. Basically all properties in the

component has a direct relation with the properties of the TXDataServerModule, in case of doubt

refer to TXDataServerModule reference to learn more details about each property.

TMS XData 5.16.1.1 Page 98 of 4

https://download.tmssoftware.com/business/sparkle/doc/web/design-time-components.html
https://download.tmssoftware.com/business/sparkle/doc/web/design-time-components.html
https://download.tmssoftware.com/business/sparkle/doc/web/server-components-features.html
https://download.tmssoftware.com/business/sparkle/doc/web/server-components-features.html
https://download.tmssoftware.com/business/aurelius/doc/web/taureliusconnection.html
https://download.tmssoftware.com/business/aurelius/doc/web/generate-entities-from-existin.html
https://download.tmssoftware.com/business/aurelius/doc/web/generate-entities-from-existin.html

Properties

Name Description

Pool: TXDataConnectionPool Contains a reference to a TXDataConnectionPool

component. This will be used as the connection pool for the

XData server database operations.

ModelName: string Specifies the name of the model to be used to create the

TXDataServerModule instance.

DefaultExpandLevel: Integer

PutMode: TXDataPutMode

PostMode: TXDataPostMode

FlushMode: TXDataFlushMode

ProxyLoadDepth: Integer

ProxyListLoadDepth: Integer

SerializeInstanceRef:

TInstanceRefSerialization

SerializeInstanceType:

TInstanceTypeSerialization

UnknownMemberHandling:

TUnknownMemberHandling

All those property values will be used to set the a property

with same name in the TXDataServerModule instance when

it's created. Refer to TXDataServerModule topic to learn the

purpose of each property.

DefaultEntitySetPermissions:

TEntitySetPermissions

Specifies the default permissions for all entity sets. By

default no permissions are provided, which means entity

publish will not be available. This is different behavior than

when creating TXDataServerModule directly, since it

automatically publishes all entities.

EntitySetPermissions:

TEntitySetPermissionItems

A collection where you can specify entity set permissions for

an entity set in particular. This will override the default entity

set permissions.

EnableEntityKeyAsSegment:

Boolean

When True, it's possible to address single entities by using

the URL format "/entityset/id" - in addition to the default "/

entityset(id)". Default is False.

SwaggerOptions:

TXDataSwaggerOptions

SwaggerUIOptions:

TXDataSwaggerUIOptions

Provide access to configure Swagger and SwaggerUI

behavior. See more information at

OpenAPI/Swagger Support.

Events

Name Description

OnModuleCreate:

TXDataModuleEvent

Fired when the TXDataServerModule instance is created.

TMS XData 5.16.1.1 Page 99 of 4

Name Description

OnGetPoolInterface:

TGetPoolInterfaceEvent

Fired when the IDBConnectionPool interface is created by the

TXDataConnectionPool component.

OnEntityInserting

OnEntityModifying

OnEntityDeleting

OnEntityGet

OnEntityList

OnModuleException

OnManagerCreate

These are wrappers around the events described in the

server-side events chapter. Please refer to that chapter to know

more about the events and how to use them. Arguments (event-

handler parameters) are exactly the same.

TXDataModuleEvent

Module parameter is the newly created TXDataServerModule instance (OnModuleCreate event).

TGetPoolInterfaceEvent

Pool parameter is the newly created IDBConnectionPool interface (OnGetPoolInterface event).

You can override that value by creating your own interface and passing it in the Pool variable.

TXDataConnectionPool Component

TXDataConnectionPool component creates IDBConnectionPool instances using a

TAureliusConnection to create the IDBConnection interfaces.

Properties

Name Description

Connection:

TAureliusConnection

Contains a reference to a TAureliusConnection component, used

to create IDBConnection interfaces used by the pool.

Size: Integer The size of the pool to be created.

TXDataModuleEvent = procedure(Sender: TObject; Module: TXDataServerModule) of obj

ect;

TGetPoolInterfaceEvent = procedure(Sender: TObject; var Pool: IDBConnectionPool)

of object;

TMS XData 5.16.1.1 Page 100 of 4

Events

Name Description

OnPoolInterfaceCreate:

TPoolInterfaceEvent

Fired when the IDBConnectionPool interface is created by

the TXDataConnectionPool component.

TPoolInterfaceEvent

Pool parameter is the newly created IDBConnectionPool interface (OnPoolInterfaceCreate event).

You can override that value by creating your own interface and passing it in the Pool variable.

TPoolInterfaceEvent = procedure(Sender: TObject; var Pool: IDBConnectionPool) of

object;

TMS XData 5.16.1.1 Page 101 of 4

XData Model
All the data exposed by the XData server is specified in the XData Model represented by the

class TXDataAureliusModel (declared in unit XData.Aurelius.Model). The XData Model describes

all the types (classes) and properties provided by the server, among other info.

The XData Model describes all information the server provides, which are used to create

endpoints and to describe types and data received or returned by the server. This allows

additional flexibility, like for example, having a property name in XData to be different than the

property name in the mapped Aurelius class, or manually adding a service operation without

relying on ServiceContract/ServiceImplementation attributes.

The XData model in summary, describes the service operations available, the Aurelius entities

published from the CRUD endpoints, and the types it understands.

The following topics explain in more details what the XData model is about.

Entity Model Concepts

This topic describes the main concepts used in the XData Model:

Services/Contracts

Services (specified by contracts) are a set of service operations, actions that are executed based

on a client request and HTTP method. The service contracts are defined by service interfaces

(contracts) and implemented by the server. For more information, see service operations.

Enum Type

Enum types are named scalar, primitive types that contain a list of name/value pairs which

indicates its valid values. For example, the enum type "TSex" might have two name/value pairs:

First is name "Male", with value 0, and second is name "Female", with value 1. Simple properties

which types are enum types can only receive such values.

Concepts related to Aurelius CRUD Endpoints

Entity Set (the CRUD Endpoint itself)

An entity set is a logical container for instances of an entity type (Aurelius entities) and instances

of any type derived from that entity type. It can also be though as a collection of entities of a

specified entity type. Thus, each entity set is associated with a entity type. Entity sets could be

though as equivalent of a table in a database, but it's not exactly the same, since conceptually

you might have different entity sets for the same entity type (although it's not often used). By

default the name of the entity set is the name of the entity type associated to it so an entity set

"Customer" will provide list of entities of type "Customer". It might be confused that both have

same names, but they have different concepts.

TMS XData 5.16.1.1 Page 102 of 5

Entity Type

The Aurelius entity type relates to an entity in the same way as a class relates to an object in

object-oriented programming. In other words, an entity type is the "class definition" used by

XData to retrieve info about an entity it receives or provides. An entity type contain a list of

properties, what of those properties are considered the primary key for the entity, etc.. The entity

type is related to a Delphi class, and as such it also supports inheritance (an entity type can be

inherited from another entity type). By default the name of entity type is the name of the class,

with the "T" prefix removed (if any). For example, there might be an entity type named

"Customer", related to class TCustomer, with simples properties "Name", "City" and navigation

property "Country".

Simple Property

A simple property is a property of a scalar type, belonging to an entity type. A simple property

can be of any primitive type as integer, boolean, string, etc., or enum types, and can have several

facets indicating for example if the property is nullable, or its maximum length. For example, an

entity type "TCustomer" can have a simple property "Name" of type string, and a simple property

"Sex" of enum type "TSex".

Navigation Property

A navigation property is a property that represents a relationship between two entity types. It

might relate to a single entity or a collection of other entities. It's the equivalent of an association

in Aurelius mapping, or a foreign key in a database definition. A navigation property has a target

property which points to another entity type. For example, an entity type "TOrder" might have a

navigation property named "Customer" which target type is the "TCustomer" entity type.

Using TXDataModelBuilder

XData server uses XData model to specify the data it will publish through the Rest/Json interface.

To work properly, the server module (TXDataServerModule object) needs a XData model,

represented by a TXDataAureliusModel to work properly.

However, you can create the TXDataServerModule without explicitly providing an entity model. In

this case, the server will create one internally, based on the default TMappingExplorer, using the

conventions of service operations and Aurelius CRUD endpoints. That's the most straightforward

and common way to use it, and you will rarely need to create an XData model yourself.

In the case you want to build your own model and create a server based on it (for example, when

you don't want classes and fields to have their "T" and "F" prefix removed from their names), you

can do it using the TXDataModelBuilder.

The following example creates a model based on the default mapping explorer, however it sets

properties UseOriginalClassNames and UseOriginalFieldNames to true to avoid the model

builder to remove the "T" prefix from class names when naming entity types, and remove "F"

prefix from field names when naming properties and navigation properties.

TMS XData 5.16.1.1 Page 103 of 5

When adding service operations to the model, the model builder will only take into

consideration those service interfaces that belong to the same model of the TMappingExplorer

instance you are using. For example, if your TMappingExplorer represents the model "Sample",

only service contracts marked for the "Sample" model will be included in the entity model.

You can use the methods and properties of TXDataModelBuilder to better define your XData

Model:

TXDataModelBuilder class

Declared in Unit XData.Aurelius.ModelBuilder .

uses

 {...}, XData.Aurelius.ModelBuilder, XData.Aurelius.Model,

 XData.Server.Module, Aurelius.Mapping.Explorer;

var

 Builder: TXDataModelBuilder;

 Model: TXDataAureliusModel;

 Explorer: TMappingExplorer;

 Module: TXDataServerModule;

begin

 // model uses a TMappingExplorer instance with Aurelius mapping

 // this example doesn't explain how to obtain one, please refer to Aurelius

documentation

 Explorer := TMappingExplorer.DefaultInstance;

 Model := TXDataAureliusModel.Create(Explorer);

 try

 Builder := TXDataModelBuilder.Create(Model);

 try

 Builder.UseOriginalClassNames := true;

 Builder.UseOriginalFieldNames := true;

 Builder.Build;

 finally

 Builder.Free;

 end;

 except

 Model.Free; // destroy the model in case an error occurs

 raise;

 end;

 // create the module using the created model.

 Module := TXDataServerModule.Create(MyServerUrl, MyConnectionPool, Model);

end;

TMS XData 5.16.1.1 Page 104 of 5

Properties

Name Description

UseOriginalClassNames:

Boolean

By default XData removes the leading "T" of the class name to

define the entity set name. So a class TCustomer will correspond

to the entity set "Customer". If you don't want this behavior and

wants the entity set name to be exactly the name of the class,

set this property to true.

UseOriginalFieldNames:

Boolean

By default XData removes the leading "F" of a mapped field

name to define the property name of an entity type. So a field

named "FName" will correspond to a property "Name" in JSON

responses. If you don't want this behavior and wants the

property name to be exactly the name of the field, set this

property to true.

UseOriginalContractNames:

Boolean

By default XData removes the leading "I" of the interface name

to define the url segment of a service operation. So an interface

ITestService will correspond to a service URL which path

segment will beign with "TestService". If you don't want this

behavior and wants the service operation base URL to be exactly

the name of the interface, set this property to true.

Methods

Name Description

function

AddEntitySet(AClass: TClass):

TXDataEntitySet

Creates a new entity set (CRUD endpoint) based on the class

defined by AClass. The class must be an Aurelius entity. This will

automatically create the entity type associated with the entity

set.

procedure AddService<T> Adds a new service operation contract to the model. Example:

Model.AddService<IMyService>;

procedure

RemoveEntitySet(AClass:

TClass)

Use this to remove an entity set already created by the model.

This is useful when you want to use the automatic creation of

entity sets, based on Aurelius entities, but then you want to

remove a few entity sets from the model.

Multiple servers and models

You can create multiple XData servers (TXDataServerModule instances), at different addresses.

This makes more sense if you use different entity models for each of those XData modules. It's

very easy to do so in XData using a way similar to Aurelius multi-model design. When defining

different models with different classes (and service operations), you can easily create different

XData modules in a single server application.

TMS XData 5.16.1.1 Page 105 of 5

https://download.tmssoftware.com/business/aurelius/doc/web/multi-model_design.htm

To specify the different models in each server module, you just need to provide an instance of a

TXDataAureliusModel that represents the desired entity model. And you can easily retrieve the

correct instance by using the TXDataAureliusModel.Get class method, passing the model name to

the function. The entity model will then only consider entity types and service operations that

belongs to that model.

For example, the following code creates two different TXDataServerModule modules, using two

different entity models:

Note that this approach will filter all classes (entity types) belonging that specific model (for

example, XDataSampleModule will only publish entity types which classes are marked with

Model('Sample') attribute:

It will filter both service operations and Aurelius CRUD Endpoints according to the model name.

So XDataSampleModule will only have services operations which service interfaces are marked

with the Model('Sample') attribute.

XDataSampleModule := TXDataServerModule.Create('http://server:2001/tms/xdata/

sample',

 SampleConnectionPool, TXDataAureliusModel.Get('Sample'));

XDataSecurityModule := TXDataServerModule.Create('http://server:2001/tms/xdata/

security',

 SecurityConnectionPool, TXDataAureliusModel.Get('Security'));

HttpServer.AddModule(XDataSampleModule);

HttpServer.AddModule(XDataSecurityModule);

[Model('Sample')]

TMS XData 5.16.1.1 Page 106 of 5

Server-Side Events
TXDataServerModule published several events that you can use to implement additional server-

side logic, customize XData behavior, among other tasks. You can use events, for example, to:

Implement custom authorization, refusing or accepting an operation based on the user

credentials or any other context information;

Restrict/change the data returned to the client by TMS Aurelius CRUD Endpoints, by

adding more filters to a query made by the user, for example;

Implement additional server-side logic, for example, performing extra operations after a

resource is saved.

Events in XData are available in the Events property of the TXDataServerModule object. Such

property refers to a TXDataModuleEvents (declared in unit XData.Module.Events) object with

several subproperties, each to them related to an event.

Read Using Events for more detailed info. You can also see real-world usage of events by

checking the Authentication Example using JSON Web Token (JWT).

Events in TXDataModuleEvents

General-purpose events

Name Description

OnModuleException Occurs when an exception is raised during request processing. You can

use it to provide custom error-handling.

OnManagerCreate Occurs when a TObjectManager instance is created to be used during

request processing. You can use it to customize settings for the

TObjectManager.

Events of TMS Aurelius CRUD Endpoints

Name Description

OnEntityGet Occurs after an entity is retrieved, right before being sent to the client.

OnEntityList Occurs when the client queries an entity collection.

OnEntityInserting Occurs right before an entity creation.

OnEntityInserted Occurs right after an entity creation.

OnEntityModifying Occurs right before an entity update.

OnEntityModified Occurs right after an entity update.

OnEntityDeleting Occurs right before an entity delete.

OnEntityDeleted Occurs right after an entity delete.

•

•

•

TMS XData 5.16.1.1 Page 107 of 8

Using Events

Events in XData are available in the Events property of the TXDataServerModule object. Such

property refers to a TXDataModuleEvents (declared in unit XData.Module.Events) object with

several subproperties, each to them related to an event.

For example, to access the OnEntityInserting event:

In a less direct way, using method reference instead of anonymous method:

Listeners are method references that receive a single object as a parameter. Such object has

several properties containing relevant information about the event, and differ for each event

type. Names of event properties, method reference type and arguments follow a standard. The

event property is named "On<event>", method reference type is "T<event>Proc" and parameter

object is "T<event>Args". For example, for the "EntityInserting" event, the respective names will

be "OnEntityInserting", "TEntityInsertingProc" and "TEntityInsertingArgs".

All events in XData are multicast events, which means you can add several events handlers

(listeners) to the same event. When an event occurs, all listeners will be notified. This allows you

to add a listener in a safe way, without worrying if it will replace an existing listener that might

have been set by other part of the application.

It's always safe to set the events before adding the module and running the server.

uses {...}, XData.Server.Module, XData.Module.Events;

// Module is an instance of TXDataServerModule object

Module.Events.OnEntityInserting.Subscribe(

 procedure(Args: TEntityInsertingArgs)

 begin

 // Use Args.Entity to retrieve the entity being inserted

 end

);

uses {...}, XData.Server.Module, XData.Module.Events;

procedure TSomeClass.MyEntityInsertingProc(Args: TEntityInsertingArgs);

begin

 // Use Args.Entity to retrieve the entity being inserted

end;

procedure TSomeClass.RegisterMyEventListeners(Module: TXDataServerModule);

var

 Events: TXDataModuleEvents;

begin

 Events := Module.Events;

 Events.OnEntityInserting.Subscribe(MyEntityInsertingProc);

end;

TMS XData 5.16.1.1 Page 108 of 8

OnEntityGet Event

Occurs after an entity is retrieved, right before being sent to the client. This event is also fired

when the client requests part of that entity, for example, individual properties of the entity, blob

data, or associated entities.

Example:

TEntityGetArgs Properties:

Name Description

Entity: TObject The retrieved entity.

Handler: TXDataBaseRequestHandler The XData request processor object.

OnEntityList Event

Occurs when the client queries an entity collection. This event is fired after the TCriteria object is

built based on the client request, and right before the criteria is actually executed to retrieve the

entities and sent to the client.

Example:

TEntityListArgs Properties:

Name Description

Criteria: TCriteria The Aurelius criteria built based on client request that will be

used to retrieve the collections. You can modify the request

here, adding extra filters, orders, etc., before it's executed and

results are sent to the client.

Handler:

TXDataBaseRequestHandler

The XData request processor object.

Module.Events.OnEntityGet.Subscribe(

 procedure(Args: TEntityGetArgs)

 begin

 // code here

 end

);

Module.Events.OnEntityList.Subscribe(

 procedure(Args: TEntityListArgs)

 begin

 // code here

 end

);

TMS XData 5.16.1.1 Page 109 of 8

https://download.tmssoftware.com/business/aurelius/doc/web/creating_and_executing_queries.htm

OnEntityInserting Event

Occurs right before an entity creation. This event happens in the middle of a database

transaction, right before the entity is about to be created in the database.

Example:

TEntityInsertingArgs Properties:

Name Description

Entity: TObject The entity being inserted.

Handler: TXDataBaseRequestHandler The XData request processor object.

OnEntityInserted Event

Occurs after an entity is created. Note that, unlike OnEntityInserting Event, this event happens

after the transaction is committed. There is no way to rollback the insertion of the entity, and

any database operation here will be performed with no active transaction (unless you begin one

manually).

Example:

TEntityInsertedArgs Properties:

Name Description

Entity: TObject The entity which was created (inserted).

Handler: TXDataBaseRequestHandler The XData request processor object.

OnEntityModifying Event

Occurs right before an entity update. This event happens in the middle of a database transaction,

right before the entity is about to be updated in the database.

Module.Events.OnEntityInserting.Subscribe(

 procedure(Args: TEntityInsertingArgs)

 begin

 // code here

 end

);

Module.Events.OnEntityInserted.Subscribe(

 procedure(Args: TEntityInsertedArgs)

 begin

 // code here

 end

);

TMS XData 5.16.1.1 Page 110 of 8

Example:

TEntityModifyingArgs Properties:

Name Description

Entity: TObject The entity being modified.

Handler: TXDataBaseRequestHandler The XData request processor object.

OnEntityModified Event

Occurs right after an entity update. Note that, unlike OnEntityModifying Event, this event

happens after the transaction is committed. There is no way to rollback the update of the entity,

and any database operation here will be performed with no active transaction (unless you begin

one manually).

Example:

TEntityModifiedArgs Properties:

Name Description

Entity: TObject The entity which was modified.

Handler: TXDataBaseRequestHandler The XData request processor object.

OnEntityDeleting Event

Occurs right before an entity delete. This event happens in the middle of a database transaction,

right before the entity is about to be deleted in the database.

Example:

Module.Events.OnEntityModifying.Subscribe(

 procedure(Args: TEntityModifyingArgs)

 begin

 // code here

 end

);

Module.Events.OnEntityModified.Subscribe(

 procedure(Args: TEntityModifiedArgs)

 begin

 // code here

 end

);

TMS XData 5.16.1.1 Page 111 of 8

TEntityDeletingArgs Properties:

Name Description

Entity: TObject The entity being deleted.

Handler: TXDataBaseRequestHandler The XData request processor object.

OnEntityDeleted Event

Occurs after an entity is deleted. Note that, unlike OnEntityDeleting event, this event happens

after the transaction is committed. There is no way to rollback the deletion of the entity, and any

database operation here will be performed with no active transaction (unless you begin one

manually).

Example:

TEntityDeletedArgs Properties:

Name Description

Entity: TObject The entity which has been deleted.

Handler: TXDataBaseRequestHandler The XData request processor object.

OnModuleException Event

Occurs when an unexpected exception is raised during server request processing. By default,

when that happens XData will send a response to the client with the property HTTP status code

(usually 500 but other codes might be provided as well) and a JSON response with details of the

error (a JSON object with properties ErrorCode and ErrorMessage). You can use this event to

change that behavior when a specific exception occurs.

Example:

Module.Events.OnEntityDeleting.Subscribe(

 procedure(Args: TEntityDeletingArgs)

 begin

 // code here

 end

);

Module.Events.OnEntityDeleted.Subscribe(

 procedure(Args: TEntityDeletedArgs)

 begin

 // code here

 end

);

TMS XData 5.16.1.1 Page 112 of 8

TModuleExceptionArgs Properties:

Name Description

Exception: Exception The Exception object raised while processing the requested.

StatusCode: Integer The HTTP status code to be returned to the client. You can change

this property to tell XData to send a different status code.

ErrorCode: string The value of the ErrorCode property in the JSON response to be

sent to the client. You can modify this value.

ErrorMessage: string The value of the ErrorMessage property in the JSON response to

be sent to the client. You can modify this value.

Action:

TModuleExceptionAction

The action to be performed:

TModuleExceptionAction = (SendError, RaiseException,

Ignore)

Default value is SendError which means XData will send the HTTP

response to the client with the specified StatusCode and with a

JSON response that includes ErrorCode and ErrorMessage.

You can optionally use RaiseException, which means re-raising the

original exception and let it propagate through the code. This

gives an opportunity for some Sparkle middleware to catch the

raise exception. If that doesn't happen, the exception will be

handled by the Sparkle dispatcher.

The third option is simply choose Ignore. Use this option if you

want to send a custom HTTP response yourself. In this case XData

will simply do nothing and finish processing request silently.

OnManagerCreate Event

Occurs when a TObjectManager instance is internally created by XData during request

processing. You can use this event to initialize settings in the object manager, or change some

behavior. For example, you can use this event to enable filters.

Example:

Module.Events.OnModuleException.Subscribe(

 procedure(Args: TModuleExceptionArgs)

 begin

 // code here, for example:

 if Args.Exception is EInvalidJsonProperty then

 Args.StatusCode := 400;

 end

);

TMS XData 5.16.1.1 Page 113 of 8

TManagerCreateArgs Properties:

Name Description

Manager: TObjectManager The TObjectManager instance that has just been created by XData.

Authentication Example using JSON Web

Token (JWT)

Please refer to Authentication and Authorization guide for more information about how to

secure your XData API.

Module.Events.OnManagerCreate.Subscribe(

 procedure(Args: TManagerCreateArgs)

 begin

 // code here, for example:

 Args.Manager.EnableFilter('Multitenant')

 .SetParam('tenantId', 123);

 end

);

TMS XData 5.16.1.1 Page 114 of 8

Authentication and Authorization
Authentication and Authorization mechanisms in XData are available through the built-in auth

mechanisms provided in TMS Sparkle, the underlying HTTP framework which XData is based on.

The authentication/authorization mechanism in Sparkle is generic and can be used for any types

of HTTP server, not only XData. But this topic illustrates how to better use specific XData features

like server-side events and attributed-based authorization to make it even easier to secure your

REST API.

In this guide we will present the concept of JSON Web Token, then how to authenticate requests

(make sure there is a "user" doing requests) and finally how to authorize requests (make sure

such user has permissions to perform specific operations).

NOTE

Even though we are using JWT as an example, the authentication/authorization mechanism is

generic. You can use other type of token/authentication mechanism, and the authorization

mechanism you use will be exactly the same regardless what token type you use. Holger Flick's

book TMS Hands-on With Delphi shows a good example of authentication/authorization using

a different approach than JWT.

JSON Web Token (JWT)

From Wikipedia:

JSON Web Token (JWT) is a JSON-based open standard (RFC 7519) for

passing claims between parties in web application environment.

That doesn't say much if we are just learning about it. There is plenty of information out there, so

here I'm going directly to the point in a very summarized practical way.

A JWT is a string with this format:

aaaaaaaaaaa.bbbbbbbbbb.cccccccccc

It's just three sections in string separated by dots. Each section is a text encoded using base64-

url:

<base64url-encoded header>.<base64url-encoded claims>.<base64url-encoded signature>

So a real JWT looks like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoidG1zdXNlciIsImlzcyI6IlRNUyBYRGF0YSBTZXJ2ZXIiLCJhZG1pbiI6dHJ1ZX0.pb-4JAajpYxTsDTqWtgyIgpoqCQH8wlHl4RoTki8kpQ

If we decode each part of the JWT separately (remember, we have three parts separated by

dots), this is what we will have from part one (spaces and returns added to make it more

readable). It's the header:

TMS XData 5.16.1.1 Page 115 of 11

https://www.tmssoftware.com/site/sparkle.asp
https://doc.tmssoftware.com/biz/sparkle/guide/auth.html
https://en.wikipedia.org/wiki/JSON_Web_Token

And this is part two decoded, which is the payload or claims set:

Finally the third part is the signature. It makes no sense to decode it here since it's just a bunch

of bytes that represent the hash of the header, the payload, and a secret that only the generator

of the JWT knows.

The payload is the JSON object that "matters", it's the actualy content that end-user applications

will read to perform actions. The header contains meta information the token, mostly the

hashing algorithm using to generate the signature, also present in the token. So, we could say

that a JWT is just an alternative way to represent a JSON object, but with a signature attached to

it.

What does it has to do with authentication and authorization? Well, you can think of the JWT as

a "session" or "context" for an user accessing your server. The JSON object in the payload will

contain arbitrary information that you are going to put in there, like permissions, user name, etc..

This token will be generated by your server upon some event (for example, an user "login"), and

then the client will resend the token to the server whenever he wants to perform any operation.

This would be the basic workflow:

Client performs "login" in the server by passing regular user credentials (user name and

password for example).

The server validates the credentials, generate a JWT with relevant info, using the secret,

and sends the JWT back to the client.

The client sends the JWT in next requests, passing the JWT again to the server.

When processing each request, the server checks if the JWT signature is valid. If it is, then

it can trust that the JSON Object in payload is valid and process actions accordingly.

Since only the server has the secret, there is no way the client can change the payload, adding

"false" information to it for example. When the server receives the modified JWT, the signature

will not match and the token will be rejected by the server.

For more detailed information on JSON Web Tokens (JWT) you can refer to https://jwt.io, the

Wikipedia article or just the official specification. It's also worth mentioning that for handling

JWT internally, either to create or validate the tokens, TMS XData uses under the hood the open

source Delphi JOSE and JWT library.

{

 "alg":"HS256",

 "typ":"JWT"

}

{

 "name":"tmsuser",

 "iss":"TMS XData Server",

 "admin":true

}

1.

2.

3.

4.

TMS XData 5.16.1.1 Page 116 of 11

https://jwt.io
https://en.wikipedia.org/wiki/JSON_Web_Token
https://tools.ietf.org/html/rfc7519
https://github.com/paolo-rossi/delphi-jose-jwt

Authentication

Enough of theory, now we will show you how to do authentication using JWT in TMS XData. This

is just a suggestion, and it's up to you to define with more details how your system will work. In

this example we will create a login service, add the middleware and use server-side events and

attributes to implement authorization.

User Login and JWT Generation

We're going to create a service operation to allow users to perform login. Our service contract

will look like this:

Clients will send user name and password, and receive the token. Delphi applications can invoke

this method using the TXDataClient, or invoke it using regular HTTP, performing a POST request

passing user name and password parameters in the body request in JSON format.

WARNING

It's worth noting that in production code you should always use a secure connection (HTTPS)

in your server to protect such requests.

The implementation of such service operation would be something like this:

[ServiceContract]

ILoginService = interface(IInvokable)

['{BAD477A2-86EC-45B9-A1B1-C896C58DD5E0}']

 function Login(const UserName, Password: string): string;

end;

uses {...}, Bcl.Jose.Core.JWT, Bcl.Jose.Core.Builder;

function TLoginService.Login(const User, Password: string): string;

var

 JWT: TJWT;

 Scopes: string;

begin

 { check if UserName and Password are valid, retrieve User data from database,

 add relevant claims to JWT and return it. In this simplified example,

 we are doing a simple check for password }

 if User <> Password then

 raise EXDataHttpUnauthorized.Create('Invalid password');

 JWT := TJWT.Create;

 try

 JWT.Claims.SetClaimOfType<string>('user', User);

 if User = 'admin' then

 JWT.Claims.SetClaimOfType<Boolean>('admin', True);

TMS XData 5.16.1.1 Page 117 of 11

Now, users can simply login to the server by performing a request like this (some headers

removed):

and the response will be a JSON object containing the JSON Web Token (some headers removed

and JWT modified):

For further requests, clients just need to add that token in the request using the authorization

header by indicating it's a bearer token. For example:

NOTE

This authentication mechanism is a suggestion and is totally independent from the rest of this

guide. The JWT token could be provided in any other way: a different service, different server,

different sign-in mechanism (not necessarily username/password), or even a 3rd party token

provider.

 Scopes := 'reader';

 if (User = 'admin') or (User = 'writer') then

 Scopes := Scopes + ' writer';

 JWT.Claims.SetClaimOfType<string>('scope', Scopes);

 JWT.Claims.Issuer := 'XData Server';

 Result := TJOSE.SHA256CompactToken('secret', JWT);

 finally

 JWT.Free;

 end;

end;

POST /loginservice/login HTTP/1.1

content-type: application/json

{

 "UserName": "writer",

 "Password": "writer"

}

HTTP/1.1 200 OK

Content-Type: application/json

{

 "value":

"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyIjoid3JpdGVyIiwic2NvcGUiOiJyZWFkZXI

gd3JpdGVyIiwiaXNzIjoiWERhdGEgU2VydmVyIn0.QdRTt6gOl3tb1Zg0aAJ74bepQwqm0Rd735FKToPE

yFY"

}

GET /artist?$orderby=Name HTTP/1.1

content-type: application/json

authorization: Bearer

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyIjoid3JpdGVyIiwic2NvcGUiOiJyZWFkZXIg

d3JpdGVyIiwiaXNzIjoiWERhdGEgU2VydmVyIn0.QdRTt6gOl3tb1Zg0aAJ74bepQwqm0Rd735FKToPEy

FY

TMS XData 5.16.1.1 Page 118 of 11

Implementing JWT Authentication with TJwtMiddleware

The second step is to add a JWT middleware to your server.

At design-time, right-click the TXDataServer component, choose the option to manage the

middleware list, and add a JWT Middleware to it. The middleware has an OnGetSecret event

that you need to handle to pass to it the JWT secret our server will use to validate the signature

of the tokens it will receive.

If you are using the XData server module, all you need to do is to add a TJwtMiddleware and

inform the secret in the constructor:

That's it. What this will do? It will automatically check for the token in the authorization header. If

it does exist and signature is valid, it will create the IUserIdentity interface, set its Claims

based on the claims in the JWT, and set such interface to the User property of THttpRequest

object.

WARNING

Regardless if the token exists or not and the User property is set or not, the middleware will

forward the processing of the request to your server. It's up to you to check if user is present

in the request or not. If you want the token to prevent non-authenticated requests to be

processed, set its ForbidAnonymousAccess to true.

If the token is present and is invalid, it will return an error to the client immediately and your

server code will not be executed.

Authorization

Now that we know how to check for authenticated requests, it's time to authorize the requests -

in other words, check if the authenticated client/user has permission to perform specific

operations.

Attribute-based Authorization

The easiest way to authorize your API is to simply add authorization attributes to parts of the

code you want to specify permissions.

Remember that a XData server has two mechanism for publishing endpoints: service operations

and automatic CRUD endpoints. Each of them has different ways to be authorized.

You must use unit XData.Security.Attributes to use authorization attributes.

uses {...}, Sparkle.Middleware.Jwt;

{...}

 Module.AddMiddleware(TJwtMiddleware.Create('secret'));

TMS XData 5.16.1.1 Page 119 of 11

Authorize Attribute

This attribute is can be used in service operations. Just add an Authorize attribute to any

method in your service contract interface, and such method will only be invoked if the request is

authenticated.

In the example above, the endpoint represented by the method NonRestricted will be publicly

accessible, while the method Restricted will only be invoked if the request is authenticated.

Otherwise, a 403 Forbidden response will be returned.

You can also apply the Authorize attribute at the interface level:

In this case, the attribute rule will be applied to all methods of the interface. In the example

above, both Restricted and AlsoRestricted methods will only be invoked if request is

authenticated.

AuthorizeScopes Attribute

You can use AuthorizeScope attribute in service operations if you want to allow them to be

invoked only if the specified scopes are present in user claims.

It will check for a user claim with name scope , and check its values. The scope values in scope

claim must be separated by spaces. For example, the scope claim might contain editor or

reader writer . In the last example, it has two scopes: reader and writer .

In the example above, the ResetAll method can only be invoked if the admin scope is present

in the scope claim.

 [ServiceContract]

 IMyService = interface(IInvokable)

 ['{80A69E6E-CA89-41B5-A854-DFC412503FEA}']

 function NonRestricted: string;

 [Authorize]

 function Restricted: string;

 end;

 [ServiceContract]

 [Authorize]

 IMyService = interface(IInvokable)

 ['{80A69E6E-CA89-41B5-A854-DFC412503FEA}']

 function Restricted: string;

 function AlsoRestricted: string;

 end;

 [AuthorizeScopes('admin')]

 procedure ResetAll;

TMS XData 5.16.1.1 Page 120 of 11

You can specify optional scopes that will allow a method to be invoked, by separating scopes

with comma:

In the previous example, ModifyEverything can be invoked if the scope claim contain either

admin scope, or writer scope.

You can add multiple AuthorizeScopes attributes, which will end up as two requirements that

must be met to allow method to be invoked:

For method PublishAndModify to be invoked, both scopes publisher and editor must be

present in the scope claim.

NOTE

Just like Authorize attribute and any other authorization attribute, you can apply

AuthorizeScopes attribute at both method and interface level. If you apply to both, then all

requirements set by the authorization attributes added to interface and method will have to

be met for the method to be invoked.

AuthorizeClaims Attribute

If you want to check for an arbitrary user claim, the use AuthorizeClaims attribute:

The OnlyForAdmins method will only be executed if the claim 'admin' is present in user claims.

You can also check for a specific claim value, for example:

In this case, MethodForJohn will only be executed if claim user is present and its value is john .

As already described above, AuthorizeClaims attribute can be used multiple times and can be

applied at both method and interface level.

EntityAuthorize Attribute

You can also protect automatically created CRUD endpoints using authorization attributes. Since

those endpoints are based on existing Aurelius entities, you should apply those attributes to the

entity class itself.

 [AuthorizeScopes('admin,writer')]

 procedure ModifyEverything;

 [AuthorizeScopes('publisher')]

 [AuthorizeScopes('editor')]

 procedure PublishAndModify;

 [AuthorizeClaims('admin')]

 procedure OnlyForAdmins;

 [AuthorizeClaims('user', 'john')]

 procedure MethodForJohn;

TMS XData 5.16.1.1 Page 121 of 11

NOTE

Attributes for automatic CRUD endpoints are analogous to the ones you use in service

operations. The different is they have a prefix Entity in the name, and receive an extra

parameter of type TEntitySetPermissions indicating to which CRUD operations the attribute

applies to.

The simplest one is the EntityAuthorize attribute:

In the previous example, to invoke endpoints that modify the TCustomer entity (like POST , PUT ,

DELETE), the request must be authenticated.

WARNING

The rules are applied by entity set permission. In the previous example, the read permissions

(GET a list of customer or a specific customer) are not specified, and thus they are not

protected. User don't need to be authenticated to execute them.

EntityAuthorizeScopes Attribute

Similarly to AuthorizeScopes, you can restrict access to CRUD endpoints depending on the

existing scopes using EntityAuthorizeScopes :

In the previous example, read operations will be allowed if and only if the scope reader is

present. At the same time, the writer scope must be present to perform write operations.

That means that to perform both read and write operations, the scope claim must have both

reader and writer values: reader writer .

One alternative approach is the following:

In the case above, if the scope just have writer , then it will be able to perform both read and

write operations, since read permissions are allowed if either reader or writer are present in

scope claim. Either approach is fine, it's up to you to decide what's best for your application.

 [Entity, Automapping]

 [EntityAuthorize(EntitySetPermissionsWrite)]

 TCustomer = class

 [Entity, Automapping]

 [EntityAuthorizeScopes('reader', EntitySetPermissionsRead)]

 [EntityAuthorizeScopes('writer', EntitySetPermissionsWrite)]

 TArtist = class

 [Entity, Automapping]

 [EntityAuthorizeScopes('reader,writer', EntitySetPermissionsRead)]

 [EntityAuthorizeScopes('writer', EntitySetPermissionsWrite)]

 TArtist = class

TMS XData 5.16.1.1 Page 122 of 11

EntityAuthorizeClaims Attribute

Finally, similarly to AuthorizeClaims attribute, you can use EntityAuthorizeClaims to allow

certain operations only if a claim exists and/or has a specific value:

In the example above, only users with claim user equals john will be able to delete artists.

Manual Authorization in Service Operations

Finally, in addition to authorization attributes, you can always add specific code that authorizes

(or forbids) specific operations based on user identity and claims. All you have to do is check for

the request User property and take actions based on it.

For example, suppose you have a service operation DoSomething that does an arbitrary action.

You don't want to allow anonymous requests (not authenticated) to perform such action. And

you will only execute such action is authenticated user is an administrator. This is how you would

implement it:

Using Server-Side Events

You can also use server-side events to protect the entity sets published by XData, and add

custom code to it. For example, you can use the OnEntityDeleting event to forbid non-admin

users from deleting resources. The event handler implementation would be pretty much the

same as the code above (Module refers to a TXDataServerModule object):

 [Entity, Automapping]

 [EntityAuthorizeClaims('user', 'john', [TEntitySetPermissions.Delete]])]

 TArtist = class

uses {...}, Sparkle.Security, XData.Sys.Exceptions;

procedure TMyService.DoSomething;

var

 User: IUserIdentity;

begin

 User := TXDataOperationContext.Current.Request.User;

 if User = nil then

 raise EXDataHttpUnauthorized.Create('User not authenticated');

 if not (User.Claims.Exists('admin') and User.Claims['admin'].AsBoolean) then

 raise EXDataHttpForbidden.Create('Not enough privileges');

 // if code reachs here, user is authenticated and is administrator

 // execute the action

end;

TMS XData 5.16.1.1 Page 123 of 11

That applies to all entities. Of course, if you want to restrict the code to some entities, you can

check the Args.Entity property to verify the class of object being deleted and perform actions

accordingly.

Finally, another nice example for authorization and server-side events: suppose that every entity

in your application has a property named "Protected" which means only admin users can see

those entities. You can use a code similar to the one above to refuse requests that try to modify,

create or retrieve a protected entity if the requesting user is not admin.

But what about complex queries? In this case you can use the OnEntityList event , which will

provide you with the Aurelius criteria that will be used to retrieve the entities:

The code above simply checks if the requesting user has elevated privileges. If it does not, then it

adds an extra condition to the criteria (whatever the criteria is) which filters only the entities that

are not protected. So non-admin users will not see the protected entities in the server response.

Using Authentication Credentials with

TXDataClient

If you are using TXDataClient from a Delphi application to access the XData server, you can

simply use the OnSendingRequest event to add authentication credentials (the token you

retrieved from the server):

Module.Events.OnEntityDeleting.Subscribe(procedure(Args: TEntityDeletingArgs)

 var User: IUserIdentity;

 begin

 User := TXDataOperationContext.Current.Request.User;

 if User = nil then

 raise EXDataHttpUnauthorized.Create('User not authenticated');

 if not User.Claims.Exists('admin') then

 raise EXDataHttpForbidden.Create('Not enough privileges');

 end

);

Module.Events.OnEntityList.Subscribe(procedure(Args: TEntityListArgs)

 var

 User: IUserIdentity;

 IsAdmin: Boolean;

 begin

 User := Args.Handler.Request.User;

 IsAdmin := (User <> nil) and User.Claims.Exists('admin');

 if not IsAdmin then

 Args.Criteria.Add(not Linq['Protected']));

 end

);

TMS XData 5.16.1.1 Page 124 of 11

https://doc.tmssoftware.com/biz/sparkle/guide/client.html#onsendingrequest-event

var

 Login: ILoginService;

 JwtToken: string;

begin

 JwtToken := Client.Service<ILoginService>.Login(edtUser.Text,

edtPassword.Text);

 Client.HttpClient.OnSendingRequest := procedure(Req: THttpRequest)

 begin

 Req.Headers.SetValue('Authorization','Bearer ' + JwtToken);

 end;

end;

TMS XData 5.16.1.1 Page 125 of 11

OpenAPI Support
The XData server can optionally provide a JSON file containing the OpenAPI Specification (OAS,

formerly Swagger) for your whole server API. This opens up a lot of possibilities; usage of several

tools of the OpenAPI ecosystem, like:

Swagger UI: web front-end to describe and test your API

Redoc: documentation generator for your API

OpenAPI Generator: generate API clients for many different languages and plataforms

OpenAPI document

The main OpenAPI feature in XData is the generation of the OpenAPI document automatically

from your API. This document fully describes your API using the standard OpenAPI Specification

(OAS) and can be used in several different ways.

To enable OpenAPI support in your server (i.e, to tell XData to generate the OpenAPI document),

just set the property SwaggerOptions.Enabled to true in your TXDataServer component, either

in object inspector or from code:

Alternatively, if you are using TXDataServerModule instead, you can just use the unit

XData.OpenAPI.Service and call the method RegisterOpenAPIService anywhere in your server

application:

OpenAPI document endpoint

Once OpenAPI document is enable, The OAS file is available through a GET request to the URL `/

openapi/swagger.json`` relative to your server root URL. For example, if your server root is http://

server:2001/tms/xdata/, then you will be able to access the file from this URL:

Swagger UI

XData server can optionally publish and endpoint to provide a SwaggerUI web-based interface

that works as both a full documentation of your API as well a test interface. Swagger UI is a web-

based front-end to dynamically document and test your API. Quoting their website:

•

•

•

XDataServer1.SwaggerOptions.Enabled := True;

uses {...}, XData.OpenAPI.Service;

{...}

 RegisterOpenAPIService;

GET http://server:2001/tms/xdata/openapi/swagger.json

TMS XData 5.16.1.1 Page 126 of 16

https://www.openapis.org/
https://swagger.io
https://swagger.io/tools/swagger-ui/
https://redocly.github.io/redoc/
https://openapi-generator.tech
https://swagger.io/tools/swagger-ui/

"Swagger UI allows anyone - be it your development team or your end

consumers - to visualize and interact with the API's resources without

having any of the implementation logic in place. It's automatically

generated from your Swagger specification, with the visual

documentation making it easy for back end implementation and client

side consumption."

Enabling Swagger UI

To enable SwaggerUI support in your server, just set the property SwaggerUIOptions.Enabled to

true in your TXDataServer component, either in object inspector or from code:

Alternatively, if you are using TXDataServerModule instead, you can just use the unit

XData.SwaggerUI.Service and call the method RegisterSwaggerUIService anywhere in your

server application:

Using SwaggerUI

Once enabled, SwaggerUI is available in the address /swaggerui relative to your server base

path. Just open your browser and go to the address:

http://server:2001/tms/xdata/swaggerui

It will display an interface like this:

XDataServer1.SwaggerUIOptions.Enabled := True;

uses {...}, XData.SwaggerUI.Service;

{...}

 RegisterSwaggerUIService;

TMS XData 5.16.1.1 Page 127 of 16

Configuring SwaggerUI

The SwaggerUI interface can also be configured using the SwaggerUIOptions property of either

TXDataServer or TXDataServerModule. Available properties are:

Name Description

ShowFilter Boolean parameter. Default is False. When True, the SwaggerUI will display a

filter edit box to search for API operations.

DocExpansion Enumerated parameter. Specifies the default expand level of the listed API

operations.

Valid values are: TSwaggerUIExpansion = (List, None, Full)

Default value is List.

TryOutEnabled When True, SwaggerUI will already be in "try out" mode automatically. Default

is false, which requires clicking the button "Try out" to test the endpoint.

CustomParams Allows adding custom parameters to the SwaggerUI JavaScript object.

Examples:

TMS XData 5.16.1.1 Page 128 of 16

Redoc

XData server can also publish and endpoint to provide a Redoc web-based interface. Redoc is an

open source tool for generating documentation from OpenAPI (formerly Swagger) definitions.

You can use it to provide to your users a nice documentation about your API.

Enabling Redoc

To enable Redoc support in your server, just set the property RedocOptions.Enabled to true in

your TXDataServer component, either in object inspector or from code:

Alternatively, if you are using TXDataServerModule instead, you can just use the unit

XData.Redoc.Service and call the method RegisterRedocService anywhere in your server

application:

Using Redoc

Once enabled, Redoc will be available from the address /redoc relative to your server base

path. Just open your browser and go to the address:

http://server:2001/tms/xdata/redoc

It will display an interface like this:

XDataModule.SwaggerUIOptions.Filter := True;

XDataModule.SwaggerUIOptions.DocExpansion := TSwaggerUIExpansion.None;

XDataServer1.RedocOptions.Enabled := True;

uses {...}, XData.Redoc.Service;

{...}

 RegisterRedocService;

TMS XData 5.16.1.1 Page 129 of 16

https://github.com/Redocly/redoc

Configuring Redoc

The Redoc interface can also be configured using the RedocOptions property of either

TXDataServer or TXDataServerModule.

You can use CustomParams property to set any Redoc parameter and its value. You can refer to

Redoc documentation for the full list of parameters.

For example:

Customizing the OpenAPI document

There are plenty of ways to improve the OpenAPI document generated by XData. You can use

XML documentation to add descriptions and content, make use of validation attributes, exclude

methods, and so on.

Customizing document header and description

XData also takes the model name, version and description into account to build the final

document. You can configure such settings directly by changing some properties of the XData

model (remember that XDataServer in this example is a TXDataServer component):

XDataServer1.RedocOptions.CustomParams.Values['disable-search'] := 'true';

TMS XData 5.16.1.1 Page 130 of 16

https://redocly.com/docs/redoc/config/

Note that you can use Markdown syntax to format the final text. Here is what it will look like:

Excluding methods

You can flag some service contract methods to be excluded from the OpenAPI document, by

simply adding the \[SwaggerExclude\] attribute to the method:

 XDataServer.Model.Title := 'Mathematics API';

 XDataServer.Model.Version := '1.0';

 XDataServer.Model.Description :=

 '### Overview'#13#10 +

 'This is an API for **mathematical** operations. '#13#10 +

 'Feel free to browse and execute several operations like *arithmetic* ' +

 'and *trigonometric* functions'#13#10#13#10 +

 '### More info'#13#10 +

 'Build with [TMS XData](https://www.tmssoftware.com/site/xdata.asp), from ' +

 '[TMS Software](https://www.tmssoftware.com).' +

 'A Delphi framework for building REST servers'#13#10 +

 '[![TMS Software](https://download.tmssoftware.com/business/tms-logo-

small.png)]' +

 '(https://www.tmssoftware.com)';

TMS XData 5.16.1.1 Page 131 of 16

https://en.wikipedia.org/wiki/Markdown

In the example above, methods Add and Subtract will be added to the documentation, but

method NotThisFunctionPlease will not appear.

SwaggerOptions property

For the OpenAPI document specification, you can use SwaggerOptions property of either

TXDataServer or TXDataServerModule to configure the specification returned by the server:

For AuthMode property, options are TSwaggerAuthMode.Jwt or None . When Jwt is enabled, a

new security definition named jwt requiring an Authorization header will be added to all

requests.

You can also configure the specification by passing parameters in the query part of the URL, and

they can be one of the following:

Name Description

ExcludeEntities Boolean parameter. Default is False. When True, the specification will not

contain the automatic CRUD operations on entities provided automatically

by XData (entity resources).

Example: /openapi/swagger.json?ExcludeEntities=True

ExcludeOperations Boolean parameter. Default is False. When True, the specification will not

contain any service operations.

Example: /openapi/swagger.json?ExcludeOperations=True

AuthMode String parameter. Options are "none" and "jwt". When jwt is specified, a

new security definition named jwt requiring an Authorization header will

be added to all requests.

Example: /openapi/swagger.json?authmode=jwt

[ServiceContract]

[Route('arith')]

IArithmeticService = interface(IInvokable)

 ['{9E343ABD-D97C-4411-86BF-AD2E13BE71F3}']

 [HttpGet] function Add(A, B: Double): Double;

 [HttpGet] function Subtract(A, B: Double): Double;

 [SwaggerExclude]

 [HttpGet] function NotThisFunctionPlease: Integer;

end;

XDataModule.SwaggerOptions.AuthMode := TSwaggerAuthMode.Jwt;

TMS XData 5.16.1.1 Page 132 of 16

Automatic validation rules

If you use some validation attributes in your classes, like Range , MinLength or MaxLength , such

rules are automatically included in the OpenAPI document. For example, suppose you have a

DTO class declared like this and used as an input for and endpoint (other properties removed for

clarity):

The OpenAPI document will include the properties with maxLength and minimum / maximum

properties:

Such information will of course be used by the OpenAPI tools you might use. For example, the

final Redoc documentation will nicely show the restrictions of such properties:

 [Entity, Automapping]

 TTrack = class

 strict private

 [Required, MaxLength(150)]

 FName: string;

 [Range(0, 4800000)]

 FMilliseconds: Nullable<integer>;

"MusicEntities.TTrack": {

 "properties": {

 "Name": {

 "type": "string",

 "maxLength": 150,

 "x-data-type": "String",

 "x-length": 255

 },

 "Milliseconds": {

 "type": "integer",

 "maximum": 4800000,

 "minimum": 0,

 "x-data-type": "Int32"

 }

 }

TMS XData 5.16.1.1 Page 133 of 16

https://doc.tmssoftware.com/biz/aurelius/guide/validation.html

Using XML Documentation

A good (if not the best) way to document your source code is to use XML Documentation

Comments. In the interfaces and methods that build your service contract, you can simply add

specific XML tags and content, like this:

And Delphi IDE will automatically use it for Help Insight, showing you information about the

method on-the-fly. For example, if some developer is trying to use the Sin method of your API,

information will be conveniently displayed:

/// <summary>

/// Retrieves the sine (sin) of an angle

/// </summary>

/// <remarks>

/// Returns the Sine (Sin) value of an angle radians value.

/// The value returned will be between -1 and 1.

/// If the angle is zero, the returned value will be zero.

/// </remarks>

/// <param name="Angle">

/// The angle in radians.

/// </param>

function Sin(Angle: Double): Double;

TMS XData 5.16.1.1 Page 134 of 16

http://docwiki.embarcadero.com/RADStudio/en/XML_Documentation_Comments
http://docwiki.embarcadero.com/RADStudio/en/XML_Documentation_Comments
http://docwiki.embarcadero.com/RADStudio/en/Help_Insight

The good news is that, with XData, you can use such XML comments in the OpenAPI documnt

that is generated automatically by XData, improving even more your REST API documentation.

Since the API endpoints are generated directly from the interfaced and methods, XData knows

exactly the meaning of each documentation and can map it accordingly to Swagger.

Enabling generation of XML documentation files

XData needs to read the XML files with the comments to import it into the Swagger document.

You need to tell Delphi compiler to generate the XML documentation files.

In your project options (Delphi menu Project | Options, or Shift+Ctrl+F11), go to "Building,

Delphi Compiler, Compiling" (for Delphi 10.4.1 Sydney. Previous Delphi version might differ),

then enable option "Generate XML documentation". You might also want to explicitly set the

directory where the XML files will be generated, in option "XML documentation output directory".

It's recommended to use ".\$(Platform)\$(Config)", this way the XML files will be in the same

folder as the executable.

TMS XData 5.16.1.1 Page 135 of 16

Importing XML documentation in Swagger

XML documentation usage in Swagger can be enabled with a single line of code:

Add the line at the beginning of your application, be it in your dpr file, or initialization section of

some unit, or in the OnCreate event of your TDataModule that contains your XData/Sparkle

components. In the first parameter you must provide the XData model you want to import XML

files to. In the example above, XDataServer is a TXDataServer component. If you are using multi-

model design, just provide the proper model there.

LoadXmlDoc will try to find the XML files in the same directory as your application is located. If the

XML files are in a different folder, you can specify it explicitly using a second parameter:

Once you do that, if you check your Swagger documentation via Swagger-UI, you will see

something like this:

Note how the content of summary tag goes directly at the right of the GET button, as a summary

for the endpoint.

The content of remarks tag is the detailed description of the endpoint.

And the content of each param tag explains each respective parameter. Sweet!

uses {...}, XData.Aurelius.ModelBuilder;

...

 TXDataModelBuilder.LoadXmlDoc(XDataServer.Model);

TXDataModelBuilder.LoadXmlDoc(XDataServer.Model, 'C:\MyXMLFiles');

TMS XData 5.16.1.1 Page 136 of 16

Using different documentation for Help Insight and

Swagger

Reusing the same XML comments is nice as you don't repeat yourself. Document your code just

once, and the same documentation is used for documenting your Delphi interfaces (Delphi

developments) and your REST API (API consumer development).

But, if for some reason you want to use different documentation content for Delphi developers

and for REST API users, that's also possible. You can use the specific swagger tag to fill specific

parts of the documentation. You then use the name attribute to differentiate between swagger

tags.

For example, suppose the following documentation:

Note that tags summary (1) and param (2 and 3) are the regular XML documentation tags. They

will be used for Help Insight:

TMS XData 5.16.1.1 Page 137 of 16

And swagger tags with no name attribute (A), or name param-A (B), param-B (C) and remarks (D)

will be used exclusively for Swagger documentation:

Customizing tags

You can also customize the tags in Swagger. Endpoints are grouped together inside a tag, which

can have a name and description.

By default, the name of the tag will be path segment of the interface service. But you can change

it using swagger tag with tag-name attribute.

The description of the tag by default is empty, but you can define it using the regular summary

tag, or optionally using the swagger tag with tag-description attribute.

Consider the following documentation for both IArithmenticService and ITrigonometryService:

TMS XData 5.16.1.1 Page 138 of 16

The above tags will generate the following output in Swagger UI:

TMS XData 5.16.1.1 Page 139 of 16

Using tag groups

If you are using Redoc, it also supports the concept of tag groups.

It's an even higher level than tags, where you can group tags under a common name. To "put" a

tag in a specific tag group use the swagger XML tag with the tag-group attribute:

Endpoints declared in the above interface will be under tag "Customer Authentication", which in

turn will be under tag group "Customers":

NOTE

When you use tag groups in Redoc, a tag that is not in a group is not displayed at all. You

must add every tag to at least one group.

To avoid having to flag all endpoints in tag groups, you can set

SwaggerOptions.DefaultTagGroup property to a non-empty value. This will make all tags

without a tag group to get listed under that group name:

Flagging properties as required

To set a specific property as required in Swagger documentation, regardless how it's defined in

the XData model, just add an XML comment with the swagger tag and required attribute to

the mapped class member:

 /// <swagger name="tag-group">Customers</swagger>

 /// <swagger name="tag-name">Customer Authentication</swagger>

 /// <swagger name="tag-description">Endpoints for authenticating customers</

swagger>

 ICustomerAuthenticationService = interface(IInvokable)

 XDataServer1.SwaggerOptions.DefaultTagGroup := 'Other';

 /// <swagger name="required" />

 FSomeRequiredProperty: Integer;

TMS XData 5.16.1.1 Page 140 of 16

https://redocly.com/docs/api-reference-docs/specification-extensions/x-tag-groups/

Flagging endpoints as deprecated

To show an endpoint as deprecated in Swagger documentation, add a XML comment with

swagger tag and deprecated attribute to the method corresponding to the endpoint:

 /// <swagger name="deprecated" />

 function Sum(A, B: double): double;

TMS XData 5.16.1.1 Page 141 of 16

OpenAPI (Swagger) importer

NOTE

OpenAPI importer became a separated, stand alone tool and it's available as open-source

project at https://github.com/landgraf-dev/openapi-delphi-generator

WARNING

All the documentation below is deprecated, classes are not available anymore. We will keep it

here as a reference for the open source project mentioned in the note above.

XData allows you to import an existing server Swagger specification and generate service

contract interfaces that you can use together with TXDataClient to perform requests to such

server. The importer will also create DTO classes representing all the JSON used for requests and

responses in the server.

For now the importer can import Swagger 2.0 specification in JSON format.

Generating the imported unit

Use the TOpenApiImporter class declared in unit XData.OpenApi.Importer to read a Swagger

JSON and generate meta information for the unit to be generated. Then you can use

TDelphiCodeGenerator class (unit Bcl.Code.DelphiGenerator) to effectively generate the code.

Here is an example:

uses {...}, Bcl.Code.DelphiGenerator, Bcl.Code.MetaClasses,

 OpenApi.Document, OpenAPI.Json.Serializer, XData.OpenApi.Importer;

function GenerateSource(CodeUnit: TCodeUnit): string;

var

 Generator: TDelphiCodeGenerator;

begin

 Generator := TDelphiCodeGenerator.Create;

 try

 Generator.StructureStatements := True;

 Result := Generator.GenerateCodeFromUnit(CodeUnit);

 finally

 Generator.Free;

 end;

end;

procedure ImportApi(const SwaggerJson, OutputFile: string);

var

 Document: TOpenApiDocument;

 Importer: TOpenApiImporter;

begin

 Importer := TOpenApiImporter.Create;

 try

TMS XData 5.16.1.1 Page 142 of 5

https://github.com/landgraf-dev/openapi-delphi-generator

The above code will parse the Swagger JSON, build a TCodeUnit object with the unit

information, then generate the file .pas file with the file name indicated by OutputFile .

Customizing the imported API

You can use events to customize the generated unit. Sometimes the importer doesn't generate

100% accurate source code, or sometimes you simply want to change the generated API. The

following code is an example extracted from the KeapApiImporterV2 demo, available in the

demos folder. The demo shows how to import and generate a client for the Keap API.

 Document := TOpenApiDeserializer.JsonToDocument(SwaggerJson);

 try

 // SetImporterEvents(Importer); // Uncomment to set custom events

 Importer.Build(Document);

 Importer.CodeUnit.Name := TPath.GetFileNameWithoutExtension(OutputFile);

 TFile.WriteAllText(OutputFile, GenerateSource(Importer.CodeUnit),

TEncoding.UTF8);

 finally

 Document.Free;

 end;

 finally

 Importer.Free;

 end;

end;

function ToPascalCase(const S: string): string;

var

 I: Integer;

 Convert: Boolean;

 begin

 I := 1;

 Result := '';

 Convert := True;

 while I <= Length(S) do

 begin

 if TBclUtils.IsLetter(S[I]) then

 begin

 if Convert then

 begin

 Result := Result + UpCase(S[I]);

 Convert := False;

 end

 else

 Result := Result + S[I];

 end

 else

 if S[I] = '_' then

 Convert := True

 else

 Result := Result + S[I];

TMS XData 5.16.1.1 Page 143 of 5

https://developer.infusionsoft.com/docs/restv2/

 Inc(I);

 end;

end;

procedure SetImporterEvents(Importer: TOpenApiImporter);

begin

 // OnGetMethodName allows you to change name of the generated service contract

method

 Importer.OnGetMethodName :=

 procedure(var MethodName: string; const Original: string)

 var

 P: Integer;

 begin

 // Convert specific names

 if Original = 'listCountriesUsingGET_3' then

 MethodName := 'ListCountryProvinces'

 else

 if Original = 'updateCompanyUsingPATCH_3' then

 MethodName := 'UpdateCompany2'

 else

 if Original = 'removeTagsFromContactUsingDELETE_3' then

 MethodName := 'RemoveTagFromContact';

 end;

 // OnGetTypeName also allows you to provide a custom name for the DTO classes

 Importer.OnGetTypeName :=

 procedure(var TypeName: string; const Original: string)

 begin

 TypeName := 'T' + TypeName;

 end;

 // OnGetPropName allows you to modify the name of a property. In the following

example,

 // some generated property names don't compile because they are invalid

identifiers.

 Importer.OnGetPropName :=

 procedure(var PropName: string; const Original: string)

 begin

 if Original = '24_hours' then

 PropName := '_24Hours'

 else

 if Original = '30_days' then

 PropName := '_30Days'

 else

 if Original = 'className' then

 PropName := 'ClassName_'

 else

 if Original = 'methodName' then

 PropName := 'MethodName_';

 else

 PropName := ToPascalCase(Original);

 end;

TMS XData 5.16.1.1 Page 144 of 5

Using the API

The importer generates a unit with service contract interfaces and JSON DTOs. Use it with a

TXDataClient the same way you would use a service contract to invoke operations in a XData

server. The difference, of course, is that the server is not XData but a 3rd party API.

 // OnMethodCreated is called after the full method meta information is

generated. You can then change everything

 // you need from it. In this case, optional_properties parameter is removed

from the final method

 Importer.OnMethodCreated :=

 procedure(Method: TCodeMemberMethod; Parent: TCodeTypeDeclaration)

 begin

 Method.RemoveParameter('optional_properties');

 end;

 // OnGetServiceName event allows settings the name of the interface type

 Importer.OnGetServiceName :=

 procedure(var ServiceName: string; var Guid: TGUID; PathItem: TPathItem; Oper

ation: TOperation)

 var

 Name: string;

 begin

 if Operation.Tags.Count = 1 then

 begin

 Name := Operation.Tags[0];

 Name := StringReplace(Name, ' ', '', [rfReplaceAll]);

 Name := StringReplace(Name, '-', '', [rfReplaceAll]);

 ServiceName := Format('IKeap%s', [ToPascalCase(Name)]);

 end;

 end;

end;

var

 Client: TXDataClient;

 Request: TCreatePatchContactRequest;

begin

 Client := TXDataClient.Create;

 Client.Uri := 'https://api.infusionsoft.com/crm/rest/v2';

 Request := TCreatePatchContactRequest.Create;

 Request.FamilyName := 'Foo';

 Client.Service<IKeapContact>.CreateContact(Request);

 Request.Free;

 Client.Free;

end;

TMS XData 5.16.1.1 Page 145 of 5

TMS XData 5.16.1.1 Page 146 of 5

Other Tasks
This chapter explains basic tasks you can do with XData in code. It basically explains how to

setup and start the server and how to do some basic configuration using the available classes

and interfaces. The following topics describe the most common XData programming tasks and

main classes and interfaces.

Creating an XData Server

TMS XData Server is based on the TMS Sparkle framework. The actual XData Server is a Sparkle

server module that you add to a Sparkle HTTP Server.

Please refer to the following topics to learn more about TMS Sparkle servers:

Overview of TMS Sparkle HTTP Server

Creating an HTTP Server to listen for requests

TMS Sparkle Server Modules

To create the XData Server, just create and add a XData Server Module (TXDataServerModule

class, declared in unit XData.Server.Module) to the Sparkle HTTP Server. The following code

illustrates how to create and run the server. Note that the code that creates the XData server

module is not displayed here. You should refer to the "XData Server Module" topic to learn

about how to create the module.

•

•

•

uses

 {...},

 Sparkle.HttpSys.Server, XData.Server.Module;

function CreateXDataServerModule(const BaseUrl: string): TXDataServerModule;

begin

 // Create and return the TXDataServerModule here,

 // using the BaseUrl as the server address

end;

var

 Module: TXDataServerModule;

 Server: THttpSysServer;

begin

 Server := THttpSysServer.Create;

 Module := CreateXDataServerModule('http://server:2001/tms/xdata');

 Server.AddModule(Module);

 Server.Start;

 ReadLn;

 Server.Stop;

 Server.Free;

end;

TMS XData 5.16.1.1 Page 147 of 10

https://www.tmssoftware.com/site/sparkle.asp
https://download.tmssoftware.com/business/sparkle/doc/web/server_modules.htm
https://download.tmssoftware.com/business/sparkle/doc/web/server_modules.htm
https://download.tmssoftware.com/business/sparkle/doc/web/http_server.htm
https://download.tmssoftware.com/business/sparkle/doc/web/httpsysserver.htm
https://download.tmssoftware.com/business/sparkle/doc/web/server_modules.htm

The code above will create and start an XData server that will receive and respond to HTTP

requests at the address "http://server:2001/tms/xdata".

TXDataServerModule

To create an XData server, you need to add a TXDataServerModule object to the Sparkle HTTP

Server. As with any Sparkle module, it will have a base (root) URL associated with it, and it will

respond to requests sent to any URL which matches the root URL of the module.

The TXDataServerModule is the main XData class, because it is the one which receives and

handles all HTTP requests. So in a way, that is the class that implements the XData server.

Although it is a very important class, its usage is very simple. You need to create the class using

one of the overloaded constructors (TXDataServerModule is declared in unit

XData.Server.Module):

In summary, you must provide the base URL and optionally an IDBConnectionPool interface so

that the server can retrieve IDBConnection interfaces to operate with the database (if database

connectivity is desired). For example:

The example above creates the server with the root URL "http://server:2001/tms/xdata"

providing a connection pool of a maximum of 50 simultaneous connections. The database

connection used will be a FireDac TFDConnection component named FDConnection1, declared in

a data module named TMyDataModule. That is all you need to set up for your XData server to

run and to expose your Aurelius objects.

The first overloaded constructor, used in the previous example, takes just two parameters: the

base url and the connection pool. The other overloaded versions are just variations that provide

different settings.

constructor Create(const ABaseUrl: string); overload;

constructor Create(const ABaseUrl: string; AConnectionPool: IDBConnectionPool); o

verload;

constructor Create(const ABaseUrl: string; AConnectionPool: IDBConnectionPool;

 AModel: TXDataAureliusModel); overload;

constructor Create(const ABaseUrl: string; AConnection: IDBConnection); overload;

constructor Create(const ABaseUrl: string; AConnection: IDBConnection;

 AModel: TXDataAureliusModel); overload;

XDataServerModule := TXDataServerModule.Create('http://server:2001/tms/xdata',

 TDBConnectionPool.Create(50,

 TDBConnectionFactory.Create(

 function: IDBConnection

 var

 MyDataModule: TMyDataModule;

 begin

 MyDataModule := TMyDataModule.Create(nil);

 Result := TFireDacConnectionAdapter.Create(MyDataModule.FDConnection1, My

DataModule);

 end

)));

TMS XData 5.16.1.1 Page 148 of 10

https://download.tmssoftware.com/business/aurelius/doc/web/idbconnection.htm

If you have multiple Aurelius mapping models in your application, you can optionally use an

entity model different from default, or explicitly build an entity model and provide it in the

constructor for specific mapping. This allows for better control which classes and mapping

settings are available from the XData server. If the model is not provided, XData uses the default

entity model which in turn uses the default Aurelius model. Note that the model passed to the

constructor will not be owned by the server module and must be destroyed manually. For

example, the following code creates a module using the "Sample" model:

There are also versions of the Create constructor that receive an IDBConnection interface instead

of an IDBConnectionPool. Those are easy-to-use variations that internally create a connection

pool with a single connection (no simultaneous connections available). It is an easy approach for

testing and debug purposes, but should not be used in production environments because

performance might not be ideal.

Properties

Name Description

UserName: string

Password: string

TXDataServerModule provides these properties to specify

UserName and Password required by the server using Basic

Authentication. By default, these values are empty which means

no authentication is performed and any client can access server

resources and operations. When basic authentication is used,

be sure to use HTTP secure (HTTPS) if you do not want your

user name or password to be retrieved by middle-man attacks.

If you do not use it, both user name and password are

transmitted in plain text in HTTP requests.

These properties provide a very limited basic authentication

mechanism. For a more advanced variant, you should use the

TMS Sparkle built-in Basic Authentication mechanism.

AccessControlAllowOrigin:

string

Specifies the accepted client hosts for which CORS will be

enabled. If you want to accept any client connection, set this

property value to '*'. This will enable CORS in the server

including proper responses to preflighted requests.

DefaultExpandLevel: integer Defines the minimum level that associated entities will be

expanded (included inline) in JSON responses. Default value is

0 meaning that all associated entities will be represented as

references unless specified otherwise. Clients can override this

value by using xdata-expand-level header.

Events: TXDataModuleEvents Container for server-side events.

XDataServerModule := TXDataServerModule.Create('http://server:2001/tms/xdata',

 MyConnectionPool, TXDataAureliusModel.Get('Sample'));

TMS XData 5.16.1.1 Page 149 of 10

https://download.tmssoftware.com/business/aurelius/doc/web/multi-model_design.htm
https://www.tmssoftware.com/site/blog.asp?post=305
https://www.tmssoftware.com/site/blog.asp?post=305

Name Description

PutMode: TXDataPutMode Defines how PUT will be implemented at server side with

Aurelius: Either TXDataPutMode.Update or

TXDataPutMode.Merge method (default). You will rarely need to

change this property unless to ensure

backward compatibility with older versions. This property value

can be overridden in a specific request by using xdata-put-

mode HTTP Request header.

SerializeInstanceRef:

TInstanceRefSerialization

Controls how instance reference ($ref) will appear in JSON

response. See below for options.

This property value can be overridden in a specific request by

using xdata-serialize-instance-ref HTTP Request header.

SerializeInstanceType:

TInstanceTypeSerialization

Controls whenever the entity/object type appears in the JSON

response (property annotation "xdata.type"). See below for

options.

This property value can be overridden in a specific request by

using xdata-serialize-instance-type HTTP Request header.

UnknownMemberHandling:

TUnknownMemberHandling

Defines server behavior when receiving JSON from the client

with a property that is not known for that request. For example,

JSON representing an entity with a property that does not

belong to that entity. See below for options.

RoutingPrecedence:

TRoutingPrecedence

Specifies which route to use when there is a conflict between

URL endpoints defined by automatic CRUD endpoints and

service operations . See below for options.

EnableEntityKeyAsSegment:

Boolean

When True, it's possible to address single entities by using the

URL format "/entityset/id" - in addition to the default "/

entityset(id)". Default is False.

SwaggerOptions:

TSwaggerOptions

SwaggerUIOptions:

TSwaggerUIOptions

Provide access to configure Swagger and SwaggerUI behavior.

See more information at OpenAPI/Swagger Support.

TInstanceRefSerialization

TInstanceRefSerialization.Always: $ref is always used if the same instance appears again in

the JSON tree. This mode is more optimized for use with TXDataClient, and is the default

option.

TInstanceRefSerialization.IfRecursive: $ref is only used if the instance appears as an

associated object of itself. If the instance appears in a non-recursive way, $ref is not used

and the instance is fully serialized inline instead. This mode is more suited for JavaScript

and other non-Delphi clients so those clients do not need to resolve the $ref objects.

•

•

TMS XData 5.16.1.1 Page 150 of 10

TInstanceTypeSerialization

TInstanceTypeSerialization.Always: The xdata.type annotation always appears in JSON

responses.

TInstanceTypeSerialization.IfNeeded: The xdata.type annotation is only present if the entity/

object type is a descendant of the expected type. For example, suppose a GET request is

performed in url Customers. For any entity in JSON that is of type Customer, the

annotation will not present. If the entity in JSON is a descendant of Customer (e.g.,

DerivedCustomer) then xdata.type apppears. Basically, it means that xdata.type is implicit

when absent and is of the expected type of the request/specification.

TUnknownMemberHandling

TUnknownMemberHandling.Error: An InvalidJsonProperty error is raised if JSON contains

an invalid property. This is the default behavior.

TUnknownMemberHandling.Ignore: Invalid properties in JSON will be ignored and the

request will be processed.

TRoutingPrecedence

TRoutingPrecedence.Crud: The URL from automatic CRUD endpoint will be used if there is

a URL conflict with service operation endpoints. This is the default behavior.

TRoutingPrecedence.Service: The URL from service operation will be used if there is a URL

conflict with automatic CRUD endpoints.

Methods

Name Description

procedure SetEntitySetPermissions(const EntitySetName: string;

Permissions: TEntitySetPermissions)

Specify the permissions for a

specified entity set.

IDBConnectionPool Interface

The IDBConnectionPool interface is used by the XData server module to retrieve an

IDBConnection interface used to connect to a database. As client requests arrive, the XData

server needs an IDBConnection interface to connect to the database server and execute the SQL

statements. It achieves this by trying to acquire an IDBConnection interface from the

IDBConnectionPool interface. Thus, providing an IDBConnectionPool interface to the XData

server module is mandatory for this to work.

The IDBConnectionPool interface is declared in the unit Aurelius.Drivers.Interfaces and

contains a single GetConnection method:

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 151 of 10

https://download.tmssoftware.com/business/aurelius/doc/web/idbconnection.htm

The easiest way to create an IDBConnectionPool interface is by using the TDBConnectionPool

class which implements the IDBConnectionPool interface. To instantiate it, you need to call the

Create constructor passing an IDBConnectionFactory interface which will be used by the

connection pool to create a new connection if needed. Alternatively, you can pass an anonymous

method that creates and returns a new IDBConnection interface each time it is called.

Also, you need to specify the maximum number of IDBConnection interfaces (database

connections) available in the pool. Whenever a client request arrives, the XData server acquires

an IDBConnection from the pool, does all the database processing with it, and then returns it to

the pool. If many simultaneous requests arrive, the pool might run out of available connections

when the number of acquired IDBConnection interfaces reaches the maximum number specified.

If that happens, the client request will wait until a new connection is available in the pool.

TDBConnectionPool class is declared in the unit XData.Aurelius.ConnectionPool .

The following code illustrates how to create an IDBConnectionPool interface. It uses a function

named CreateMyConnectionFactory which is not shown in this example. To learn how to create

such interface, please refer to IDBConnectionFactory topic.

Alternatively, you can just provide an anonymous method that creates the IDBConnection

instead of providing the IDBConnectionFactory interface:

IDBConnectionPool = interface

 function GetConnection: IDBConnection;

end;

uses

 {...}, Aurelius.Drivers.Interfaces, XData.Aurelius.ConnectionPool;

var

 ConnectionPool: IDBConnectionPool;

 ConnectionFactory: IDBConnectionFactory;

begin

 ConnectionFactory := CreateMyConnectionFactory; // Creates

IDBConnectionFactory

 ConnectionPool := TDBConnectionPool.Create(

 50, // maximum of 50 connections available in the pool

 // Define a number that best fits your needs

 ConnectionFactory

);

 // Use the IDBConnectionPool interface to create the XData server module

end;

TMS XData 5.16.1.1 Page 152 of 10

If you do not need a pooling mechanism but just want one database connection to be created

for each time someone asks for a connection from the pool, you can use the

TDBConnectionFactory class. It also implements the IDBConnectionPool interface:

uses

 {...}, Aurelius.Drivers.Interfaces, XData.Aurelius.ConnectionPool;

var

 ConnectionPool: IDBConnectionPool;

begin

 ConnectionPool := TDBConnectionPool.Create(

 50, // maximum of 50 connections available in the pool

 function: IDBConnection

 var

 SQLConn: TSQLConnection;

 begin

 // Create the IDBConnection interface here

 // Be sure to also create a new instance of the database-access component

here

 // Two different IDBConnection interfaces should not share

 // the same database-access component

 // Example using dbExpress

 SQLConn := TSQLConnection.Create(nil);

 { Define SQLConn connection settings here, the server

 to be connected, user name, password, database, etc. }

 Result := TDBExpressConnectionAdapter.Create(SQLConn, true);

 end

));

 // Use the IDBConnectionPool interface to create the XData server module

end;

TMS XData 5.16.1.1 Page 153 of 10

IDBConnectionFactory Interface

The IDBConnectionFactory interface is used to create an IDBConnectionPool interface used by

the XData module. As client requests arrive, the XData server needs to retrieve an IDBConnection

interface from the IDBConnectionPool so it can perform operations on the database. The

connection pool creates a new IDBConnection by calling IDBConnectionFactory.CreateConnection

method.

The IDBConnectionFactory interface is declared in unit Aurelius.Drivers.Interfaces , and it

contains a single CreateConnection method:

The easiest way to create such an interface is using the TDBConnectionFactory class which

implements the IDBConnectionFactory interface. To create a TDBConnectionFactory object, you

just need to pass an anonymous method that creates and returns a new IDBConnection interface

each time it is called. The TDBConnectionFactory class is declared in the unit

Aurelius.Drivers.Base .

The IDBConnection interface is part of the TMS Aurelius library used by XData. You can refer to

the TMS Aurelius documentation to learn how to create the IDBConnection interface.

In the following example, the factory will create an IDBConnection pointing to a Microsoft SQL

Server database using a dbExpress connection. You can connect to many other database servers

(Oracle, Firebird, MySQL, etc.) using many different database-access components (FireDac,

dbExpress, UniDac, ADO, etc.). Please refer to Database Connectivity topic on TMS Aurelius

var

 ConnectionPool: IDBConnectionPool;

begin

 ConnectionPool := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 MyDataModule: TMyDataModule;

 begin

 // Creates a datamodule which contains a

 // TSQLConnection component that is already configured

 MyDataModule := TMyDataModule.Create(nil);

 // The second parameter makes sure the data module will be destroyed

 // when IDBConnection interface is released

 Result := TDBExpressConnectionAdapter.Create(

 MyDataModule.SQLConnection1, MyDataModule);

 end

));

end;

IDBConnectionFactory = interface

 function CreateConnection: IDBConnection;

end;

TMS XData 5.16.1.1 Page 154 of 10

https://download.tmssoftware.com/business/aurelius/doc/web/idbconnection.htm
https://download.tmssoftware.com/business/aurelius/doc/web/database_connectivity.htm

documentation to learn about all those options. Regardless of what you use, the structure of the

following code will be the same. What will change only is the content of the function:

IDBConnection.

It is possible that you already have your database-access component configured in a

TDataModule and you do not want to create it in code. In this case, you can just create a new

instance of the data module and return the associated IDBConnection to the component. But

you must be sure to destroy the data module as well (not only the database-access component)

to avoid memory leaks:

uses

 {...}, Aurelius.Drivers.Interfaces, Aurelius.Drivers.Base,

 Aurelius.Drivers.dbExpress;

var

 ConnectionFactory: IDBConnectionFactory;

begin

 ConnectionFactory := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 conn: TSQLConnection;

 begin

 // Create the IDBConnection interface here

 // Be sure to also create a new instance of the database-access component

here

 // Two different IDBConnection interfaces should not share

 // the same database-access component

 // Example using dbExpress

 conn := TSQLConnection.Create(nil);

 conn.DriverName := 'MSSQL';

 conn.GetDriverFunc := 'getSQLDriverMSSQL';

 conn.VendorLib := 'sqlncli10.dll';

 conn.LibraryName := 'dbxmss.dll';

 conn.Params.Values['HostName'] := 'server';

 conn.Params.Values['Database'] := 'master';

 conn.Params.Values['User_Name'] := 'sa';

 conn.Params.Values['Password'] := 'password';

 conn.LoginPrompt := false;

 Result := TDBExpressConnectionAdapter.Create(SQLConn, true);

 end

));

 // Use the ConnectionFactory interface to create an IDBConnectionPool interface

end;

TMS XData 5.16.1.1 Page 155 of 10

https://download.tmssoftware.com/business/aurelius/doc/web/database_connectivity.htm

OpenAPI/Swagger Support

NOTE

Documentation about OpenAPI, SwaggerUI and Redoc has been moved to its own chapter:

OpenAPI Support.

var

 ConnectionFactory: IDBConnectionFactory;

begin

 ConnectionFactory := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 MyDataModule: TMyDataModule;

 begin

 // Creates a datamodule which contains a

 // TSQLConnection component that is already configured

 MyDataModule := TMyDataModule.Create(nil);

 // The second parameter makes sure the data module will be destroyed

 // when IDBConnection interface is released

 Result := TDBExpressConnectionAdapter.Create(

 MyDataModule.SQLConnection1, MyDataModule);

 end

));

 // Use the ConnectionFactory interface to create an IDBConnectionPool interface

end;

TMS XData 5.16.1.1 Page 156 of 10

Web Applications with TMS Web

Core
TMS Web Core is the TMS Software framework for building web applications using Delphi. It

allows you to create pure HTML/JS Single-Page-Applications that runs in your browser.

Even though the web application generated by TMS Web Core can run 100% stand alone in the

browser, in many scenarios it needs data to work with, and such data needs to be retrieved from

a server (and eventually sent back for modifications). Usually this data communication is done

through a REST API Server - the web client performs requests using HTTP(S), and send/receive

data in JSON format.

TMS XData is the ideal back-end solution for TMS Web Core. It not only allows you to create

REST API servers from an existing database in an matter of minutes, but is also provides the most

complete and high-level client-side framework for TMS Web Core, including Delphi design-time

support with visual components, a TXDataWebClient component that abstracts low-level HTTP/

JSON requests in a very easy and high-level way of use, and a dataset-like optional approach

that simply feels home to Delphi users but still uses modern REST/JSON requests behind the

scenes.

The following topics cover in details how to use TMS XData Web-Client Framework and make

use of TMS XData servers from TMS Web Core applications.

Setting Up the Connection with

TXDataWebConnection

TXDataWebConnection is the first (and key) component you need to use to connect to XData

server from TMS Web Core applications. Simply drop the component in the form set its URL

property to the root URL of XData server:

TIP

Even though the examples above and below will show setting properties from code, since

TXDataWebConnection is available at design-time, you can set most of the properties

described here at design-time in object inspector, including testing the connection.

Then you perform the connection setting Connected property to true:

XDataWebConnection1.URL := 'http://localhost:2001/tms/music';

DataWebConnection1.Connected := True;

TMS XData 5.16.1.1 Page 157 of 18

https://www.tmssoftware.com/site/tmswebcoreintro.asp

It's as simple as that. However, for web applications, you must be aware that all connections are

performed asynchronously. This means that you can't be sure when the connection will be

performed, and any code after Connected is set to true is not guaranteed to work if it expects

the connection to be established. In the following code, for example, the second line will

probably not work because the connection is probably not yet finished:

To make sure the component is connected and you can start performing requests to XData

server, you should use OnConnect and OnError events:

From TMS Web Core 1.6 and on, you can also use the OpenAsync method using the await

keyword. This will ensure the next line will be executed after OpenAsync is complete, even

though it's executed asynchronously:

OnConnect and OnError events

When connecting, either one of those two events will be fired upon request complete. Use the

OnConnect event to be sure the connection was performed and start communicating with XData

server:

XDataWebConnection1.Connected := True;

// The following line will NOT work because connection

// is still being established asynchronously

PerformSomeRequestToXDataServer();

await(XDataWebConnection1.OpenAsync);

// The following line will be executed

// after the connection asynchronously established

PerformSomeRequestToXDataServer();

procedure TForm1.ConnectButtonClick(Sender: TObject);

begin

 XDataWebConnection1.URL := 'http://localhost:2001/tms/music';

 XDataWebConnection1.OnConnect := XDataWebConnection1Connect;

 XDataWebConnection1.OnError := XDataWebConnection1Error;

 XDataWebConnection1.Connected := True;

end;

procedure TForm1.XDataWebConnection1Connect(Sender: TObject);

begin

 WriteLn('XData server connected succesfully!');

 PerformSomeRequest;

end;

procedure TForm1.XDataWebConnection1Error(Error: TXDataWebConnectionError);

begin

 WriteLn('XData server connection failed with error: ' + Error.ErrorMessage);

end;

TMS XData 5.16.1.1 Page 158 of 18

Open method

As an alternative to events, you can connect using Open method, which you pass two

parameters: a callback for success and a callback for error.

As stated previously, OpenAsync is the equivalent to Open that can be used with await :

OnRequest event

OnRequest event is called before every request about to be sent to the XData server. This is an

useful event to modify all requests at once. For example, it's often used to add authentication

information the request, like a authorization token with a JWT header:

procedure TForm1.ConnectButtonClick(Sender: TObject);

 procedure OnConnect;

 begin

 WriteLn('XData server connected succesfully!');

 PerformSomeRequest;

 end;

 procedure OnError(Error: TXDataWebConnectionError);

 begin

 WriteLn('XData server connection failed with error: ' + Error.ErrorMessage);

 end;

begin

 XDataWebConnection1.URL := 'http://localhost:2001/tms/music';

 XDataWebConnection1.Open(@OnConnect, @OnError);

end;

procedure TForm1.ConnectButtonClick(Sender: TObject);

begin

 XDataWebConnection1.URL := 'http://localhost:2001/tms/music';

 try

 await(XDataWebConnection1.OpenAsync);

 WriteLn('XData server connected succesfully!');

 PerformSomeRequest;

 except

 on Error: Exception do

 WriteLn('XData server connection failed with error: ' +

Error.ErrorMessage);

 end;

end;

procedure TForm1.XDataWebConnection1Request(Request: TXDataWebConnectionRequest);

begin

 Request.Request.Headers.SetValue('Authorization', 'Bearer ' + LocalJWTToken);

end;

TMS XData 5.16.1.1 Page 159 of 18

DesignData property

DesignData property is intended to be used just at design-time, as an opportunity for you to add

custom headers to be sent to the server. Analogously to the OnRequest event, it's useful to add

authorization header to the request so you can connect to XData server at design-time. To use it

just click the ellipsis button in the DesignData.Headers property and add the headers you need.

Those headers will by default not be saved in the DFM, meaning you will lose that information if

you close/open the project, or even the form unit. This is for security purposes. In the exceptional

case you want information to be saved (and thus also loaded at runtime), you can set the Persist

property to True.

Using TXDataWebClient

After setting up the connection, you can use TXDataWebClient component to communicate with

the TMS XData Server from a TMS Web Core application. Note that the TXDataWebConnection

must be previously connected. Performing operations with TXDataWebClient won't

automatically setup the connection.

TXDataWebClient perform operations similar to the ones performed by TXDataClient, used in

Delphi desktop and mobile applications. It means you can retrieve single and multipe entities

(GET), insert (POST), update (PUT), delete (DELETE) and also invoke service operations.

However, there are several differences. The first and main one is that all requests are performed

asynchronously. This means that when you call TXDataWebClient methods, you won't have a

function result provided immediately to you, but instead you have to use event or callback to

receive the result. Here is, for example, how to retrieve an entity (GET request) from server, more

specifically retrieve an object artist, from entity set "Artist", with id 1:

TMS XData 5.16.1.1 Page 160 of 18

First, associate the TXDataWebClient component to an existing TXDataWebConnection

component which will has the connection settings. This can be also done at design-time.

Second, set the OnLoad event of the component and add the code there to be executed when

request is completed. Also can be done at design-time.

Finally, execute the method that perform the operation. In this case, Get method, passing the

entity set name (Artist) and the id (1).

When the request is complete, the OnLoad event will be fired, and the result of the request (if it

does return one) will be available in the Response.Result property. That property is of type

JSValue, which can be any valid value. You will have to interpret the result depending on the

request, if you are retrieving a single entity, that would be a TJSObject. If you are retrieving a list

of objects, then the value can be a TJSArray, for example. You can alternatively use ResultAsObject

or ResultAsArray.

TXDataWebClient component is very lightweight, so you can use as many components as you

want. That means that you can drop one TXDataWebClient component in the form for each

different request you want to perform, so that you will have one OnLoad event handler

separated for each request. This is the more RAD and straightforward way to use it. In the case

you want to use a single web client component for many requests, you can differentiate each

request by the request id.

New async/await mechanism:

As of TMS Web Core 1.6, you can also use the Async version of all methods. It's the same name

but with the Async suffix, and you can then use the await keyword so you don't need to work

with callbacks:

procedure TForm1.GetArtistWithId1;

begin

 XDataWebClient1.Connection := XDataWebConnection1;

 XDataWebClient1.OnLoad := XDataWebClient1Load;

 XDataWebClient1.Get('Artist', 1);

end;

procedure TForm1.XDataWebClient1Load(Response: TXDataClientResponse);

var

 Artist: TJSObject;

begin

 // Both lines below are equivalent.

 Artist := TJSObject(Response.Result);

 Artist := Response.ResultAsObject;

 // Use Artist object

end;

TMS XData 5.16.1.1 Page 161 of 18

Using RequestId

Each response in the OnLoad event will have a request id. By default the request id is the name

of the performed operation, in lowercase. So it will be "get" for get requests, "list" for list

requests, etc.:

If you want to change the default request id, you can pass a different one as an extra parameter

to the request, and check for it in the OnLoad event:

Handling errors

If you don't specify anything, all request errors that might happen will fire the OnError event of

the associated TXDataWebConnection component. This way you can have a centralized place to

handle all request errors for that XData server.

But if you want to add error-handling code that is specific to a TXDataWebClient connection,

TXDataWebClient also provides an OnError event:

procedure TForm1.GetArtistWithId1;

var

 Response: TXDataClientResponse;

 Artist: TJSObject;

begin

 XDataWebClient1.Connection := XDataWebConnection1;

 Response := await(XDataWebClient1.GetAsync('Artist', 1));

 // Both lines below are equivalent.

 Artist := TJSObject(Response.Result);

 Artist := Response.ResultAsObject;

 // Use Artist object

end;

procedure TForm1.XDataWebClient1Load(Response: TXDataClientResponse);

var

 Artist: TJSObject;

begin

 if Response.RequestId = 'get' then

 begin

 Artist := TJSObject(Response.Result);

 end;

end;

XDataWebClient1.Get('Artist', 1, 'get artist');

procedure TForm1.XDataWebClient1Error(Error: TXDataClientError);

begin

 WriteLn('Error on request: ' + Error.ErrorMessage);

end;

TMS XData 5.16.1.1 Page 162 of 18

When you use the Async methods, all you have to do is wrap the code in a try..except block:

Using callbacks

Alternatively to using OnLoad and OnError events, you can use the request methods passing

callback as parameter. You can pass a callback for successful response, and optionally an extra

callback for error response (if you don't pass the error callback, it will fallback to the OnError

event).

Available request methods

The following is a list of available request methods in TXDataWebClient. Remember that the

method signatures in this list include only the required parameters. You can always also use

either RequestId parameter or the callback parameters, as previously explained. Also, remember

that all those methods have an "async/await version" that you can use, just by suffixing the

method name with the Async suffix: GetAsync , PostAsync , etc.

Name Description

procedure Get(const EntitySet:

string; Id: JSValue)

Retrieves a single entity from the server (GET request), from

the specified entity set and with the specified id. Result will

be a TJSObject value.

 try

 Resonse := await(XDataWebClient1.GetAsync('Artist', 1));

 except

 on E: Exception do ; // do something with E

 end;

procedure TForm1.GetArtistWithId1;

 procedure OnSuccess(Response: TXDataClientResponse);

 var

 Artist: TJSObject;

 begin

 Artist := TJSObject(Response.Result);

 // Use Artist object

 end;

 procedure OnError(Error: TXDataClientError);

 begin

 WriteLn('Error on request: ' + Error.ErrorMessage);

 end;

begin

 XDataWebClient1.Get('Artist', 1, @OnSuccess, @OnError);

end;

TMS XData 5.16.1.1 Page 163 of 18

Name Description

procedure Get(const EntitySet,

QueryString: string; Id: JSValue)

Retrieves a single entity from the server (GET request), from

the specified entity set and with the specified id. Optionally

you can provide a QueryString parameter that must contain

query options to added to the query part of the request. For

get requests you would mostly use this with $expand query

option. Result will be a TJSObject value.

procedure List(const EntitySet:

string; const Query: string = '')

Retrieves a collection of entities from the specified entity set

in the server (GET request). You can provide a QueryString

parameter that must contain query options to added to the

query part of the request, like $filter, $orderby, etc.. Result

will be a TJSArray value.

procedure Post(const EntitySet:

string; Entity: TJSObject)

Inserts a new entity in the entity set specified by the

EntitySet parameter. The entity to be inserted is provided in

the Entity parameter.

procedure Put(const EntitySet:

string; Entity: TJObject)

Updates an existing entity in the specified entity set. You

don't need to provide an id separately since the Entity

parameter should already contain all the entity properties,

including the correct id.

procedure Delete(const

EntitySet: string; Entity:

TJObject)

Deletes an entity from the entity set. The id of the entity will

be retrieved from the Entity parameter. Since this is a remove

operation, only the id properties are relevant, all the other

properties will be ignored.

procedure RawInvoke(const

OperationId: string; Args: array

of JSValue)

Invokes a service operation in the server. The OperationId

identifies the operation and Args contain the list of

parameters. More info below.

Invoking service operations

You can invoke service operations using RawInvoke methods. Since you can't use the service

contract interfaces in TMS Web Core yet, the way to invoke is different from TXDataClient. The

key parameter here is OperationId, which identifies the service operation to be invoked. By

default, it's the interface name plus dot plus method name.

For example, if in your server you have a service contract which is an interface named

"IMyService" which contains a method "Hello", that receives no parameter, you invoke it this way:

If the service operation provides a result, you can get it the same way as described above: either

using OnLoad event, or using callbacks:

XDataWebClient1.RawInvoke('IMyService.Hello', []);

TMS XData 5.16.1.1 Page 164 of 18

Since we're in the web/JavaScript world, you must know in more details how results are returned

by service operations in JSON format.

As the example above also illustrates, you can pass the operation parameters using an array of

JSValue values. They can be of any type, inculding TJSObject and TJSArray values.

Just as the methods for the CRUD endpoints, you also have a RawInvokeAsync version that you

can use using await mechanism:

Other properties

property ReferenceSolvingMode: TReferenceSolvingMode

Specifies how $ref occurrences in server JSON response will be handled.

rsAll: Will replace all $ref occurrences by the instance of the referred object. This is

default behavior and will allow dealing with objects easier and in a more similar way

as the desktop/mobile TXDataClient. It adds a small overhead to solve the

references.

rsNone: $ref occurrences will not be processed and stay as-id.

Using TXDataWebDataset

In addition to TXDataWebClient, you have the option to use TXDataWebDataset to communicate

with TMS XData servers from web applications. It's even higher level of abstraction, at client side

you will mostly work with the dataset as you are used to in traditional Delphi applications, and

XData Web Client framework will translate it into REST/JSON requests.

Setting it up is simple:

procedure TForm2.WebButton1Click(Sender: TObject);

 procedure OnResult(Response: TXDataClientResponse);

 var

 GreetResult: string;

 begin

 GreetResult := string(TJSObject(Response.Result)['value']);

 end;

begin

 Client.RawInvoke('IMyService.Greet', ['My name'], @OnResult);

end;

procedure TForm2.WebButton1Click(Sender: TObject);

var

 Response: TXDataClientResponse

 GreetResult: string;

begin

 Response := await(Client.RawInvokeAsync('IMyService.Greet', ['My name']);

 GreetResult := string(TJSObject(Response.Result)['value']);

end;

•

◦

◦

TMS XData 5.16.1.1 Page 165 of 18

1. Associate a TXDataWebConnection to the dataset through the Connection property (you can

do it at design-time as well). Note that the TXDataWebConnection must be previously

connected. Performing operations with TXDataWebDataset won't automatically setup the

connection.

2. Set the value for EntitySetName property, with the name of the entity set in XData server you

want to manipulate data from. You can also set this at design-time, and object inspector will

automatically give you a list of available entity set names.

3. Optionally: specify the persistent fields at design-time. As with any dataset, you can simply use

the dataset fields editor and add the desired fields. TXDataWebDataset will automatically retrieve

the available fields from XData server metadata. If you don't, as with any dataset in Delphi, the

default fields will be created.

And your dataset is set up. You can the use it in several ways, as explained below.

Loading data automatically

Once the dataset is configured, you just need to call Load method to retrieve data:

This will perform a GET request in XData server to retrieve the list of entities from the specific

entity set. Always remember that such requests are asynchronous, and that's why you use Load

method instead of Open. Load will actually perform the request, and when it's finished, it will

provide data to the dataset and only then, call Open method. Which in turn will fire AfterOpen

event. If you want to know when the request is finished and data is available in the dataset, use

the AfterOpen event.

NOTE

If you already have data in the dataset and want Load method to fully update existing data,

make sure the dataset is closed before calling Load method.

To filter out results, you can (and should) use the QueryString property, where you can put any

query option you need, including $filter and $top, which you should be use to filter out the

results server-side and avoiding retrieving all the objects to the client. Minimize the number of

data sent from the server to the client!

XDataWebDataset1.Connection := XDataWebConnection1;

XDataWebDataset1.EntitySetName := 'artist';

XDataWebDataset1.Load;

XDataWebDataset1.QueryString := '$filter=startswith(Name, ''John'')&$top=50';

XDataWebDataSet1.Load;

TMS XData 5.16.1.1 Page 166 of 18

Paging results

The above example uses a raw query string that includes "&$top=50" to retrieve only 50 records.

You can do paging that way, by building the query string accordingly. But TXDataWebDataset

provides additional high-level properties for paging results in an easier way. Simply use

QueryTop and QuerySkip property to define the page size and how many records to skip,

respectively:

The datase also provides a property ServerRecordCount which might contain the total number of

records in server, regardless of page size. By default, this information is not retrieved by the

dataset, since it requires more processing at server side. To enable it, set ServerRecordCountMode:

When data is loaded from the dataset (for example in the AfterOpen event), you can read

ServerRecordCount property:

Loading data manually

Alternatively you can simply retrieve data from the server "manually" using TXDataWebClient (or

even using raw HTTP requests, if you are bold enough) and provide the retrieved data to the

dataset using SetJsonData. Since the asynchronous request was already handled by you, in this

case where data is already available, and you can simply call Open after setting data:

XDataWebDataset1.QueryTop := 50; // page size of 50

XDataWebDataset1.QuerySkip := 100; // skip first 2 pages

XDataWebDataset1.QueryString := '$filter=startswith(Name, ''John'')';

XDataWebDataSet1.Load;

XDataWebDataset1.ServerRecordCountMode := smInlineCount;

procedure TForm4.XDataWebDataSet1AfterOpen(DataSet: TDataSet);

begin

 TotalRecords := XDataWebDataset1.ServerRecordCount;

end;

procedure TForm1.LoadWithXDataClient;

 procedure OnSuccess(Response: TXDataClientResponse);

 begin

 XDataWebDataset1.SetJsonData(Response.Result);

 XDataWebDataset1.Open;

 end;

begin

 XDataWebClient1.List('artist', '$filter=startswith(Name, ''New'')',

@OnSuccess);

end;

TMS XData 5.16.1.1 Page 167 of 18

Modifying data

When using regular dataset operations to modify records (Insert, Append, Edit, Delete, Post), data

will only be modified in memory, client-side. The underlying data (the object associated with the

current row) will have its properties modified, or the object will be removed from the list, or a

new object will be created. You can then use those modified objects as you want - manually send

changes to the server, for example.

But TXDataWebDataset you can have the modifications to be automatically and transparently

sent to the server. You just need to call ApplyUpdates:

This will take all the cached modifications (all objects modified, deleted, inserted) and will

perform the proper requests to the XData server entity set to apply the client modifications in

the server.

Other properties

Name Description

SubPropsDepth:

Integer

Allows automatic loading of subproperty fields. When adding persistent

fields at design-time or when opening the dataset without persistent fields,

one TField for each subproperty will be created. By increasing

SubpropsDepth to 1 or more, dataset will also automatically include

subproperty fields for each property in each association, up to the level

indicated by SubpropsDepth.

For example, if SubpropsDepth is 1, and the entity type has an association

field named "Customer", the dataset will also create fields like

"Customer.Name", "Customer.Birthday", etc.. Default is 0 (zero).

CurrentData:

JSValue

Provides the current value associated with the current row. Even though

CurrentData is of type JSValue for forward compatibility, for now

CurrentData will always be a TJSObject (an object).

EnumAsIntegers:

Boolean

This property is for backward compatibility. When True, fields representing

enumerated type properties will be created as TIntegerField instances.

Default is False, meaning a TStringField will be created for the enumerated

type property. In XData, the JSON representing an entity will accept and

retrieve enumerated values as strings.

Solving Errors

In the process of solving errors in web applications, it's important to always check the web

browser console, available in the web browser built-in developer tools. Each browser has its

own mechanism to open such tools, in Chrome and Firefox, for example, you can open it by

pressing F12 key.

XDataWebDataset1.ApplyUpdates;

TMS XData 5.16.1.1 Page 168 of 18

The console gives you detailed information about the error, the call stack, and more information

you might need to understand what's going on (the HTTP(S) requests the browser has

performed, for example).

You should also have in mind that sometimes the web application doesn't even show a visible

error message. Your web application might misbehave, or do not open, and no clear indication is

given of what's going on. Then, whenever such things happen or you think your application is

not behaving as it should, check the web browser console.

Here we will see common errors that might happen with web applications that connect to XData

servers.

Error connecting to XData server

This is the most common error when starting a Web Core application using XData. The full error

message you might get is the following:

And it will look like this:

As stated above, the first thing you should is open the browser console to check for more details

- the reason for the connection to fail. There are two common reasons for that:

CORS issue

The reason for the error might be related to CORS if in the browser console you see a message

like this:

This is caused because your web application files is being served from one host (localhost:8000 in

the example above), and the API the app is trying to access is in a different host (localhost:2001

in the example).

To solve it, you have two options:

Modify either your web app or API server URL so both are in the same host. In the

example above, run your web application at address localhost:2001, or change your XData

API server URL to localhost:8000/tms/xdata.

Add CORS middleware to your XData server.

XDataConnectionError: Error connecting to XData server |

fMessage::XDataConnectionError:

Error connecting to XData server fHelpContext::0

1.

2.

TMS XData 5.16.1.1 Page 169 of 18

https://www.tmssoftware.com/site/blog.asp?post=305
https://download.tmssoftware.com/business/sparkle/doc/web/cors-middleware.html

HTTPS/HTTP issue

One second common reason for wrong connection is a mix of HTTPS and HTTP connections. This

usually happens when you deploy your Web Core application to a server that provides the files

through HTTPS (using an SSL certificate), but your XData server is still at HTTP. Web browsers do

not allow a web page served through HTTPS to perform Javascript requests using HTTP.

The solution in this case is:

Use HTTPS also in your XData server. It's very easy to associate your SSL certificate to your

XData server. If you don't have an SSL certificate and don't want to buy one, you can use a

free Let's Encrypt certificate in your XData server.

Revert your web app back to an HTTP server, so both are served through HTTP. Obviously,

for production environments, this is not a recommended option.

XData Web Application Wizard

TMS XData provides a great wizard to scaffold a full TMS Web Core web client application.

This wizard will connect to an existing XData server and extract meta information it with the list

of entities published by the server. With that information, it will create a responsive, Boostrap-

based TMS Web Core application that will serve as a front-end for listing entities published by

the server. The listing features include data filtering, ordering and paging.

To launch the wizard, go to Delphi menu File > New > Other..., then from the New Items dialog

choose Delphi Projects > TMS Business, and select wizard "TMS XData Web Application".

Click Ok and the wizard will be launched:

1.

2.

TMS XData 5.16.1.1 Page 170 of 18

https://download.tmssoftware.com/business/sparkle/doc/web/using_http_secure_https.html
https://download.tmssoftware.com/business/sparkle/doc/web/using_http_secure_https.html
https://www.tmssoftware.com/site/blog.asp?post=454
https://www.tmssoftware.com/site/blog.asp?post=454

In this first page you must provide the URL address of a running XData server. You can click the

"Test Connection" button to check if the connection can be established. If the server requires

authentication or any extra information sent by the client, you can use the "Set Request

Headers..." button to add more HTTP headers to the client request (for example, adding a JWT

token to an Authorization header).

Once the server URL is provided and connecting, click Next to go to next page.

TMS XData 5.16.1.1 Page 171 of 18

This will list all entities published by the XData server. You can then select the ones you want to

generate a listing page for. Unselected entities will not have an entry in the menu nor will have a

listing page. Select the entities you want and click Next.

TMS XData 5.16.1.1 Page 172 of 18

The final wizard page will ask you for a directory where the source code of the web application

will be generated. Choose the output folder you want and click Finish. The application source

code will be generated in the specified folder, and the project will be open in Delphi IDE.

You can now compile and run the application, and of course, modify it as you want. This is a easy

and fast way to start coding with TMS Web Core and TMS XData backend. Here is a screenshot

of the generated application running in the browser, using the settings above:

Extra Resources

There are additional quality resources about TMS Web Core and TMS XData available, in

different formats (video training courses and books):

Online Training Course: Introduction to TMS Web Core

By Wagner Landgraf

https://courses.landgraf.dev/p/web-applications-with-delphi-tms-web-core

Book: TMS Software Hands-on With Delphi

(Cross-plataform Mult-tiered Database Applications: Web and Desktop Clients, REST/JSON

Server and Reporting, Book 1)

By Dr. Holger Flick

https://www.amazon.com/dp/B088BJLLWG/

Book: TMS WEB Core: Web Application Development with Delphi

By Dr. Holger Flick

https://www.amazon.com/dp/B086G6XDGW/

TMS XData 5.16.1.1 Page 173 of 18

https://courses.landgraf.dev/p/web-applications-with-delphi-tms-web-core
https://www.amazon.com/dp/B088BJLLWG/
https://www.amazon.com/dp/B086G6XDGW/

Book: TMS WEB Core: Webanwendungen mit Delphi entwickeln (German)

By Dr. Holger Flick

https://www.amazon.de/dp/1090700822/

TMS XData 5.16.1.1 Page 174 of 18

https://www.amazon.de/dp/1090700822/

About
This documentation is for TMS XData.

In this section:

What's New

Copyright Notice

Getting Support

Breaking Changes

TMS XData 5.16.1.1 Page 175 of 1

What's New

Version 5.16 (Jan-2024)

Fixed: Added missing template files for TMS XData Web Application wizard (regression).

Version 5.15 (Nov-2023)

Fixed: Delphi 12 specific issue, JSON serialization of numbers was serializing integers

ending with ".0" due to a change in JSON serialization behavior in Delphi 12.

Version 5.14 (Nov-2023)

New: Delphi 12 Support.

Version 5.13 (Oct-2023)

New: Redoc support provides an endpoint to get your API documentation

automatically using Redoc tool.

New: OpenAPI document now includes validation rules specified in some validation

attributes like Range , MaxLength and MinLength .

New: Support for tag groups in Redoc allowing a higher-level organization of your

endpoints.

Improved: TXDataWebDataset properties Indexed , Activeindex , Filter and

Filtered now appearing in object inspector.

Improved: Support for ARM64 macOS and ARM64 iOS Simulator platforms.

Improved: Generated Swagger/OpenAPI document now includes extension x-nullable

property for nullable types.

Version 5.12 (Jul-2023)

New: Entities now can be excluded from Swagger document by using

SwaggerExclude attribute. Request #19337.

New: IObjectPool interface with method GetPoolInfo . XData pool interfaces implement

it.

New: Swagger configuration variables allow redirecting URL of Swagger JS libraries to a

different server.

Improved: XDefault attribute now can be used for TGUID parameters. Feature Request

#20419.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 176 of 27

https://github.com/Redocly/redoc
https://doc.tmssoftware.com/biz/aurelius/guide/validation.html
https://doc.tmssoftware.com/biz/aurelius/guide/validation.html
https://redocly.com/docs/api-reference-docs/specification-extensions/x-nullable/
https://support.tmssoftware.com/t/swaggerexclude-in-automatic-cruds/19337
https://support.tmssoftware.com/t/xdefault-attribut-for-tguid-xdata/20419
https://support.tmssoftware.com/t/xdefault-attribut-for-tguid-xdata/20419

Improved: New TUserClaim properties IsBoolean , IsNull and IsDouble . Feature

Request #20420.

Improved: Multi-tenancy demo updated to use Tenant middleware and

TXDataMultiDBConnectionPool .

Improved: URL conventions now accepts date-only and time-only literals, in addition to

full "date and time" literals. Request #20872.

Improved: ISO times now are accepted if milliseconds part has from 1 to 8 digits.

Fixed: TXDataClient raising "not found" exceptions when retrieving lazy-loading proxied

associations. It should silently return and set the proxy as nil. Ticket #20754.

Fixed: TXDataWebConnection.SendRequestAsync not returning a valid IHttpResponse

interface. Ticket #20688.

Fixed: Queries in automatic CRUD endpoints could not include both $select and

$inlinecount clauses in the same query.Ticket #20434.

Version 5.11 (Feb-2023)

New: Automatic parameter validation. You can now apply validation attributes to

parameters and DTO classes to make sure you receive parameters and classes with

the expected values.

New: It's now possible to flag an endpoint as deprecated in Swagger, using XML

comment <swagger name="deprecated" /> .

New: [XDefault] attribute can be applied to fields and properties and they will be

used for the purpose of Swagger documentation.

Improved: TXDataClient now shows detailed error message in exception when the

response is a standard OAuth 2 error response.f

Improved: Range attribute now also applies to float values (in addition to integer values).

Fixed: Memory leak when an associated object in a JSON deserialization was being

deserialized as nil. If such object was previously created, it would leak. Now, XData will

destroy the previous object if it's flagged with JsonManaged attribute.

Fixed: Web Core stub code for TUpdateStatus had invalid enumerated values. Ticket

20095.

Version 5.10 (Jan-2023)

Improved: Built-in validators now generate validation error messages with more specific

error codes (for example, ValueRequired or ValueTooLong instead of ValidationError).

Improved: Validator attributes now can receive an option ErrorCode parameter in their

constructors.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 177 of 27

https://support.tmssoftware.com/t/access-to-isboolean-in-jwt/20420
https://support.tmssoftware.com/t/access-to-isboolean-in-jwt/20420
https://support.tmssoftware.com/t/date-only-and-time-only-literals/20872
https://support.tmssoftware.com/t/requesting-associated-entities/20754
https://support.tmssoftware.com/t/txdatawebconnection-and-await/20688
https://support.tmssoftware.com/t/odata-need-to-combine-select-inlinecount/20434
https://doc.tmssoftware.com/biz/aurelius/guide/validation.html
https://support.tmssoftware.com/t/xdata-web-dataset-tupdatestatus-problem/20095
https://support.tmssoftware.com/t/xdata-web-dataset-tupdatestatus-problem/20095

Improved: DTO validation messages now inform the full path of the property causing the

error. For example, instead of "field name must be required", it shows "field country.name

must be required", or "field customers[1].country.name must be required".

Improved: Better error message (InsufficientPermission) when and endpoint is not

authorized.

Improved: Correct response status code (400) and better error message for invalid

parameter values sent via URL, including indicating the name of the offending parameter.

For example: Cannot deserialize value "x" from Url parameter "NumericId".

Fixed: Deserialization of date time from JSON were raising wrong exceptions (Invalid

argument to date encode) for wrong date value, like "7777".

Version 5.9 (Dec-2022)

New: TXDataConnectionPool.OnDBConnectionRelease event.

New: XDefaultNil attribute to allow optional object (DTO) parameters.

Improved: TXDataWebClient.RawInvoke now accepts query string.

Improved: WebCoreBlobClient demo now shows how to retrieve an image blob from

server using AJAX requests.

Improved: Error message for JSON Schema generator now shows the position of JSON

document which caused the error.

Improved: Incomplete JSON request bodies sent by the client now return HTTP status

code 400 (instead of 500).

Improved: Web master-detail demo updated with more functionality.

Improved: Better error message ("Missing parameter" instead of "Invalid JSON") when the

endpoint expects a single object parameter but no content body is sent.

Improved: If all body parameters of an endpoint are optional (have default values), then

Swagger specification is not adding the single body parameter as required.

Fixed: Web music demo was failing after login with "401 unauthorized" error.

Fixed: Deserialization of date time from JSON were raising wrong exceptions (Invalid

argument to date encode) for wrong date/time values, like "7777".

Version 5.8 (Sep-2022)

Improved: URL/Query parameter not flagged as required in Swagger UI, when such

parameter comes from a DTO property (a DTO flagged with FromQuery attribute).

Improved: Design-time components were greyed out in component palette if current

platform was different than Win32.

Fixed: Swagger documentation for DTO members were not being displayed when if the

members were declared in an ancestor class.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 178 of 27

Fixed: Some wrong JSON request bodies were still causing status code in response to be

500 instead of 400.

Fixed: Some Access Violation error when lists were nil in DTOs.

Fixed: TXDataClient not retrieving error message details in some situations (error 404 for

services that didn't return objects)

Fixed: Service operations flagged as www-form-urlencoded were not decoding the plus

sign (+) as spaces from request body.

Version 5.7 (Aug-2022)

New: OpenAPI Importer is removed and became OpenAPI Delphi Generator, which is

now open source: https://github.com/landgraf-dev/openapi-delphi-generator. The

generated client is now not dependant on TMS BIZ anymore. Please follow the OpenAPI

Delphi Generator repository for updates and upcoming features.

New: SQLiteConsoleServer demo updated with: middleware logging; validation

attributes.

New: TXDataClient.RawSerialization property prevents the client from expecting

"value" in server responses (a JSON object wrapping the response inside the "value"

property).

Improved: For DTOs being sent in query params, attribute JsonInclude is not being taken

into consideration, so properties with default values are not included in query string.

Improved: BREAKING CHANGE JWT is now requiring secret with a minimum size. If you

use a secret that is smaller than the minimum size, you should set JWT Middleware

property SkipKeyValidation to True.

Improved: When JSON deserialization fails (for example, when a client sends wrong JSON

in request), the error message now shows the detailed position of the error (complete

path), making it easier for the client to know what part of the JSON was wrong. It also

returns status code 400.

Improved: Entity validation now propagates the error message list to XData exception

handler and to clients as JSON response.

Improved: TXDataWebClient.RawInvoke now provides a JavaScript Blob object in the

Response.Result property, when the server method returns a TStream. (breaking change).

Improved: Schema generator is now generating named definitions (instead of inline

schema) for object schemas inside arrays, dictionaries, Nullable and Assignable types.

Improved: RegularExpression validator now shows the regular expression in the error

message so users know what is the regex they have to match.

Fixed: Abstract error when serializing TBlob (regression).

Fixed: Validation of DTOs containing JSON classes (TJSONValue, TJElement) was causing

Access Validation.

Fixed: Android/iOS XData client not correctly handling JSON responses (regression).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 179 of 27

https://github.com/landgraf-dev/openapi-delphi-generator

Fixed: Eventual "Invalid Pointer Operation" (possibly causing database connections being

locked in the pool) when calling POST/PUT in CRUD endpoints. The combination to raise

the problem was rare, but could happen if the JSON sent by the client had errors and the

entity structure had lists.

Version 5.6 (Jul-2022)

New: $select filter option allows defining the fields to be present in JSON response.

It not only saves bandwidth by reducing the JSON size, but also optimizes the server

execution. For example:

http://server:2001/tms/xdata/Customer(3)?$select=Id,FirstName,Birthday

Results in

New: OpenAPI importer allows you to import a 3rd-party server Swagger

specification and generate a unit with high-level interfaces and DTOs for invoking

the server endpoints.

New: JWT (JOSE) for Delphi units updated. You can now use RSA and ECDSA signing

algorithms for both singing new JWT and also verify existing JWT signatures.

New: TXDataClient.InstanceLoopHandling, EntityLoopHandling, SerializeInstanceRef,

SerializeInstanceType properties allows more control over the JSON properties sent

from client to server.

New: TSwaggerUIOptions properties: TryItOutEnabled and CustomParams allows

more customization of SwaggerUI.

Fixed: Swagger not working when service operations had PATCH methods.

Fixed: Reentrant XData calls causing AV when using InProc-server.

Fixed: Serialization of TJSONNumber fails when the value contained exponent character

(e.g, 1E-5).

Fixed: TMS XData Web Application wizard was generating code that wasn't compilable

with latest versions of TMS Web Core.

Fixed: Ordered dictionary converter was not creating new instances, only modifying

existing ones.

Fixed: Serialization "Format 'Converter for %s is not object ' invalid or

incompatible with argument" error message.

Fixed: OnModuleException not working correctly when action was RaiseException.

Fixed: string literals in URL failing if containing single quotes.

•

•

{

 "Id": 3,

 "FirstName": "Bill",

 "Birthday": "1980-01-01"

}

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 180 of 27

Fixed: Serialization of TJSONObject boolean properties were failing when the value type

was TJSONBool , instead of TJSONTrue or TJSONFalse .

Version 5.5 (Mar-2022)

New: Validation attributes now also work for DTO objects.

New: TXDataSwaggerUIOptions.DisplayOperationId property. Breaking change: this

property False by default, which hides the operation id from Swagger UI.

New: SwaggerExclude attribute now applies to DTO and entity properties.

Fixed: Serialization of polymorphic lists now correctly output the class name of the list

item if different from the base class.

Version 5.4 (Feb-2022)

New: TXDataConnectionPool.CleanupTimeout property. When different than zero, the

connection pool will release the connections that hasn't been used for the at least the

time specified by the CleanupTimeout property.

New: TXDataMultiDBConnectionPool component allows for easy creation of XData

modules connecting to multiple tenant databases.

New: OnModuleException now includes a property named Errors in the Args

parameter. This property, if filled, will add a list of errors in the JSON response to the

client, in addition to the existing single error message.

New: Client-side exception EXDataClientRequestException now also includes a

property Errors to provide a list of errors provided by the server (if available).

New: TXDataHttpHandler.SetStatusCode allows setting a custom HTTP status code from

XData service operations.

New: Now it's possible to close the HTTP response inside a XData service operation.

In this case, XData will not touch the HTTP response anymore.

New: Consumes attribute allows receiving parameters as x-www-form-urlencoded

type.

New: JsonManaged attribute allows flagging which associated objects in the DTO

should not be automatically destroyed by XData serializer/deserializer.

New: Swagger now supports and generates documentation from comments in DTO

classes and properties.

New: You can specify which DTO properties will be flagged as "required" in Swagger,

using the following XML comment:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 181 of 27

Improved: List and dictionary JSON serializers now automatically take OwnsObjects

property into account, and do not try to destroy the items if such property is set to true.

Improved: Better error message when database connection pool was not properly

configured in XData server.

Improved: TXDataConnectionPool doesn't require the Connection property to be set, if a

pool interface is provided via OnGetPoolInterface event.

Improved: JSON date-time deserialization now accepts dates in format YYYYMMDD and

time in format hhnnss .

Improved: Swagger demo updated to show how to work with DTO documentation.

Fixed: TXDataClient was sending float parameters via URL query with wrong formatting

depending on local settings (regression).

Fixed: Music web demo was not compiling with latest Pas2JS/Web Core versions.

Fixed: TJsonInclude.NonDefault option was not working with nullable types.

Breaking change: Internal method SendErrorResponse and interface IErrorWriter were

modified. If you use anyb of them, your existing code won't compile and you will have to

adapt to the new signature.

Version 5.3 (Sep-2021)

New: Delphi 11 support.

New: Web Core application demo showing master-detail usage.

New: Web Core application demo showing blob/memo usage.

Fixed: OnManagerCreate event raising errors if Delphi memory manager is configured to

completely clean memory upon destruction (FastMM in debug mode, for example).

Version 5.2 (Jun-2021)

New: XData Query Builder. You can now build XData queries using fluent interface

using the new XData Query Builder, and then get the final query string to be used in

your HTTP requests or queries using TXDataClient. For example:

/// <swagger name="required">true</swagger>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 182 of 27

New: Mechanism to accept XData query options in service operations. You can now

easily receive and process XData query syntax like $filter , $orderby , $top and $skip

in service operations, even for DTOs, and create Aurelius criteria from it:

New: Service operations can now receive DTOs (Delphi objects) from the query

string of the request URL. You can now have service like this:

And have your Customer parameter be received from a request URL like

this: /CustomerService/FindByIdOrName?Id=10&Name='Paul' .

Improved: Nullable types are now supported in plain Delphi objects (in addition to

existing support in Aurelius entities). When using plain Delphi objects as DTOs, like when

receiving or returning them in service operations, they are now properly serialized/

deserialized as JSON.

Improved: Internal TJsonWriter class is now 50% faster.

Improved: Web Core stub for TXDataClientResponse was missing some properties.

Fixed: Error "Could not convert variant array of type" when retrieving entities which Id is

an association to another entity.

Fixed: XData enum values were ignoring JsonEnumValues attribute in Swagger Schema

and $filter queries.

 Customers := Client.List<TCustomer>(

 CreateQuery

 .From(TCustomer)

 .Filter(

 (Linq['Name'] = 'Paul')

 or (Linq['Birthday'] < EncodeDate(1940, 8, 1))

)

 .OrderBy('Name', False)

 .Take(10).Skip(50)

 .Expand('Country')

 .QueryString

);

•

type IMyService = interface(IInvokable)

 [HttpGet] function List(Query: TXDataQuery): TList<TCustomer>;

{...}

function TMyService.List(Query: TXDataQuery): TList<TCustomer>;

begin

 Result := TXDataOperationContext.Current

 .CreateCriteria<TCustomer>(Query).List;

end;

•

 [HttpGet] function FindByIdOrName(Customer: TCustomerDTO): TList<TCusto

mer>;

•

•

•

•

•

TMS XData 5.16.1.1 Page 183 of 27

Fixed: Missing properties in XData entities created from Aurelius classes with

AbstractEntity attribute.

Fixed: Swagger support was being enabled automatically in Linux projects. This was

causing an "AmbiguousActionError" exception when Swagger was also enabled in

TXDataServer component.

Fixed: SerializeInstanceType being ignored in entity property endpoints (e.g., Customer/

City).

Fixed: "DevTools failed to load source map" error message now removed from web

browser console log when executing TMS XData Music application.

Version 5.2.1

Fixed: Query Builder wrongly creating enumeration literals around quotes ('tsMale').

Fixed: Query Builder not finding properties from inherited classes when using From

method passing class types.

Version 5.1 (Mar-2021)

Improved: All compilation warnings removed when using XData from TMS Web Core

applications.

Fixed: Compilation error in Multitenancy demo.

Version 5.0 (Mar-2021)

New: Attribute-based Authorization allows you to secure your REST API in a

declarative way, adding attributes to methods and entities you want to be protected

by specific permissions. It's as simple as adding authorization attributes to methods and

entities:

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 184 of 27

New: async/await methods in XData web client makes it even easier to build TMS

Web Core applications using XData as backend - the asynchronous requests to server

can be coded as if they were synchronous:

New: RoutingPrecedence property in XData server allows you to override automatic

CRUD endpoints behavior using service operations, by using the same routing URL.

New: Swagger demo projects now include a client-side application at

xdata\demos\Swagger\Client that shows how Swagger can be helpful at client side.

New: Demo multitenancy shows how to create multitenant servers using XData in

an easy and straightforward way with the new TMultiTenantConnectionPool

implementation.

New: OnManagerCreate event which is fired whenever a new TObjectManager

instance is created by XData.

Fixed: Deserialization of a JSON empty object would result in nil object, instead of an

empty (instantiated) object with default property values.

Fixed: List serialization failed when list to be serialized was nil in some situations.

Fixed: Batch operations not working in an optimized way when using connection

interfaces coming from XData connection pool.

Fixed: TXDataWebDataset was not bringing ancestor persistent fields at design-time for

entity classes in a inheritance hierarchy.

 [ServiceContract]

 IMyService = interface(IInvokable)

 [AuthorizeScopes('admin,writer')]

 procedure ModifyEverything;

 [Authorize]

 function Restricted: string;

 end;

 [Entity, Automapping]

 [EntityAuthorizeScopes('reader', EntitySetPermissionsRead)]

 [EntityAuthorizeScopes('writer', EntitySetPermissionsWrite)]

 TArtist = class

•

var

 Response: TXDataClientResponse

 GreetResult: string;

 begin

 await(XDataConnection.OpenAsync);

 Response := await(Client.RawInvokeAsync('IMyService.Greet', ['My name']);

 GreetResult := string(TJSObject(Response.Result)['value']);

end;

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 185 of 27

Fixed: XML documentation tags for SwaggerUI were being ignored for service contracts

with an empty route (the "default" endpoint).

Fixed: SwaggerUI was sometimes displaying empty tags. This happened with Automatic

CRUD Endpoints, when no endpoint were set for an existing entity. Still, the tag for the

entity appeared.

Fixed: Error "Cannot deserialize value from Url format" when invoking service operations

passing double values in URL - for example: ?a=1.6).

Fixed: Typo in EInvalidParamBinding exception message: "Invalid binding in param".

Version 4.17 (Sep-2020)

New: Full support to use XML documentation in Swagger documents. You can now

describe your REST API documentation using XML documentation syntax, and even

using the same content for both. Write your documentation once, use it in several places

- for your Delphi developer, for your API consumer.

New: SwaggerExclude attribute allows you to exclude specific endpoints from the

final Swagger API documentation.

New: Swagger demo shows how to create Swagger documentation, provide

SwaggerUI interface to your end user, and use XML documentation to enrich your

documentation content.

Improved: Service contract routing now allows replacing the root URL. Requests like "GET

/" or "POST /" can be now be configured to be routed to your own service

implementation.

Improved: Swagger documents now take entity set permissions into account, omitting

Aurelius CRUD endpoints which are not available due to the entity set permissions

configuration.

Improved: The endpoints for Swagger-UI ("/swaggerui") and Swagger.json ("/openapi/

swagger.json") don't appear anymore in the Swagger document itself. This avoids

pollution of the Swagger document, focusing only on your own API endpoints.

Improved: Endpoints are now sorted alphabetically in Swagger documents, making it

much easier to be visualized in Swagger-UI for example.

Improved: Parameters and function results of type TDate, in service contracts, will now

show in Swagger document as "date" instead of "date-time".

Version 4.16 (Aug-2020)

New: FireDAC-SQL demo shows how to create a REST resource (GET, POST, PUT,

DELETE) using FireDAC to access the database directly via SQL, without using TMS

Aurelius.

Improved: EXDataClientException now contains property Info holding the JSON response

of the error.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 186 of 27

Improved: XData Web Request (THttpRequest) now provides Timeout property.

Improved: Compatibility with TMS Web Core 1.5.

Fixed: Service operations returning objects and also with "out" params were returning

wrong JSON.

Fixed: When loading objects using TXDataClient, proxied objects were not being loaded if

they were located at a depth level higher than the MaxEagerDepth configuration (default

to 3).

Fixed: SwaggerUI was not working in SQLiteConsoleServer demo.

Version 4.15 (Jun-2020)

Improved: XData trial binary compatibility with TMS Web Core 1.4.2 trial.

Fixed: Wrong serialization of objects that indirectly inherited from List<T>. For example,

TList2 = class(TList1), TList1 = class(TList<TSomeClass>). Serialization of TList2 was wrong.

Version 4.14 (Jun-2020)

Improved: Web Core client components updated to support the newest TMS Web Core

1.4.

Version 4.13 (May-2020)

New: Flexible URL routing mechanism using Route attribute, allows multiple

segments in path routing, and flexible parameter binding. For a single method, users

can route it to an URL like 'orders/approved/{year}/{month}'. The service operation will be

routed from the invoked URL, and the values passed in URL will be automatically bound to

method parameters.

New: Delphi 10.4 Sydney support. Full compatibility with the recently released new

Delphi version.

New: XData server now returns a xdata-version header in each request. This will make

it easier to tell the available features of the XData server being connected to. Current

version returned is 2.

New: TXDataClient.ForceBlobLoading property for backward compatibility with old

XData servers that could not receive eager blobs as @xdata.proxy.

Improved: Significant performance increase when sending entities to XData server

that contain blobs. For example, consider a Customer with Photo (blob) field you

retrieved using TXDataClient. In previous versions, calling Put to update the customer

would load the Photo content from the server, even if it was not modified. Now it's

optimized and it will send to the server just a proxy information. The server is also now

smart enough to identify those proxies and proceed properly, even when the blob is not

lazy.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 187 of 27

Improved: Blob serialization was not flagging blob as loaded, causing a lazy blob to

be loaded multiple times. Suppose there is a property TCustomer.Photo of type TBlob.

Such blob is lazy and not loaded. During JSON serialization, the content of the blob is

loaded, but property TCustomer.Photo was not being marked as load. Thus, in a second

serialization, or when the app tried to read property content, the blob would load again.

Improved: It's now possible to send blobs in JSON using format

"Photo@xdata.proxy": "Customers(1)/Photo", even for blobs not flagged as lazy. In

previous versions, this was only possible for lazy blobs. Sending such values will simply

not modify the blob value in the server.

Improved: Ambiguity between enumeration and member name solved in $filter

expressions. Suppose a filter expression like "$filter=Pending eq 2". There might be a

situation where Pending would be both an enumeration name and an entity property.

Now, if that happens, Pending will be considered as an entity property. Otherwise, as an

enumeration.

Improved: Enumeration values can be prefixed by the enum type in $filter

expressions. To avoid ambiguous naming, enumeration values in filter expressions can

now be prefixed by the enum type. For example: "$filter=Pending eq TStatus.Pending".

TStatus.Pending is an enumeration value, Pending is a property value.

Fixed: Memory leak when building a TXDataAureliusModel object using a

TXDataModelBuilder raises an error.

Fixed: TXDataClient 404 error not raising exception when server methods did not return

objects (procedures, not functions).

Fixed: Value endpoints (/$value) were not returning correct string values when the

content had double quotes.

Fixed: Serialization of TArray<byte> and TBytes was not working correctly when the

application/server was compiled using runtime packages.

Fixed: Error "Requested action has ambiguous implementation" in SwaggeUI endpoint

when starting/stopping XData server multiple times.

Fixed: Delphi IDE splash screen showing multiple XData icons.

Fixed: XData Web App Generator creating wrong persistent fields when XData server had

GUID field types.

Version 4.12 (Apr-2020)

Improved: UriPathSegment now can be applied to entities (for entity set naming).

Fixed: TXDataWebClient not raising OnError events when an error happened during

RawInvoke call.

Fixed: XData Web Application generator updated to work with latest Web Core 1.4.

Fixed: XData Music Demo updated to work with latest Web Core 1.4.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 188 of 27

Version 4.11 (Apr-2020)

New: Enumerated literals now supported in $filter query string.

Fixed: Wrong TXDataWebDataset date/time conversion from JSON (regression). It was

causing "Invalid date time" errors and also was displaying wrong date time fields, by

incorrectly adding time zone offset to the date.

Fixed: TXDataClient.IgnoreUnknownProperties had no effect when using service

operations.

Version 4.10 (Mar-2020)

New: OnEntityDeleted, OnEntityInserted, OnEntityModified are new server-side

events that fire after automatic CRUD endpoint operations are performed, in

addition to existing OnEntityDeleting, OnEntityModifying and OnEntityInserting

events, which are performed before such operations.

New: JsonConverter attribute allows for custom JSON serialization/deserialization of

specific PODO and entity properties. You can for example serialize an integer as an

string, a date/time as a string in a specific format, etc.

New: Support for TStream param mixed with other params. You can now have a

service operation that receives a TStream parameter to also receive more parameters, as

long as they are not defined to be in the request body (using FromBody parameter). This

way you can use the TStream to process the raw body of the request, but still receive other

parameters through the URL (either using FromQuery or FromPath attributes).

New: Demo project showing how to use multiple models (multi-model design) in

XData.

New: BasicAuth demo showing how to use Basic Authentication in both server and

client sides.

New: Demo project showing how to use XData as an Apache module.

Improved: Swagger doesn't include definition names for lists anymore (interface gets less

cluttered).

Fixed: Swagger specification was wrong for entity sets (in automatic CRUD endpoint). It

was indicating an array of entities, but the correct format was an object with "value"

property and then array of entities, according to the specification.

Fixed: Sending an object with a blob property set to null was not modifying the blob in

the database.

Fixed: Generated XData Web Application was being created with title "TMS XData Music

Web Application". The word "Music" was removed from the title.

Version 4.9 (Nov-2019)

New: Support for Android 64-bit platform (Delphi 10.3.3 Rio).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 189 of 27

https://download.tmssoftware.com/business/aurelius/doc/web/multi-model_design.html
https://download.tmssoftware.com/business/sparkle/doc/web/basic_authentication_middlewar.html
https://download.tmssoftware.com/business/sparkle/doc/web/apache-based-server.html

New: TXDataOperationContext.CreateManager and AddManager methods. You can

now add more Aurelius managers (TObjectManager) to the XData context. This makes it

easier to create other Aurelius managers in addition to the default one, and at the same

time return entities from that new manager, without worrying about evicting those objects

to destroy them.

New: TXDataClient.IgnoreUnknownPropeties property. You can now set this property

to true to force the client to ignore properties sent by the server that the client don't

know. Until now, the client would raise an exception saying the property is unknown.

Improved: $expand now appears as an optional parameter in SwaggerUI for endpoints

that return Aurelius entities.

Improved: SwaggerUI was displaying parameters as required even when they had default

values in service operations.

Improved: TXDataWebDataset compatibility with TMS Web Core 1.3. There is a breaking

change between TMS Web Core 1.3 and 1.2 regarding dataset, which means this XData

version won't work with previous TMS Web Core versions (1.2 and lower).

Fixed: TXDataClient and TXDataWebClient were building request URLs with double slashes

(//) in some requests. This didn't cause any errors but was wrong anyway.

Fixed: TMS XData Music Demo failed to compile in TMS Web Core 1.3 (fixed in 4.9.1).

Fixed: TMS XData Web Application wizard was generating code that didn't compile (fixed

in 4.9.1).

Version 4.8 (Oct-2019)

Improved: TXDataWebClient was raising some exceptions as Exception class. It's now

using EXDataClientException.

Fixed: SQLiteConsoleServer demo (the "Music server" used in several demos, like the TMS

XData/Web Core Music Web Application) was not correctly importing Tracks into Albums.

Version 4.7 (Sep-2019)

New: $expand query option now also applies for blobs. In previous versions, clients

could request associations to be inline in JSON response by using the $expand query

option in format "$expand=Customer". Now you can also ask for blob properties to be

inline (as base64 string) in the JSON response, by providing the name(s) of blob properties

in the $expand query option. For example, "$expand=Photo".

Improved: TXDataWebClient.Post now updates the key (id) properties of the object with

the generated value returned by the server. When calling TXDataWebClient.Post you pass

a Javascript object instance to the method, which will be serialized as JSON and sent to

the server to be inserted. If the server generates a new id for the object, then the

Javascript object instance passed to Post will have its id property automatically updated

with the id generated by the server. This has a good side effect on using

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 190 of 27

TXDataWebDataset as well: when automatically applying updates using

TXDataWebDataset, the id fields will automatically be filled with the server-side generated

value.

Improved: Polymorphism when deserializing JSON objects allows deserializing both

PODO and XData/Aurelius entities using the same method. For example, suppose a service

operation (server-side method) that receives a parameter of type "TObject". Clients can

now send either a PODO object or a Aurelius entity object to that method, and either will

be serialized correctly. In previous versions it would consider everything as PODO and

wrongly serialize the Aurelius entity.

Fixed: Multiple calls to TXDataWebDataset.ApplyUpdates could cause some errors. That

would happen if in the second call to ApplyUpdates, the modifications of the first call were

not yet sent to the server, causing the same delta to be processed twice.

Version 4.6 (Jul-2019)

New: HttpPatch attribute to specify service operations responding to PATCH HTTP

method.

New: macOS 64 support in Delphi Rio 10.3.2.

Fixed: Swagger not including all service operation actions when the actions endpoints

were the same.

Version 4.5 (Jun-2019)

New: FromQuery, FromPath and FromBody attributes allow higher control in

parameter binding and URL routing for service operations.

New: Support for SwaggerUI provides a built-in web-based environment to test the

API from the browser.

New: SwaggerOptions and SwaggerUIOptions properties allow to easily enable and

configure Swagger support for the API.

New: EnableEntityKeyAsSegment property allows single-entity URL endpoints to follow

the format "entity/id" - for example, customer/10, in addition to existing default format

customer(10).

Improved: String and enumeration literals now can be sent in URL without being enclosed

by single quotes (e.g., CustomerByName?Name=John instead of CustomerByName?

Name='John').

Fixed: TXDataWebClient invoking service operations with default parameters was

requiring all parameters to be passed, including the ones with default values.

Version 4.4 (Mar-2019)

Fixed: Index out of range error in TMS XData Web Application Wizard when XData server

has no entities.

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 191 of 27

Fixed: Generated XData Web Application not supporting filtering by subproperties (e.g.,

Invoice/Customer/Name eq 'John').

Version 4.3 (Jan-2019)

New: XData Server wizards generate XData server applications using the new

design-time components instead of pure code. The generated application is now way

easier to maintain and evolve, given it uses the RAD approach with design-time

components. There is now wizard for server as VCL application. Next versions will include

console application, Apache module or Windows service.

New: TXDataWebDataset.EnumAsInteger property controls how enumerated type

properties will be represented in the dataset. This is a breaking change.

Improved: All demos refactored, now using the new non-visual components:

TXDataServer, TAureliusConnection, TXDataConnectionPool and

TSparkleHttpSysDispatcher, making them easier to understand for beginners and easier to

change them.

Improved: TXDataWebClient.OnLoad method now provides the newly created entity in

the Args.Result property, when using Post method.

Fixed: TXDataWebClient.OnRequest event not being called when executing service

operations with RawInvoke method.

Fixed: Workaround a bug in Delphi Rio causing serialization of TJSONNumber values to

be always serialized as null (TJSONNumber.Null always returning true).

Fixed: Type mismatch when passing an empty array to a service operation that receives

the dynamic array as var/out parameter.

Fixed: XData Service wizard did not appear if there was no open project in IDE.

Fixed: Inoffensive memory leak in TSparkleHttpSysDispatcher when the dispatcher was

never activated.

Fixed: TXDataWebDataset now creates TFloatField field for XData properties of type

Currency, instead of TCurrencyField (unsupported in TMS Web Core clients).

Fixed: XData Music Demo was issuing JSON Web Tokens with wrong expiration date/time.

Version 4.2 (Dec-2018)

Improved: TXDataWebConnection now "disconnects" (cleans model object, requiring a

new connection) when URL is modified.

Fixed: Workaround for a bug in Delphi Rio causing JWT tokens to be always rejected due

to expiration (TJSONNumber.Null always returns true).

Fixed: TXDataWebClient.RawInvoke did not allow to receive a full JSON object as a single

parameter.

Fixed: XData Web App Application Wizard incorrectly created TExtendedField fields for

Int64 types on the server.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 192 of 27

Fixed: Typo in the generated XData service code: "form the client" should be "from the

client".

Version 4.1 (Nov-2018)

New: XData Web Application Wizard to generate GUI to perform CRUD operations

on entities. You can now generate a web application that allows users to insert, modify

and/or delete entities.

New: Support for Delphi 10.3 Rio.

Fixed: TTime fields not correctly supported in TXDataWebDataset.

Fixed: XData Service Wizard created new service units in the first project of a project

group. New services will be created in the currently active project now.

Version 4.0 (Nov-2018)

New: XData Web App Generator wizard. This wizard creates a complete TMS Web Core

client app based on a responsive Bootstrap template. The generated application should be

based on an XData server and will provide a user-interface for listing XData server entities,

including searching, ordering and pagination.

New: Design-time support with a new set of components for XData: TXDataServer

and TXDataConnectionPool components.

New: XData Service Operation wizard. Makes it very easy to create new service

operations (server-side business logic).

Improved: TXDataWebDataset.Load now automatically connects the

TXDataWebConnection if it is not connected.

Improved: TXDataServerModule.SetEntitySetPermissions supports '*' as the entity set

name which will be considered the default permissions for all entity sets.

Improved: TXDataClientResponse.ResultAsArray and ResultAsObject for quick access to

Result as a Json array or object.

Fixed: TXDataWebClient.RawInvoke did incorrectly require parameters of type "out".

Fixed: TXDataWebDataset did not set correct datetime values for the entity properties.

Version 3.2 (Sep-2018)

New: TXDataWebDataset properties QueryTop, QuerySkip, ServerRecordCount,

ServerRecordCountMode. This makes it easier to retrieve paged results from the server

(QueryTop, QuerySkip) and retrieve the total number of records on the server

(ServerRecordCount, ServerRecordCountMode). This number does not take the page

number and page size into account.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 193 of 27

New: TJwtMiddleware.AllowExpiredToken and ForbidAnonymousAccess properties.

This makes it easier to reject requests with expired tokens or requests without tokens

(anonymous). Just set these properties. This is a breaking change as the middleware now

rejects expired tokens by default. Please refer to the TMS Sparkle documentation for more

information.

New: TCorsMiddleware middleware makes it straightforward to add CORS support to

any Sparkle module. Please refer to the TMS Sparkle documentation for more info.

Improved: XData Music Demo includes options for ordering, paging and filtering (search)

of listed records.

Improved: "New TMS XData Server" Wizard adds commented code to include CORS and

Compress middleware. Uncomment the generated code to easily enable the features.

Improved: URIPathSegment attribute with empty string can be inside a service contract; it

supports creating service operations at the "root" of the server.

Fixed: TXDataWebDataset now correctly creates TStringField for GUID properties

(TGuidField is not supported in TMS Web Core).

Fixed: Removed memory leaks in desktop client of the JWT Auth demo.

Fixed: "New TMS XData Server" wizard updated with option to use new TMS Aurelius

native database drivers.

Version 3.1 (Jul-2018)

New: XData Music Web Application demo. A complete web application example using

a TMS XData server with TMS Web Core as web front-end. Full source code is provided,

and the online version of the demo is available at https://app.devgems.com/xdata/music/

app.

New: TXDataWebClient.ReferenceSolvingMode allows automatic solving of $ref

occurrences in JSON response, which is now the default behavior.

New: Demos XData Web-Client Framework, showing use of TXDataWebClient,

TXDataWebDataset and integration with FNC Grid.

New: TXDataWebConnection.OnResponse event intercepts all successful HTTP requests

made by the XData web client framework (3.1.1).

Fixed: Servers with Int64 type in model were not supported when used from TMS Web

client (3.1.1).

Version 3.0 (Jul-2018)

New: Full-featured TMS XData Web-Client Framework provides RAD, design-time and

high-level components for building web applications using TMS Web Core and TMS

XData. Buildling a REST API-based web application has never been as easy. This includes

dataset-like usage that feels home to Delphi developers.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 194 of 27

https://app.devgems.com/xdata/music/app
https://app.devgems.com/xdata/music/app

New: TXDataWebClient.RawInvoke allows low-level invoking of service operations from

TMS Web Core applications.

New: TXDataWebConnection.OnRequest and TXDataWebClient.OnRequest events allow

intercepting and modifying outgoing requests (for example, to add authentication

headers).

New: TXDataWebDataset.CurrentData provides the underlying JSON object of the current

web dataset record.

New: TXDataWebConnection.OnError event which is fired whenever an error happens

while performing requests to XData server from TMS Web Core apps.

New: TXDataWebClient request methods (List, Get, Post, RawInvoke, etc.) now have

overloaded methods that accept callback functions.

New: TXDataWebConnection.Open method allows for providing callbacks for connection

successful and connection error.

New: TXDataWebConnection.DesignData allows for adding custom headers at design-

time (for example authorization) to properly connect to XData server.

Improved: Smooth design-time experience with TXDataWebDataset. Manually loading

field defs is not necessary anymore - just connect a dataset to a web connection, provide

the URL and fields will be loaded automatically at both design-time or runtime. Design-

time menu option "Load Field Defs" has been removed.

Improved: Editing TXDataWebDataset.EntitySetName at design-time in object inspector

now provides a combobox with the list of available names retrieved from the server.

Improved: Dataset fields now supported in TXDataWebDataset. They will contain data (list

of objects) for associated lists (many-valued associations).

Improved: TXDataWebDataset.SetJsonData now accepts non-array values (to edit a single

object, for example).

Improved: TXDataWebClient.Get overloaded method allows for passing an additional

query string (to use $expand option for example).

Improved: TXDataServerModule.Create overload requires just BaseUrl - no database

connection pool is needed. Useful for XData servers that do not connect to a database or

have a specific database usage.

Improved: TMS Web Core-only TXDataConnection and TXDataDataset components have

been renamed to TXDataWebConnection and TXDataWebDataset. This is a breaking

change.

Fixed: Exceptions that were not inherited from EXDataHttpException were wrongly

reporting an error code (regression).

Fixed: Memory leaks when using mobile/Linux compilers (when using automatic reference

counting).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 195 of 27

Version 2.9 (May-2018)

New: OnModuleException event allows for a more flexible custom error-handling

processing of exception raised during XData processing request.

Fixed: OnEntityModifying event was being fired before merge operation thus not

providing correct information about the object in manager and previous state. Breaking

change that can be disabled by using _FixEntityModifyingOnUpsert := False.

Fixed: Deserialization of array of objects was keeping the same instance for all objects in

the array.

Version 2.8 (Feb-2018)

New: TMS RADical WEB enabled! The TMS framework for front-end Web development;

XData users now have a high-level framework to write Web clients, by using the new

TXDataConnection, TXDataDataset and TXDataWebClient components to access XData

servers.

New: TXDataClient.Count method. Allows retrieving the number of entities in a specific

resource endpoint, optionally using a query filter:

New: TQueryParser.AddMethod allows registering custom SQL Functions to be called

from XData query API. Using TMS Aurelius you can add custom SQL functions to use

from LINQ. You can now also register such a method in XData so clients can use such

functions from the XData API:

Then use it from query API:

New: /$model built-in URL returns metadata for the whole XData API.

New: MultiTentant Demo included in distribution shows how to use XData with multi-

tentant applications (multiple databases being accessed by the same server). The demo

shows how to specify the tentant by different URL or by using a custom HTTP header.

Improved: A connection was being retrieved from the pool even when the context

manager was not being used by a service operation.

Fixed: Service operations invoked via GET method using enumerated type parameters are

now supported.

•

•

•

•

•

TotalCustomersFromLondon := XDataClient.Count('$filter=City eq ''London''');

•

TQueryParser.AddMethod('unaccent', TQueryMethod.Create('unaccent', 1));

http://server:2001/tms/xdata/Customer?$filter=unaccent(Name) eq 'Andre'

•

•

•

•

TMS XData 5.16.1.1 Page 196 of 27

Version 2.7 (Oct-2017)

New: OpenAPI/Swagger support! XData servers provide a JSON file containing the

OpenAPI Specification (OAS, formerly Swagger) for your whole server API. This opens up a

lot of possibilities, usage of several tools of the OpenAPI ecosystem is now possible. Main

one is the Swagger UI, a web front-end to describe and test your API.

New: Several new types supported in service operations. Lots of new Delphi types can

now be (de)serialized to JSON, meaning that these types can be used in service

operations, either as input parameters, or as function results, or even as properties of

PODO objects sent/received. The new supported types include:

Generic arrays: values of type TArray<T>, where T can be any supported type;

Generics lists of primitive types: values of type TList<T>, where T can by any

supported type. In previous versions only lists of objects were supported;

Sets: values of type "set of T" where T is an enumerated type;

TStrings type.

New: Support for default parameter values in service operations. You can now specify

default values as parameters in service operations, using the [XDefault] attribute, and

make them not required when invoking the service operations from non-Delphi clients

(default parameters were already supported in Delphi clients).

New: JsonInclude attribute in PODO classes. You can configure how properties/fields

with default values will be serialized in PODO classes. This attribute makes it possible to

have a smaller JSON representation, by removing properties which value is null, zero,

empty string, etc. Usage example: [JsonInclude(TInclusionMode.NonDefault)].

New: JsonNamingStrategy attribute. Allows you to automatically define a strategy for

naming the JSON properties based on the field/property names of the class. You can use

several predefined strategies: default, identity, camelCase, snake_case, identityCamelCase,

identity_snake_case.

New: JsonEnumValues attribute. You can use this attribute to specify different values

when serializing enumerated values.

New: TXDataRequestHandler.ManagedObjects property. This property provides more

flexibility when it comes to automatic memory management at server side, allowing you to

add objects to that collection and don't worrying about destroyed them.

Fixed: Error when using params of type TDate (TDateTime was not affected) in service

operations (Regression).

Fixed: Design-time wizard icon not showing correctly in Delphi 10.2 Tokyo.

•

•

◦

◦

◦

◦

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 197 of 27

https://www.openapis.org/
https://swagger.io
https://swagger.io/swagger-ui/

Version 2.6 (Jul-2017)

New: XDataProperty and XDataExcludeProperty attributes. When converting Aurelius

entities to/form JSON, by default XData serializes all (and only) fields/properties that are

mapped using Aurelius attributes. You can now include other (transient) properties or

fields in JSON by using XDataProperty attribute. You also have the option to exclude an

existing mapped member by using XDataExcludeProperty attribute.

New: JsonProperty and JsonIgnore attributes. When serializing regular Delphi objects

(DTO) to JSON, XData includes all class fields by default. You can use JsonProperty

attribute to add properties to the JSON (and/or change their name in JSON object) and

use JsonIgnore attribute to exclude fields from JSON.

New: Support for passing parameters by reference in service operations. You can now

declare and use service operations (methods) that receive parameters by reference. A

server method like Swap(var A, B: Integer) is now supported for both server-side and

client-side (using TXDataClient or regular HTTP requests).

New: Filter functions startswith, endswith and contains. You can now perform $filter

queries with those functions to search for substrings in entity fields. For example: ?

$filter=contains(Name, 'Walker') or startswith(Name, 'John').

New: Filter function concat. You can now use concat function when performing queries

to concatenate two or more strings. For example: ?$filter=concat(concat(FirstName, ' '),

LastName) = 'James Smith'.

New: TXDataSeverModule.UnknownMemberHandling property. You can now

optionally tell the server to ignore unknown JSON properties sent by the client (instead of

raising an InvalidJsonProperty error).

Fixed: Using TStream as a parameter for service operations was causing "JSON converter

not found" error.

Version 2.5 (May-2017)

New: Linux support using Delphi 10.2 Tokyo and later. Using XData on Linux doesn't

require any specific change in your XData-related code. All your Linux specific code relates

to TMS Sparkle - creating an Apache module and configuring TMS Sparkle to respond to

requests. Once you do that, you just add the XData module to the Sparkle dispatcher as

usual.

Fixed: Location header of POST responses now uses host of the client request, not the

host configured in XData module.

Previous Versions

Version 2.4 (Mar-2017)

New: Delphi 10.2 Tokyo Support.

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 198 of 27

https://download.tmssoftware.com/business/sparkle/doc/web

Fixed: Server-side stack overflow when trying to load a proxy property sent by the client, if

the parent entity of that proxy was merged into the current Object Manager.

Version 2.3 (Jan-2017)

New: Demo project showing authentication using JWT (JSON Web Token).

Fixed: Sporadic server error loading proxied lists sent by the client.

Fixed: JWT encoding not working on XE6.

Fixed: XData Server Wizard generating corrupted source code when TMS Component Pack

was installed.

Version 2.2 (Aug-2016)

New: Url convention now allows $count path segment to retrieve number of entities in a

resource.

Fixed: RefCount property was wrongly being serialized in PODO objects from mobile

clients.

Fixed: TXDataClient.Service<T> failing for Android clients when compiling in Release

config.

Version 2.1 (Jul-2016)

New: $expand query option allows clients to have full control on how associated entities

appear in JSON response.

New: Support for entities that have associations in ID (primary key containing foreign

keys).

New: Support for Variant-type parameters in service operations when using GET HTTP

method.

New: Breaking change: TXDataServerModule.PutMode property controls how PUT will

behave at server-side.

New: TXDataServerModule.SerializeInstanceRef property controls how instances of same

object will be represented in JSON response.

New: TXDataServerModule.SerializeInstanceType property controls how xdata type

metadata will appear in JSON response.

New: Support for Nullable<T> values in PODO classes.

Improved: Errors on query syntax now return http code 400 instead of 500.

Fixed: JSON Proxies (@xdata.proxy) sent by the client were not being solved when reading

such properties at server-side.

Fixed: Association references (@xdata.ref) were not being solved when receiving entities in

service operations parameters.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 199 of 27

Version 2.0 (May-2016)

New: Service operations can now receive and return any type of object. This increases

flexibility significantly as you can use any type of object for structure input/output

parameters, or to send/receive DTO classes, etc.

New: Server-Side Events allow subscribing listeners events and perform additional server-

side logic

New: JWT (Json Web Token) authentication and Basic authentication, thanks to new TMS

Sparkle.

New: Authentication and authorization mechanism, based on TMS Sparkle.

New: Delphi 10.1 Berlin support.

New: Service operations can now receive and return TJSONAncestor objects (Delphi XE6

and up only). This allows full control over the JSON request and response.

New: Service operations can now receive and return TCriteriaResult objects, making it easy

to return Aurelius query results that use projections.

New: $inlinecount query option allow retrieving the total number of entities when using

paged results.

New: Method TXDataModelBuilder.RemoveEntitySet for more flexibility when building

XData models.

New: TXDataServerModule.SetEntitySetPermissions allows configuring what operations are

available in each resource type.

Improved: All server-side operation (entity CRUD, service operation execution) are now

performed in database transactions.

Improved: TXDataOperationContext.Current now also available in entity resources.

Version 1.6 (Feb-2016)

New: Design-time wizard to create a XData Server with a few clicks.

Fixed: Service operation using enumerated types as parameters or function results not

working properly.

Fixed: EntitySet requests were not taking xdata-expandlevel header into consideration.

This is a breaking change.

Version 1.5.1 (Sep-2015)

New: Delphi 10 Seattle support.

Version 1.5 (Aug-2015)

New: Several built-in functions available to increase flexibility when querying objects in

REST requests. New available functions are Upper, Lower, Length, Substring, Position, Year,

Month, Day, Hour, Minute and Second.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 200 of 27

https://www.tmssoftware.com/site/sparkle.asp
https://www.tmssoftware.com/site/sparkle.asp
https://www.tmssoftware.com/site/sparkle.asp
https://download.tmssoftware.com/business/aurelius/doc/web/projections.htm

New: TXDataClient.HttpClient property provides low level access to the Http client and

allows using OnSendingRequest events to customize requests.

New: TXDataOperationContext Request and Response properties gives full control for

service implementations to customize the processing of client requests.

New: TXDataServerModule.DefaultExpandLevel allows defining the expand level of JSON

responses when it's not defined by client request.

Fixed: TXDataClient Get, Delete, Patch and Put operations were broken when using entities

with composite id.

Fixed: POST requests not working correctly with entities with composite key.

Fixed: Data Modification requests sending content-type header with parameter (for

example, ";charset=UTF8") were causing errors.

Version 1.4 (Jun-2015)

New: HttpMethod attribute allows specifying the HTTP method a service operation should

respond to.

New: URIPathSegment attribute allows specifying a different name for operation/service to

be used in URL.

Fixed: GET requests with query order was sometimes causing the same column to appear

multiple times in a "ORDER BY" SQL clause.

Version 1.3.1 (Apr-2015)

New: Delphi XE8 support.

Version 1.3 (Mar-2015)

New: Support for CORS (Cross-origin resource sharing) preflighted requests.

Version 1.2 (Dec-2014)

New: TXDataClient methods Get, Post, Put, Delete and List allows easy and high-level

access to XData server objects from Delphi clients.

New: Android and iOS support for XData client objects.

New: Server support for "x-http-method-override" header (allowing clients to tunnel HTTP

methods to server through POST requests).

Fixed: Issues with floating-point literals in Query URL with non-English server systems.

Fixed: Service operations returning nil entities should respond with status code 404.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 201 of 27

Version 1.1 (Oct-2014)

New: Service Operations allow adding custom business logic to your server using

interfaces and methods.

New: Multi-Model design makes it easy to create multiple servers with different mapping,

types and service operations.

New: UserName and Password properties in TXDataServerModule for basic authentication

protection.

Fixed: Malfunctioning with $skip and $top query options.

Version 1.0.1 (Sep-2014)

New: Delphi XE7 support.

Version 1.0 (Aug-2014)

First public release.

•

•

•

•

•

•

TMS XData 5.16.1.1 Page 202 of 27

Licensing and Copyright Notice
The trial version of this product is intended for testing and evaluation purposes only. The trial

version shall not be used in any software that is not run for testing or evaluation, such as

software running in production environments or commercial software.

For use in commercial applications or applications in production environment, you must

purchase a single license, a small team license or a site license. A site license allows an unlimited

number of developers within a company holding the license to use the components for

commercial application development and to obtain free updates and priority email support for

the support period (usually 2 years from the license purchase). A single developer license allows

ONE named developer within a company to use the components for commercial application

development, to obtain free updates and priority email support. A small team license allows

TWO developers within a company to use the components for commercial application

development, to obtain free updates and priority email support. Single developer and small team

licenses are NOT transferable to another developer within the company or to a developer from

another company. All licenses allow royalty free use of the components when used in binary

compiled applications.

The component cannot be distributed in any other way except through the TMS Software web

site. Any other way of distribution requires a written authorization from the author.

Online registration/purchase for this product is available at https://www.tmssoftware.com.

Source code & license is sent immediately upon receipt of payment notification, by email.

Copyright © TMS Software. ALL RIGHTS RESERVED.

No part of this help may be reproduced, stored in any retrieval system, copied or modified,

transmitted in any form or by any means electronic or mechanical, including photocopying and

recording for purposes others than the purchaser's personal use.

TMS XData 5.16.1.1 Page 203 of 1

https://www.tmssoftware.com

Getting Support

General notes

Before contacting support:

Make sure to read this whole manual and any readme.txt or install.txt files in the

component distributions, if available.

Search the TMS support forum and the TMS newsgroups to see if your question has not

been already answered.

Make sure you installed the latest version of the component(s).

When contacting support:

Specify with which component is causing the problem.

Specify which Delphi or C++Builder version you are using, and please also let us know

which OS you use.

For registered users, use the special priority support email address (mentioned in

registration email) & provide your registration email & code. This will guarantee a fast

reply.

Send your email from an email account that

allows to receive replies sent from our server;

allows to receive ZIP file attachments;

has a properly specified & working reply address.

Getting support

For general information: info@tmssoftware.com

Fax: +32-56-359696

For all questions, comments, problems, and feature request for our products:

help@tmssoftware.com

IMPORTANT

All topics covered by this manual are officially supported and it's unlikely that future versions

will break backward compatibility. If this ever happens, all breaking changes will be covered in

this manual and guidelines to update to a new version will be described. However, it's

important to note that parts of the source code of this product that are undocumented are not

officially supported and are subject to change, which includes breaking backward

compatibility. In case you are using an unsupported/undocumented feature we will not

provide support for upgrading and will not officially support it.

•

•

•

•

•

•

1.

2.

3.

TMS XData 5.16.1.1 Page 204 of 2

mailto:info@tmssoftware.com
mailto:help@tmssoftware.com

TMS XData 5.16.1.1 Page 205 of 2

Breaking Changes
List of changes in each version that breaks backward compatibility from a previous version.

Version 4.3

TXDataWebDataset now creates string fields (TStringField) for XData entity properties that are

enumerated types. In previous versions, integer fields were created. This is actually a bug fix.

Integer fields are used for enumerated types when using TMS Aurelius directly in desktop/

mobile applications, because an enumerated type in Delphi is, in the end, an ordinal (integer)

type.

For TMS Web Core, though, there are no entities, but a direct manipulation of the JSON returned

by XData. And in XData JSON representation, an enumerated type is represented as a string (the

enum name). For modifying or inserting such property in an entity, user need to provide the

string value.

This is a bug fix but breaks existing applications. If by any chance you need to keep the enum

fields as integers, set TXDataWebDataset.EnumAsIntegers property to true.

Version 3.0

This version is the first "official" (non-beta) support for TMS Web Core, and it has renamed two

key components:

TXDataWebDataset (formely TXDataDataset)

TXDataWebConnection (formely TXDataConnection)

If you have used a previous version and used the above components in TMS Web Core

applications, you might get an error "TXDataConnection not found" when opening the form

asking for Cancel or Ignore. Just click Cancel, close the project, and open the offending .pas/.dfm

in your preferred text editor (not Delphi - it can be Notepad, for example).

Then replace any occurrence of TXDataDataset with TXDataWebDataset, and any occurrence of

TXDataConnection with TXDataWebConnection, in both .pas and .dfm files. Save the files and this

will fix the issue.

Version 2.9

OnEntityModifying event was being fired before merge operation thus not providing correct

information about the object in manager and previous state. In case you want to go back to the

previous behavior, set _FixEntityModifyingOnUpsert global variable to false.

•

•

uses XData.Server.Module;

_FixEntityModifyingOnUpsert := False;

TMS XData 5.16.1.1 Page 206 of 3

Version 2.1

TXDataServerModule.PutMode property controls how PUT will behave at server-side.

Version 1.5.2

This version fixes a bug that the header xdata-expandlevel was being ignored when returning

entity sets. Even though it's a bug fix, this is a breaking change as the server changed its

behavior.

Version 1.1

a. Example provided in Building The Entity Model topic has changed to illustrate how to correctly

build the model in version 1.1 (TXDataModelBuilder constructor and Build method changed the

signature).

b. Model is not owned by the TXDataServerModule class and must be now destroyed explicitly.

So in the following code:

now you need to destroy the model when the server is shutdown:

Note this is not a critical issue because if there is a leak, it will only happen when the whole

server application is shutdown. Also, with the new multiple model feature, it's very rare that you

would need to create your own model explicitly.

Version 2.1 - Breaking Changes

Version 2.1 introduces the TXDataServerModule.PutMode property which defines how PUT

requests will be implemented by the server. The two options are "Update" and "Merge".

Basically, the server receives the object to be updated in JSON, deserializes it to an object, and

uses the TMS Aurelius TObjectManager and either the Update or the Merge method:

•

XDataServerModule := TXDataServerModule.Create(MyUrl, MyConnectionPool, MyModel);

MyModel.Free;

// TXDataPutMode.Update

Manager.Update(ReceivedObject);

Manager.Flush;

// TXDataPutMode.Merge

Manager.Merge(ReceivedObject);

Manager.Flush;

TMS XData 5.16.1.1 Page 207 of 3

The breaking change here is that until the version prior to 2.1, the one and only behavior was

Update. Now, the default has changed to Merge. We're not aware of any serious issue with this

change, but the behavior has changed in some specific cases - for the better. Suppose you have

a JSON request with the following object:

In the example above, the client is sending a Product entity which has two category properties:

Category1 and Category2. Both properties are pointing to the same "Toys" category (id = 5) so

the PUT request is intending to set both product categories to "Toys".

With the previous behavior, the server would raise an error, because there are two different

instances of the same category in the product. With the new Merge behavior, the PUT request

will process just fine.

In any case, if you want to go back to the previous behavior you can just set

TXDataServerModule.PutMode property to TXDataPutMode.Update.

{

 "$id": 1,

 "@xdata.type": "XData.Default.Product",

 "Id": 10,

 "Name": "Ball",

 "Category1": {

 "$id": 2,

 "@xdata.type": "XData.Default.Category",

 "Id": 5,

 "Name": "Toys"

 },

 "Category2": {

 "$id": 2,

 "@xdata.type": "XData.Default.Category",

 "Id": 5,

 "Name": "Toys"

 }

}

TMS XData 5.16.1.1 Page 208 of 3

	Overview
	Getting Started
	1. Create and run an "empty" server
	2. Add your server-side logic using service operations
	3. Send requests to the server from clients
	Connecting from Delphi client applications
	Connecting from non-Delphi client applications

	4. (Optional) Automatically publish your existing Aurelius entities
	How to continue from this
	Note

	Creating the Server Using the XData Server Wizards
	Creating the Server Using Design-Time Components
	Creating the Server Manually
	1. Create an IDBConnectionFactory interface
	2. Create an IDBConnectionPool interface
	3. Create a TXDataServerModule object
	4. Create a THttpSysServer, add the module to it and start the server
	Example 1: In-memory SQLite for testing/development
	Example 2: MySQL Server with dbExpress (from Delphi code)
	Example 3: MS SQL Server with FireDAC (using TDataModule)

	Service Operations
	XData Service Wizard
	Service Operations Overview
	Creating Service Contract
	Defining Service Interface
	Routing
	Note
	Default Routing
	Modifying the HTTP method
	Using Route attribute to modify the URL Path
	Replacing the root URL
	Conflict with Automatic CRUD Endpoints

	Parameter Binding
	Default binding modes
	FromBody parameters
	FromQuery parameters
	Note
	Warning

	FromPath parameters
	Mixing binding modes
	Methods with a single FromBody object parameter
	Methods with a single FromBody scalar parameter

	Supported Types
	Scalar types
	Enumerated and Set Types
	Simple objects - PODO (Plain Old Delphi Objects)
	Aurelius Entities
	Generic Lists: TList<T>
	Generics arrays: TArray<T>
	TJSONAncestor (XE6 and up)
	TCriteriaResult
	TStrings
	TStream

	Return Values
	Methods with parameters passed by reference
	Method which returns a single object

	Default Parameters
	Parameters validation
	Note

	Service Implementation
	Server Memory Management
	Managed objects
	Specific cases

	TXDataOperationContext
	Inspecting request and customizing response
	The default connection
	Additional managers

	XData Query
	Receiving query data
	Creating a criteria

	TMS Aurelius CRUD Endpoints
	Overview of Aurelius CRUD Endpoints
	Aurelius Equivalence to XData Model
	Entity Sets Permissions
	URL Conventions
	Resource Path
	Addressing Entity Sets
	Addressing Single Entity
	Addressing Navigation Properties
	Addressing Individual Properties
	Addressing Streams (Blobs)
	Counting Entities
	Model Metadata

	Query Options
	$filter
	$orderby
	$top
	$skip
	$inlinecount
	$expand
	Expanding associations
	Expanding blob properties
	Expanding multiple properties

	$select

	Built-in Functions
	Upper
	Lower
	Length
	Substring
	Position
	Concat
	Contains
	StartsWith
	EndsWith
	Year
	Month
	Day
	Hour
	Minute
	Second

	Literals in URI
	Custom Functions

	Requesting Data
	Querying Collections
	Note

	Requesting Associated Entities
	Requesting Individual Properties
	Requesting Streams (Blobs)
	HTTP Request Headers
	xdata-expand-level
	xdata-put-mode
	xdata-serialize-instance-ref
	xdata-serialize-instance-type

	Requesting Single Entities

	Data Modification
	Create an Entity
	Update an Entity
	Delete an Entity
	Managing Streams (Blobs)

	TXDataClient
	Invoking Service Operations
	Client Memory Management
	Working With CRUD Endpoints
	Requesting a Single Entity
	Requesting an Entity List
	Creating Entities
	Updating Entities
	Removing Entities

	Using the Query Builder
	Filter and FilterRaw
	OrderBy and OrderByRaw
	Top and Skip
	Expand
	Subproperties
	From

	Client and Multi-Model
	Authentication Settings
	Ignoring Unknown Properties

	JSON Format
	Entity and Object Representation
	Property Values
	Object References
	Annotation "xdata.type"
	Representing Associated Objects
	Entity Reference
	Entity/Object Inline
	Proxy Info

	Blob Representation
	Including Or Excluding Properties
	Aurelius Entities
	PODO (Plain Old Delphi Objects)
	JsonProperty and JsonIgnore attributes
	JsonInclude attribute
	JsonEnumValues attribute
	JsonNamingStrategy attribute

	Customizing JSON Serialization

	Collection of Objects
	Individual Properties
	Error Response
	Canonical Id

	Design-Time Components
	TXDataServer Component
	Properties
	Events
	TXDataModuleEvent
	TGetPoolInterfaceEvent

	TXDataConnectionPool Component
	Properties
	Events
	TPoolInterfaceEvent

	XData Model
	Entity Model Concepts
	Services/Contracts
	Enum Type
	Concepts related to Aurelius CRUD Endpoints
	Entity Set (the CRUD Endpoint itself)
	Entity Type
	Simple Property
	Navigation Property

	Using TXDataModelBuilder
	TXDataModelBuilder class
	Properties
	Methods

	Multiple servers and models

	Server-Side Events
	Events in TXDataModuleEvents
	Using Events
	OnEntityGet Event
	OnEntityList Event
	OnEntityInserting Event
	OnEntityInserted Event
	OnEntityModifying Event
	OnEntityModified Event
	OnEntityDeleting Event
	OnEntityDeleted Event
	OnModuleException Event
	OnManagerCreate Event
	Authentication Example using JSON Web Token (JWT)

	Authentication and Authorization
	Note
	JSON Web Token (JWT)
	Authentication
	User Login and JWT Generation
	Warning
	Note

	Implementing JWT Authentication with TJwtMiddleware
	Warning

	Authorization
	Attribute-based Authorization
	Authorize Attribute
	AuthorizeScopes Attribute
	Note

	AuthorizeClaims Attribute
	EntityAuthorize Attribute
	Note
	Warning

	EntityAuthorizeScopes Attribute
	EntityAuthorizeClaims Attribute

	Manual Authorization in Service Operations
	Using Server-Side Events

	Using Authentication Credentials with TXDataClient

	OpenAPI Support
	OpenAPI document
	OpenAPI document endpoint

	Swagger UI
	Enabling Swagger UI
	Using SwaggerUI
	Configuring SwaggerUI

	Redoc
	Enabling Redoc
	Using Redoc
	Configuring Redoc

	Customizing the OpenAPI document
	Customizing document header and description
	Excluding methods
	SwaggerOptions property
	Automatic validation rules

	Using XML Documentation
	Enabling generation of XML documentation files
	Importing XML documentation in Swagger
	Using different documentation for Help Insight and Swagger
	Customizing tags
	Using tag groups
	Note

	Flagging properties as required
	Flagging endpoints as deprecated

	OpenAPI (Swagger) importer
	Note
	Warning
	Generating the imported unit
	Customizing the imported API
	Using the API

	Other Tasks
	Creating an XData Server
	TXDataServerModule
	Properties
	TInstanceRefSerialization
	TInstanceTypeSerialization
	TUnknownMemberHandling
	TRoutingPrecedence

	Methods

	IDBConnectionPool Interface
	IDBConnectionFactory Interface
	OpenAPI/Swagger Support
	Note

	Web Applications with TMS Web Core
	Setting Up the Connection with TXDataWebConnection
	Tip
	OnConnect and OnError events
	Open method
	OnRequest event
	DesignData property

	Using TXDataWebClient
	Using RequestId
	Handling errors
	Using callbacks
	Available request methods
	Invoking service operations
	Other properties

	Using TXDataWebDataset
	Loading data automatically
	Note

	Paging results
	Loading data manually
	Modifying data
	Other properties

	Solving Errors
	Error connecting to XData server
	CORS issue
	HTTPS/HTTP issue

	XData Web Application Wizard
	Extra Resources

	About
	What's New
	Version 5.16 (Jan-2024)
	Version 5.15 (Nov-2023)
	Version 5.14 (Nov-2023)
	Version 5.13 (Oct-2023)
	Version 5.12 (Jul-2023)
	Version 5.11 (Feb-2023)
	Version 5.10 (Jan-2023)
	Version 5.9 (Dec-2022)
	Version 5.8 (Sep-2022)
	Version 5.7 (Aug-2022)
	Version 5.6 (Jul-2022)
	Version 5.5 (Mar-2022)
	Version 5.4 (Feb-2022)
	Version 5.3 (Sep-2021)
	Version 5.2 (Jun-2021)
	Version 5.2.1

	Version 5.1 (Mar-2021)
	Version 5.0 (Mar-2021)
	Version 4.17 (Sep-2020)
	Version 4.16 (Aug-2020)
	Version 4.15 (Jun-2020)
	Version 4.14 (Jun-2020)
	Version 4.13 (May-2020)
	Version 4.12 (Apr-2020)
	Version 4.11 (Apr-2020)
	Version 4.10 (Mar-2020)
	Version 4.9 (Nov-2019)
	Version 4.8 (Oct-2019)
	Version 4.7 (Sep-2019)
	Version 4.6 (Jul-2019)
	Version 4.5 (Jun-2019)
	Version 4.4 (Mar-2019)
	Version 4.3 (Jan-2019)
	Version 4.2 (Dec-2018)
	Version 4.1 (Nov-2018)
	Version 4.0 (Nov-2018)
	Version 3.2 (Sep-2018)
	Version 3.1 (Jul-2018)
	Version 3.0 (Jul-2018)
	Version 2.9 (May-2018)
	Version 2.8 (Feb-2018)
	Version 2.7 (Oct-2017)
	Version 2.6 (Jul-2017)
	Version 2.5 (May-2017)
	Previous Versions
	Version 2.4 (Mar-2017)
	Version 2.3 (Jan-2017)
	Version 2.2 (Aug-2016)
	Version 2.1 (Jul-2016)
	Version 2.0 (May-2016)
	Version 1.6 (Feb-2016)
	Version 1.5.1 (Sep-2015)
	Version 1.5 (Aug-2015)
	Version 1.4 (Jun-2015)
	Version 1.3.1 (Apr-2015)
	Version 1.3 (Mar-2015)
	Version 1.2 (Dec-2014)
	Version 1.1 (Oct-2014)
	Version 1.0.1 (Sep-2014)
	Version 1.0 (Aug-2014)

	Licensing and Copyright Notice
	Getting Support
	General notes
	Getting support
	Important

	Breaking Changes
	Version 4.3
	Version 3.0
	Version 2.9
	Version 2.1
	Version 1.5.2
	Version 1.1
	Version 2.1 - Breaking Changes

